Perancangan Data Mining Untuk Analisis Kriteria Nasabah Kredit yang Potensial dan Manfaatnya Untuk Customer Relationship Management Perbankan

Main Article Content

Putu Sukma Kurniawan

Abstract

The presence of data mining problems caused by the explosion of data experienced by many organizations that have accumulated so many years of data (purchasing data, sales data, customer data, transaction data, and others). Examples of industries that use data mining is the banking industry. There are still many banks using conventional methods in the analysis of their customers. This would lead to high operating costs for the bank. The concept of data mining can help banks to get a better analysis of their customers and also help in making the concept of customer relationship management. Data mining can help bank to create profiling customer. Results or final output obtained if the bank can execute customer relationship management is increasing customer loyalty to the bank, increasing profitability, and reducing customer acquisition costs.

Article Details

How to Cite
Kurniawan, P. S. (2016). Perancangan Data Mining Untuk Analisis Kriteria Nasabah Kredit yang Potensial dan Manfaatnya Untuk Customer Relationship Management Perbankan. Journal of Accounting and Investment, 16(2), 155–174. https://doi.org/10.18196/jai.2015.0040.155-174
Section
Articles

References

Baye, M. R. 2010. Managerial Economics and Business Strategy (7th Ed.). USA: McGraw-Hill.

Daft, R. L. 2002. Manajemen (Edisi Kelima). Jakarta: Penerbit Erlangga.

Dass, R.. 2008. Data Mining in Banking and Finance: A Note for Bankers. Working Paper, Indian Institute of Management Ahmedabad.

Desai, D. B. and R. V. Kulkarni. 2013. A Review: Application of Data Mining Tools in CRM for Selected Banks. International Journal of Computer Science and Information Technologies. 4 (2), 199-201.

Fadli, A. 2011. Konsep Data Mining. Artikel Populer IlmuKomputer.com.

Farooqi, M. R. dan K. Raza. 2011. A Comprehensive Study of CRM through Data Mining Techniques. Paper presented at the National Conference; NCCIST-2011. September 09, 2011.

Gupta, G. dan H. Anggarwal. 2012. Improving Customer Relationship Management Using Data Mining. International Journal of Machine Learning and Computing. 2 (6), 874-877.
Kapiudin, M. 2008. Data Mining untuk Klasifikasi Pelanggan dengan Ant Colony Optimization. Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra.

Kotler, P. dan K. L. Keller. 2008. Manajemen Pemasaran. Jakarta: Penerbit Erlangga.

Kundre, A. J., W. Irya, dan T. Suselo. 2013. Penerapan Customer Relationship Management. dengan Dukungan Teknologi Informasi pada PO. Chelsy. Paper dipresentasikan pada acara Seminar Nasional Teknologi Informasi dan Multimedia 2013. STMIK AMIKOM Yogyakarta, 19 Januari 2013.

Laudon, Kenneth C. dan P. J. Laudon. 2010. Management Information Systems (11th Ed.). USA: Pearson Prentice Hall.

Mabrur, A. G. dan R. Lubis. 2012. Penerapan Data Mining untuk Memprediksi Kriteria Nasabah Kredit. Jurnal Komputer dan Informatika (KOMPUTA). 1 (1), 53-57.

Robbins, S. P. 1994. Teori Organisasi Struktur, Desain, dan Aplikasi. Jakarta: Penerbit Arcan.

Rygielski, C., J. C Wang, dan D. C. Yen. 2002. Data Mining Techniques for Customer Relationship Management. Technology in Society. 24, 483-502.

Sucahyo, Y. G. 2003. Data Mining Menggali Informasi yang Terpendam. Artikel Populer IlmuKomputer.com.

Tama, B. A. 2009. Implementasi Teknik Data Mining di dalam Konsep Customer Relationship Management. Paper dipresentasikan pada acara Konfe-rensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009.