ARCH-GARCH Analysis: An Approach to Determine The Price Volatility of Red Chili
Abstract
Red chili is an agricultural commodity with high price volatility. Several previous studies stated that volatility was caused by weather effect on red chili production and shocks on public consumption. However, the other research stated that volatility was caused by the government’s import of red chili. This research aimed to analyze the price volatility of red chili in Semarang Regency on January 2019 to February 2020. The ARCH-GARCH method was applied in this study. This research showed that the price volatility of red chili occurred at the beginning, middle, and end of the year due to climate change, changes in public consumption patterns on religious holidays, and oversupply. However, the prevalence of Indonesia’s imports of red chili did not affect the price volatility. The government is suggested to implement a mapping policy and planting patterns to ensure the supply of red chili.
Keywords
Full Text:
PDFReferences
Antwi, E., Gyamfi, E. N., Kyei, K., Gill, R., & Adam, A. M. (2021). Determinants of Commodity Futures Prices: Decomposition Approach. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/6032325
Anwarudin, M. J., Sayekti, A. L., Marendra, A. K., & Yusdar Hilman, D. (2015). Dinamika Produksi dan Volatilitas Harga Cabai: Antisipasi Strategi dan Kebijakan Pengembangan. Pengembangan Inovasi Pertanian, 6, 33–42.
Asgharpur, H., Vafaei, E., & Abdolmaleki, H. (2017). The Asymmetric Exchange Rate Pass-Through to Import Price Index : The Case Study of Iran. Iranian Journal of Economic Studies, 6(1), 47–64. https://doi.org/10.22099/ijes.2018.19977.1243
Babihuga, R., & Gelos, G. (2015). Commodity Prices : Their Impact on Inflation in Uruguay Commodity Prices : Their Impact on Inflation in Uruguay (Issue December).
Barbaglia, L., Croux, C., & Wilms, I. (2020). Volatility Spillovers in Commodity Markets: A Large T-Vector Autoregressive Approach. Energy Economics, 85. https://doi.org/10.1016/j.eneco.2019.104555
Borkowski, B., Krawiec, M., Karwański, M., Szczesny, W., & Shachmurove, Y. (2021). Modeling Garch Processes in Base Metals Returns using Panel Data. Resources Policy, 74. https://doi.org/10.1016/j.resourpol.2021.102411
Huchet-Bourdon, M. (2011). Agricultural Commodity Price Volatility: An Overview. OECD Food, Agriculture and Fisheries Papers, No.52. Paris: OECD Publishing. https://doi.org/10.1787/5kg0t00nrthc-en.
Carolina, R. A., Mulatsih, S., & Anggraeni, L. (2016). Analisis Volatilitas Harga dan Integrasi Pasar Kedelai Indonesia dengan Pasar Kedelai Dunia. Jurnal Agro Ekonomi, 34(1), 47–66.
Fufa, D. D., & Zeleke, B. L. (2018). Forecasting the Volatility of Ethiopian Birr/Euro Exchange Rate Using Garch-Type Models. Annals of Data Science, 5, 529–547. https://doi.org/10.1007/s40745-018-0151-6
Das, T., Paul, R. K., Bhar, L. M., & Paul, A. K. (2020). Application of Machine Learning Techniques with GARCH Model for Forecasting Volatility in Agricultural Commodity Prices. Journal of The Indian Society of Agricultural Statistics, 74(3), 187–194.
Deb, P. (2021). Fish Price Volatility Dynamics in Bangladesh Selected Paper prepared for presentation at the 2021 Agricultural & Applied Economics Association Annual Meeting , Austin , TX , August 1 – August 3 Fish Price Volatility Dynamics in Bangladesh. 2021 Agricultural & Applied Economics Association Annual Meeting, 1–25.
Devi, I. B., Srikala, M., & Ananda, T. (2015). Price volatility in major chilli markets of India. Indian Journal of Economics and Development, 3(3), 194–198.
