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Abstract 

The selection process for scholarship grantees at Universitas Muhammadiyah 

Yogyakarta (UMY) still utilizes the conventional method, namely Microsoft Excel. It is 

conducted by inputting all student data, then sorted from the highest to the lowest. 

Scholarships for prospective new students must be right on the target, meaning that they 

meet the criteria for students eligible for scholarships. It is intended not to harm other 

prospective students who should get scholarships. In previous studies, the classification 

process used many algorithms such as Naive Bayes, C.45, Decision Tree, k-Nearest 

Neighbor, and Support Vector Machine. The use of the Support Vector Machine 

algorithm employed a two-class classification. Support Vector Machine and Decision 

Tree algorithms are two classification methods that can obtain precise and accurate 

results. This study aims to use the Multiclass Support Vector Machine (LibSVM) 

algorithm to classify the achievement scholarship rankings for new students. The 

minimum amount of data used affected the classification results. From the 2015 to 2019 

data, the highest amount of data was 2015, obtaining the highest accuracy result of 

84.34% using the sigmoid kernel type and the k-fold value of 3. The classification was 

based on the entry system stages. PMDK stage 2 obtained an accuracy of 81.38%, with 

the most data amounting to 268 from stage 3. 

 

Keywords: Scholarship Selection, Classification, Multiclass Support Vector Machine 

(LibSVM) 

 

 

1. Introduction 

Scholarships are assistance in the form of educational support funds usually given 

to students, both for those excelling and those economically disadvantaged. Several 

institutions usually award scholarships. The university is one of the educational 

institutions routinely providing scholarships for selected students through several 

selection stages it determined. 

In data mining, classification techniques are placing or selecting the righ t 

attributes and parameters based on the dataset to be classified in determining the 

accuracy of the calculation process. The classification process in previous studies 

used many algorithms, such as Naive Bayes, C.45, Decision Tree, k-Nearest 

Neighbor and Support Vector Machine. The Support Vector Machine algorithm only 

used a two-class classification. The Support Vector Machine and Decision Tree 

algorithm are two classification techniques obtaining precise and accurate results 

(Somvanshi, Chavan, & et al., 2016). 
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The selection process for scholarship grantees at the University of 

Muhammadiyah Yogyakarta (UMY) uses a conventional method, namely Microsoft 

Excel. It is performed by inputting all student data, then sorted from the highest to 

the lowest. Prospective students must meet the criteria for scholarship grantees to be 

right on target, thereby not harming others more eligible to receive the scholarships. 

This study aims to utilize the multiclass Support Vector Machine (LibSVM) 

algorithm to classify new students’ achievement scholarship rankings. 

 

 

2. Method 

This research was conducted through several stages, as presented in Figure 1.  In 

this study, literature study were conducted well before focus on specific issue. The 

rest of other step were the continuing activity after the issue about New Students 

Receiving analysis become the target of this research study. 

 

 

Figure 1. Research Stages 
 

2.1  Literature Study 

A literature study is the first stage of this research. This stage aims to collect 

some information about previous studies, particularly on the methods and 

algorithms used. 

 

2.2  Data Collection 

The second stage is data collection. There are two types of data sources, primary 

and secondary. This study used secondary data sources obtained from second 

parties. The data were obtained from the Bureau of Information Facilities (BSI) of 

Universitas Muhammadiyah Yogyakarta. The data obtained had 16 attributes, 

including study program, student number, entry number, name, gender, entry 
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system, entry system name, school origin, city, province, high school major, the 

reason for retreat, retreat information, rank, choice 1, and choice 2. 

Original data obtained from BSI of UMY amounted to 1,401 records. Of the 

1,401 data obtained, only 730 could be used in the data mining process because 

many were nulls. There was also report card value data. There were six attributes in 

the report card value data comprising the entry number, type of report card, 

semester, subject, value and k13 value. Report card value data are presented in 

Figure 3.3. 

 

2.3 Pre-Processing 

Pre-processing in data mining was carried out through four stages: data cleaning, 

data integration, data selection and data transformation. The authors did not use data 

integration at this stage since no data requiring it. Each stage of data processing is 

explained as follows: 

a. Data Cleaning 

Data cleaning is a step to eliminate null, noise, and inconsistent data. The data 

obtained had many deficiencies, such as missing or null data. Data cleaning is 

crucial in the data mining stage. Thus, the data would not affect algorithm 

performance. 

b. Data Selection 

Data selection is a step to determine the attributes used in the data mining 

process. The selected attributes were data relevant to the analysis to be carried out. 

The data used were school origin, gender, entry system, regional origin, 

mathematics, chemistry, physics, biology, and rank. The data chosen for the entry 

system attributes were PMDK 1, PMDK 2, and PMDK 3 because this research was 

conducted on the entry system of interests and talents. 

c. Data Transformation 

Data Transformation is a process of changing attributes and is consolidated into a 

form suitable for the data mining process. The attributes changed included school 

origin, entry system, regional origin and average score. Table 1 shows the attributes 

and its category.  

From Table 1, The target attribute of rank consists of four categories:  

1. Non-Ranked is for students who do not get scholarships or discount tuition fees  

2. PBUD 1 is for students ranked first by obtaining free education development 

funds (DPP) in the first year and free from fixed and variable school 

administration contributions (SPP) in the first year 

3. PBUD 2 is for students ranked second by obtaining free education development 

funds (DPP) in the first semester and free from fixed and variable school 

administration contributions (SPP) in the first semester 

4. PBUD 3 is for students ranked third by obtaining free education development 

funds (DPP) in the first semester  
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Table 1. Dataset Attributes 

Attribute Attribute Name Category 

Target Rank Non-Ranked 

PBUD 1 

PBUD 2 

PBUD 3 

Input School Origin SMAN 

MAN 

OTHERS 

Gender M 

F 

Entry System PMDK 1 

PMDK 2 

PMDK 3 

Origin Java 

Outside Java 

Average Mathematics Score A 

B 

C 

Average Chemical Score A 

B 

C 

Average Physics Score A 

B 

C 

Average Biology Score A 

B 

C 

Average English Score A 

B 

C 

The input of School Origin attribute of rank consists of three categories: 

1. SMAN is The name of the school starting with SMAN 

2. MAN The name of the school starting with MAN 

3. OTHERS School names starting with other than SMAN and MAN 

The input of Entry System attribute of rank consists of three categories: 

1. PMDK 1 is PMDK stage 1 and PMDK batch 1 

2. PMDK 2 is PMDK stage 2 and PMDK batch 2 

3. PMDK 3 is PMDK stage 3 and PMDK batch 3 

The input of Registrant Origin attribute of rank consists of three categories: 

1. Java is registrant who comes from Java 

2. Outside Java is registrant who comes from other places beside Java 

The input of Average Score attribute of rank consists of three categories:  

1. A is average score that range from 85 to 100 

2. B is average score that range from 75 to 84  

3. C is average score that under 75 
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2.4 Classification 

This stage is the primary and most important process in the preparation of the 

final project. At this stage, the authors began modeling to implement the Support 

Vector Machine (LibSVM) algorithm using the RapidMiner software. This 

implementation used testing and training data, resulting in an information. 

 

3. Results and Discussion 

This study used a dataset of new students in the PMDK entry system, totaling 730 

samples. The dataset came from the last five years of data, batch 2015 to 2019. This 

dataset had four categories of rankings: Non-Ranked, PBUD 1, PBUD 2 and PBUD 

3. 

 

3.1 Data Mining Capitalization 

At this stage, the authors built data mining classification models. There were two 

classification models created, using data based on years and entry stages.  

Support Vector Machine (LibSVM) can only test datasets with numeric 

properties. Meanwhile, the dataset obtained from the BSI was categorical. Then, the 

data set was converted into numeric form. Data were converted using a blending 

type, namely nominal to numerical, as shown in Figure 2. The dataset operator was 

connected with the nominal to numerical operator through the port out and port exa. 

 

Figure 2. Convert Dataset 

 

3.2 Data Classification by Year 

In this test, all datasets were used, namely 730 data divided by batch. Training 

and testing data were shared automatically by the Cross-Validation operator. The 

first step taken in this test is demonstrated in Figure 3, namely adding the data to be 

tested, the nominal to the numerical operator and the Cross-Validation operator on 

the process sheet and connecting the operators with the appropriate ports. Hence,  

operators can connect to one another. 

 

Figure 3. Add Cross-Validation 

Next, the authors set the Cross-Validation operator by double-clicking it, and 

then it appeared, as depicted in Figure 4. The authors then added the SVM operator 

(LibSVM) in the training section, connected the port tra and port mod in the training 

section with the port tra and port mod on the SVM operator. 
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In the testing section, the researchers added the apply model and performance 

operators, then connected the port mod and port test in the testing section with the 

port mod and port uni on the apply model operator, then connected the port lab on 

the apply model operator with the port lab on the operator performance, then 

connected the port per on the operator performance with the port per in the testing 

section and connected the port exa with the port test. 

 

Figure 4. Closs Validation Sheet 

The next step was to set the parameters on the Cross-Validation operator, as 

displayed in Figure 5. The operator set is the number of folds for three repetitions 

using the shuffled sampling type. 