Djomo, C.R.F; Ukpe, H.U; Ngo, V, N; Mohamadou, S; Adedze, M; Pemunta, V. (2021). Perceived Effects of Climate Change on Profit Efficiency among Small Scale Chili Pepper Marketers in Benue State, Nigeria. GeoJournal, 86, 1849–1862. https://doi.org/10.1007/s10708-020-10163-x
Durdu, O. F. (2010). Application of Linear Stochastic Models for Drought Forecasting in The Büyük Menderes River Basin, Western Turkey. Stochastic Environmental Research and Risk Assessment, 24, 1145–1162. https://doi.org/10.1007/s00477-010-0366-3
Erkekoglu, H., Garang, A. P. M., & Deng, A. S. (2020). Comparative Evaluation of Forecast Accuracies for Arima, Exponential Smoothing and VAR. International Journal of Economics and Financial Issues, 10(6), 206–216. https://doi.org/10.32479/ijefi.9020
Fameliti, S. P., & Skintzi, V. D. (2022). Statistical and Economic Performance of Combination Methods for Forecasting Crude Oil Price Volatility. Applied Economics, 54, 3031–3054. https://doi.org/10.1080/00036846.2021.2001425
Gilbert, C. L., & Morgan, C. W. (2010). Food price volatility. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3023–3034. https://doi.org/10.1098/rstb.2010.0139
Gozgor, G., & Memis, C. (2015). Price Volatility Spillovers among Agricultural Commodity and Crude Oil Markets: Evidence from The Range-Based Estimator. Agricultural Economics (Czech Republic), 61(5), 214–221. https://doi.org/10.17221/162/2014-AGRICECON
Hajkowicz, S., Negra, C., Barnett, P., Clark, M., Harch, B., & Keating, B. (2012). Food Price Volatility and Hunger Alleviation-Can Cannes Work? Agriculture & Food Security, 1, 1–12. https://doi.org/10.1186/2048-7010-1-8
Hashemijoo, M., Ardekani, M. A., & Younesi, N. (2012). The Impact of Dividend Policy on Share Price Volatility in the Malaysian Stock Market. Journal of Business Studies Quarterly, 4(1), 111–129.
He, X., & Serra, T. (2022). Are Price Limits Cooling Off Agricultural Futures Markets? American Journal of Agricultural Economics 1-23. https://doi.org/10.1111/ajae.12306
Huffaker, R., Canavari, M., & Muñoz-Carpena, R. (2018). Distinguishing between Endogenous and Exogenous Price Volatility in Food Security Assessment: An Empirical Nonlinear Dynamics Approach. Agricultural Systems, 160, 98-109. https://doi.org/10.1016/j.agsy.2016.09.019
Jannah, M., Sadik, K., & Afendi, F. M. (2021). Study of Forecasting Method for Agricultural Products Using Hybrid ANN-GARCH Approach. Journal of Physics: Conference Series, 1863. https://doi.org/10.1088/1742-6596/1863/1/012052
Jordaan, H., Grové, B., Jooste, A., & Alemu, Z. G. (2007). Measuring The Price Volatility of Certain Field Crops in South Africa using the ARCH/GARCH approach. Agrekon, 46(3), 306–322. https://doi.org/10.1080/03031853.2007.9523774
Kornher, L., & Kalkuhl, M. (2013). Food price volatility in developing countries and its determinants. Quarterly Journal of International Agriculture, 52(4), 277–308. https://doi.org/10.22004/ag.econ.173649
Kumari, R. V., Venkatesh, P., Ramakrishna, G., & Sreenivas, A. (2019). Agricultural market intelligence center, a case study of chilli crop price forecasting in Telangana. International Research Journal of Agricultural Economics and Statistics, 10(2), 257–261. https://doi.org/10.15740/has/irjaes/10.2/257-261
Kuwornu, J. K. M., & Mensah-Bonsu, A. (2011). Analysis of Foodstuff Price Volatility in Ghana : Implications for Food Security. European Journal of Business and Management, 3(4), 100–118.