 

Figure 5. Cross-Validation Parameters 

The SVM operator (LibSVM) has used the SVM C_SVC parameter type and 

kernel type poly with a gamma value of 0.0, C of 0.0, cache size of 80, and epsilon 

of 0.001, as displayed in Figure 6, according to the previous test results obtaining 

the highest accuracy. At this stage, the classification process was tested using three 

kernel types, including poly, rfb and sigmoid using three k-fold values of 3, 6, and 

9. 
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Figure 6. LibSVM Parameters 

The classification of batch 2015 consists of 172 data, specifically Non-Ranked, 

three PBUD 1, nine PBUD 2, and 21 PBUD 3. Table 5 depicts that classification 

results using the sigmoid kernel type and the k-fold value of 3 obtain an accuracy of 

84.34%, higher than using the kernel type and other k-fold values. The best 

accuracy results in the 2015 batch of data reveal that the number of classification 

accuracy of Non-Ranked = 137 data, PBUD 1 = 0, PBUD 2 = 0, PBUD 3 = 8 and the 

number of incorrect classifications of Non-Ranked = 2, PBUD 1 = 3, PBUD 2 = 9, 

PBUD 3 = 13. 

Table 2. Classification Results of Batch 2015 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 83.76% 80.85% 84.34% 

k=6 83.85% 80.87% 83.23% 

k=9 83.74% 80.85% 81.40% 

Table 6 shows the results of batch 2016 data classification with a total of 130 

data, comprising Non-Ranked = 90 data, PBUD 1 = 3 data, PBUD 2 = 10 data, and 

PBUD 3 = 27 data. In the classification process using 2016 data, the highest 

accuracy is 71.57% using kernel type poly with k-fold value of 6. The classification 

process using 2016 data obtain the highest accuracy results, with the number of 

classification accuracy of Non-Ranked = 87 data, PBUD 1 = 0 , PBUD 2 = 0, PBUD 

3 = 6 and the number of incorrect classifications of Non-Ranked = 3 data, PBUD 1 

= 3, PBUD 2 = 10, PBUD 3 = 21. 
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Table 3. Classification Results of Batch 2016 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 70.82% 69.27% 70.03% 

k=6 71.57% 69.34% 69.30% 

k=9 70.79% 69.26% 69.21% 

The classification process using data batch 2017 obtain the highest accuracy 

results using kernel type poly with k-fold values of 6 and 9, obtaining the same 

accuracy results. Data for batch 2017 consists of 144 data, with Non-Ranked = 108 

data, PBUD 1 = 2 data, PBUD 2 = 6 data, and PBUD 3 = 28 data. The highest 

classification result is 78.47%. The overall classification results are depicted in 

Table 7. The best accuracy results of batch 2017 data obtain the number of 

classification accuracy of Non-Ranked = 105 data, PBUD 1 = 0, PBUD 2 = 1, 

PBUD 3 = 7 data and the number of incorrect classifications of Non-Ranked = 3 

data, PBUD 1 = 2, PBUD 2 = 5, PBUD 3 = 21. 

Table 4. Classification Results of Batch 2017 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 76.39% 75.00% 75.00% 

k=6 78.47% 75.00% 77.08% 

k=9 78.47% 75.00% 77.78% 

Data for batch 2018 comprise 165 data, with Non-Ranked = 136 data, PBUD 1 = 

2 data, PBUD 2 = 8 data, and PBUD 3 = 19 data. Table 8 displays the comparison of 

the accuracy results of the classification process for each kernel and the k-fold 

value. The accuracy result using the sigmoid kernel type with the k-fold = 3 value 

obtains the highest accuracy than the others with an accuracy value of 82.42%. The 

classification process using data from batch 2018 obtain classification accuracy for 

the number of correct classifications, namely Non-Ranked = 136, PBUD 1 = 0, 

PBUD 2 = 0, PBUD 3 = 0 and for the number of incorrect classifications, Non-

ranked = 0 data, PBUD 1 = 2, PBUD 2 = 8, and PBUD 3 = 19. 

Table 5. Classification Results of Batch 2018 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 81.82% 81.42% 82.42% 

k=6 81.81% 82.41% 82.41% 

k=9 82.39% 82.39% 82.39% 

The 2019 batch data classification results obtain the highest accuracy result of 

68.62% using kernel type poly with k-fold = 9. This classification process used data 

totaling 120 data, with Non-Ranked = 81 data, PBUD 1 = 3 data, PBUD 2 = 9 data, 

and PBUD 3 = 27 data. Table 9 is the result of the classification process of  several 

kernel types and k-fold values. The classification process using 2019 data obtain the 
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highest accuracy result with the number of classification accuracy of Non-Ranked = 

75 data, PBUD 1 = 0, PBUD 2 = 0, PBUD 3 = 7 and the number of incorrect 

classifications comprises No-ranked = 6 data, PBUD 1 = 3, PBUD 2 = 9, and PBUD 

3 = 20. 