Lakshmanasamy, T. (2021). The Relationship Between Exchange Rate and Stock Market Volatilities in India : ARCH-GARCH Estimation of the Causal Effects. International Journal of Finance Research, 2(4), 245–259. https://doi.org/10.47747/ijfr.v2i4.443
Li, L. (2021). Risk of Investing in Volatility Products: A Regime-Switching Approach. Investment Analysts Journal, 50(1), 1–16. https://doi.org/10.1080/10293523.2020.1814047
Madziwa, L., Pillalamarry, M., & Chatterjee, S. (2022). Gold Price Forecasting using Multivariate Stochastic Model. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2021.102544
Manogna, R.L., & Mishra, A. K. (2020). Price Discovery and Volatility Spillover: An Empirical Evidence from Spot and Futures Agricultural Commodity Markets in India. Journal of Agribusiness in Developing and Emerging Economies, 10(4), 447–473. https://doi.org/10.1108/JADEE-10-2019-0175
Markelova, H., Meinzen-Dick, R., Hellin, J., & Dohrn, S. (2009). Collective Action for Smallholder Market Access. Food Policy, 34(1), 1–7. https://doi.org/10.1016/j.foodpol.2008.10.001
Monk, M. J., Jordaan, H., & Grové, B. (2010). Factors Affecting The Price Volatility of July Futures Contracts for White Maize in South Africa. Agrekon, 49(4), 446–458. https://doi.org/10.1080/03031853.2010.526420
Muflikh, Y. N., Smith, C., Brown, C., & Aziz, A. A. (2021). Analysing Price Volatility in Agricultural Value Chains using Systems Thinking: A Case Study of The Indonesian Chilli Value Chain. Agricultural Systems, 192. https://doi.org/10.1016/j.agsy.2021.103179
Muñoz-Concha, D., Quiñones, X., Hernández, J. P., & Romero, S. (2020). Chili Pepper Landrace Survival Aad Family Farmers in Central Chile. Agronomy, 10(10). https://doi.org/10.3390/agronomy10101541
Nasution, A. H., Hanter, & Rahman, P. (2021). Marketing Efficiency of Red Chilli Pepper in North Sumatera Province. IOP Conference Series: Earth and Environmental Science, 782. https://doi.org/10.1088/1755-1315/782/2/022029
Nigatu, G., & Adjemian, M. (2020). A Wavelet Analysis of Price Integration in Major Agricultural Markets. Journal of Agricultural and Applied Economics, 52(1), 117–134. https://doi.org/10.1017/aae.2019.35
Noriega, B. (2019). Econometric Modeling with Matlab. Arimax, Arch and Garch Models for Univariate Time Series Analysis. Amazon Digital Services LLC - KDP Print US.
Nugrahapsari, R. A., & Arsanti, I. W. (2018). Analisis Volatilitas Harga Cabai Keriting di Indonesia dengan Pendekatan ARCH GARCH. Jurnal Agro Ekonomi, 36(1), 25. https://doi.org/10.21082/jae.v36n1.2018.25-37
Nugroho, A. D., Prasada, I. M. Y., Putri, S. K., Anggrasari, H., & Sari, P. N. (2018). Komparasi Usahatani Cabai Lahan Sawah Lereng Gunung Merapi dengan Lahan Pasir Pantai. AGRARIS: Journal of Agribusiness and Rural Development Research, 4(1). https://doi.org/10.18196/agr.4156
Onour, I. A., & Sergi, B. S. (2011). Modeling and Forecasting Volatility in The Global Food Commodity Prices. Agricultural Economics, 57(3), 132–139. https://doi.org/10.17221/28/2010-agricecon
Putri, H., & Cahyani, P. C. (2016). Price Volatility of Main Food Commodity in Banyumas Regency Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 6(3), 374–377. https://doi.org/10.18517/ijaseit.6.3.689
Rauch, E., Spena, P. R., & Matt, D. T. (2019). Axiomatic Design Guidelines for The Design of Flexible and Agile Manufacturing and Assembly Systems For SMEs. International Journal on Interactive Design and Manufacturing, 13, 1–22. https://doi.org/10.1007/s12008-018-0460-1
Şahinli, M. A. (2020). Potato Price Forecasting with Holt-Winters and ARIMA Methods: A Case Study. American Journal of Potato Research, 97, 336–346. https://doi.org/10.1007/s12230-020-09788-y
Sartorius von Bach, H. J., & Kalundu, K. M. (2020). An econometric estimation of gross margin volatility: a case of ox production in Namibia. Agrekon. https://doi.org/10.1080/03031853.2020.1822893
Sativa, M., Harianto, H., & Suryana, A. (2017). Impact of Red Chilli Reference Price Policy in Indonesia. International Journal of Agriculture System, 5(2), 120–139. https://doi.org/10.20956/ijas.v5i2.1201
Shelaby, A. A., Semida, W. M., Warnock, D. F., & Hahn, D. (2011). Processed Chili Peppers for Export Markets: A Capital Budgeting Study on The Agrofood Company. International Food and Agribusiness Management Review, 14(1), 83–92.
Sobti, N. (2020). Does Ban on Futures Trading (De)Stabilise Spot Volatility?: Evidence From Indian Agriculture Commodity Market. South Asian Journal of Business Studies, 9(2), 145–166. https://doi.org/10.1108/SAJBS-07-2018-0084
Thiyagarajan, S., Naresh, G., & Mahalakshmic, S. (2015). Forecasting Volatility in Indian Agri-Commodities Market. Global Business and Finance Review, 20(1), 95–104. https://doi.org/10.17549/gbfr.2015.20.1.95
Von Braun, J., & Tadesse, G. (2012). Global Food Price Volatility and Spikes: An Overview of Costs, Causes, and Solutions. In ZEF- Discussion Papers on Development Policy (Issue 161). https://doi.org/10.22004/ag.econ.120021
Wang, L., Ma, F., Liu, J., & Yang, L. (2019). Forecasting Stock Price Volatility: New Evidence from The GARCH-MIDAS Model. International Journal of Forecasting, 36(2), 684-694. https://doi.org/10.1016/j.ijforecast.2019.08.005
Wardhono, A., Indrawati, Y., Qori’ah, C. G., & Nasir, M. A. (2020). Institutional Arrangement for Food Price Stabilization and Market Distribution System: Study of Chili Commodity in Banyuwangi Regency. E3S Web of Conferences, 142. https://doi.org/10.1051/e3sconf/202014205006
Webb, A. J., & Kosasih, I. A. (2011). Analysis of Price Volatility in the Indonesia Fresh Chili Market. Paper presented to the Annual Meeting of the International Agricultural Trade Research Consortium, December 11-13, 2011. Retrieved from https://ei-ado.aciar.gov.au/sites/default/files/Webb-Kosasih(2011)AnalysisPriceVolatilityIndoFreshChiliMarket.pdf
Yip, P. S., Brooks, R., Do, H. X., & Nguyen, D. K. (2020). Dynamic Volatility Spillover Effects between Oil and Agricultural Products. International Review of Financial Analysis, 69. https://doi.org/10.1016/j.irfa.2020.101465
DOI: https://doi.org/10.18196/agraris.v8i1.12060
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indexed By:
Office Address:
Department of Agribusiness, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta
Ground Floor of F3 Building (Siti Walidah)
Jl. Brawijaya, Tamantiro, Kasihan, Bantul. 55183
Telp.: +62 274 387656, Ext.: 201
HP or WhatsApp: +62 85328737828
Email: agraris@umy.ac.id
AGRARIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) International License.