Table 6. Classification Results of Batch 2019 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 65.00% 67.50% 65.00% 

k=6 65.83% 67.50% 65.83% 

k=9 68.62% 67.70% 65.26% 

 

3.3 Data Classification Based on Path Stages 

The next classification process was based on the entry system stages. In this stage 

classification, the attributes were omitted because the entry system stages have the 

same values. According to the existing entry system stages, this classification 

process was divided into PMDK 1, PMDK 2 and PMDK 3. 

The classification process using PMDK 1 utilized 253 data, in which Non-Ranked 

data = 187 data, PBUD 1 = 6 data, PBUD 2 = 15 data, and PBUD 3 = 45 data. 

Classification using this first stage obtain the highest accuracy result of 75.49% 

using kernel type poly and k-fold value of 3. Table 10 presents the classification 

results using PMDK 1 data. The classification results obtained from the highest 

accuracy value are the number of classification accuracy of Non-Ranked = 181 data, 

PBUD 1 = 0 data, PBUD 2 = 2 data, PBUD 3 = 8 data and the number of incorrect 

classifications of Non-Ranked = 6 data, PBUD 1 = 6 data, PBUD 2 = 13 data, PBUD 

3 = 37 data. 

Table 7. Classification Results of PMDK Stage 1 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 75.49% 73.91% 74.30% 

k=6 73.51% 73.90% 72.71% 

k=9 73.51% 73.92% 71.54% 

PMDK 2 data classification used 268 data, where Non-Ranked data = 218, PBUD 

1 = 4, PBUD 2 = 14, and PBUD 3 = 32. This classification process can be seen in 

table 11. This classification obtains the same four results, namely using the rbf and 

sigmoid type kernels using the k-fold values of 3 and 9.The highest accuracy result 

obtained is 81.38%, with the number of classification accuracy of Non-Ranked = 

218, PBUD 1 = 0, PBUD 2 = 0, PBUD 3 = 0 and for the number of incorrect 

classifications of Non-Ranked = 0 data, PBUD 1 = 4, PBUD 2 = 14, and PBUD 3 = 

32. 
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Table 8. Classification Results of PMDK Stage 2 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 81.00% 81.38% 81.38% 

k=6 80.24% 81.37% 81.37% 

k=9 80.26% 81.38% 81.38% 

The PMDK 3 data classification process used 209 data consisting of Non-Ranked 

= 149 data, PBUD 1 = 3 data, PBUD 2 = 13 data, and PBUD 3 = 44 data. Table 12 

shows the classification results of PMDK 1 data, which obtained the highest 

accuracy using kernel type poly with k-fold value of 9. This classification obtain the 

highest accuracy result of 78.99% with the number of classification accuracy of 

Non-Ranked = 143 data, PBUD 1 = 0, PBUD 2 = 0, PBUD 3 = 22 and the number of 

incorrect classifications of Non-Ranked = 6, PBUD 1 = 3, PBUD 2 = 13, and PBUD 

3 = 22. 

Table 9. Classification Results of PMDK Stage 3 

k-fold 
Accuracy 

poly rbf sigmoid 

k=3 74.13% 71.26% 68.88% 

k=6 78.95% 71.25% 72.20% 

k=9 78.99% 71.30% 69.87% 

 
3.4 Process Analysis and Classification Results 

The Cross-Validation operator carried out the process of sharing testing data and 

training data in this classification process. Cross-validation folded the data 

according to the k-fold value and repeated the classification process as much as the 

k-fold value. The distribution of testing and training data was different in each 

classification process according to the k-fold value. If the k-fold value is 3, then the 

amount of data classified is divided into three folds. In the first classification 

process, the testing data used was the data in the first fold. For the second repetition 

process, the testing data used was the data in the second fold, and so on until the 

repetition of the process was complete to as many as k-fold values. 

Based on the research conducted, many data affected the accuracy results 

obtained from the classification process. The more data used during the 

classification process, the higher the average accuracy result obtained. Likewise, the 

fewer data used, the lower the accuracy results obtained. 

Apart from many data, kernel and k-fold value choice also significantly affected 

accuracy results. Each kernel and k-fold value obtained different results. From this 

research, kernel type poly provided the highest accuracy result than other kernel 

types. 
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4. Conclusions 

After carrying out a series of model developments for testing and analyzing the 

Classification of New Students’ Achievement Scholarship Grantees of the Faculty 

of Engineering, Universitas Muhammadiyah  Yogyakarta, the conclusion is that the 

Support Vector Machine algorithm could be implemented to classify new students 

awarded achievement scholarships, where the amount or the minimum amount of 

data used affected the classification results. From the 2015 to 2019 data, batch 2015 

had the highest number of 172 and the highest accuracy result of 84.34% using the 

sigmoid kernel type and the k-fold value of 3 and the classification based on the 

entry system stage, PMDK stage 2 obtained an accuracy of 81.38% with the most 

data from stage 3 as many as 268.  
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