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Abstract 

Crowd counting plays a vital role in public safety, particularly during riot scenarios 

where understanding crowd dynamics is crucial for effective decision-making and risk 

mitigation. Accurate crowd estimation in such environments enables authorities to 

monitor the situation in real time, allocate resources efficiently, and prevent potential 

escalations. However, counting individuals in a riot scenario presents unique challenges 

due to the chaotic nature of the scene, varying crowd densities, and obstructions caused 

by movement and environmental factors. Traditional methods struggle to provide reliable 

results in these conditions, necessitating advanced solutions. This study explores the 

implementation of CSRNet (Congested Scene Recognition Network), a state-of-the-art 

deep learning model, to address crowd counting in challenging environments 

characterized as "images in the wild." CSRNet’s ability to leverage dilated convolutions 

allows it to effectively capture contextual information and handle high crowd densities 

without sacrificing spatial resolution. We evaluate the model’s performance on diverse 

datasets, including aerial imagery and real-world riot scenarios, focusing on its 

adaptability to dynamic, unstructured environments. The results demonstrate the potential 

of CSRNet to provide accurate crowd density estimates under adverse conditions, offering 

critical insights for public safety applications. By addressing the technical challenges of 

implementing CSRNet in these contexts, this study contributes to the advancement of deep 

learning-based crowd counting, emphasizing its significance in real-world scenarios such 

as riots and other high-stakes events. Future work aims to further enhance the model's 

robustness and applicability to diverse operational settings. 
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1. Introduction 

Crowd counting is a critical task in computer vision with far-reaching applications 

across various domains such as public safety, urban planning, and event management. The 

ability to estimate crowd density and accurately count the number of individuals in a 

given area is invaluable for monitoring public spaces, allocating resources effectively, and 

responding promptly to emergencies[1]. For instance, during mass gatherings or public 

events, understanding crowd dynamics can help authorities prevent overcrowding, ensure 

efficient resource distribution, and minimize potential hazards. Similarly, urban planners 

and city administrators rely on crowd data to design infrastructure, optimize 



Emerging Information Science and Technology 

Vol. 5, No. 2, (2024), pp. 52-59 

 

53 

transportation networks, and manage pedestrian traffic[2]. Furthermore, crowd counting 

plays a pivotal role in commercial applications, including retail analytics, where insights 

into customer density and movement patterns can inform business decisions[3]. 

Despite its importance, crowd counting is a challenging task due to the inherent 

complexities of real-world scenarios. Traditional methods, which often rely on manual 

observation, heuristics, or basic computer vision techniques, struggle with various issues. 

Perspective distortion, where objects appear smaller as they recede into the distance, 

complicates accurate detection in crowded scenes. Occlusions, where individuals or 

objects block parts of the scene, pose additional difficulties, as people may be partially or 

completely hidden from view[4]. Varying crowd densities further exacerbate the problem; 

for example, detecting individuals in sparse crowds requires different techniques than 

estimating numbers in highly congested areas. These challenges highlight the limitations 

of conventional approaches and underscore the need for robust, automated solutions[5], 

[6]. 

In recent years, deep learning has emerged as a transformative technology in computer 

vision, offering powerful tools for addressing the challenges of crowd counting. Deep 

learning models, particularly Convolutional Neural Networks (CNNs), have demonstrated 

remarkable success in learning hierarchical feature representations directly from data[7]–

[9]. Unlike traditional methods, which depend on manually crafted features and 

predefined rules, CNNs can autonomously learn to identify patterns, objects, and 

contextual cues from images. This capability has proven especially useful in complex 

environments, where the variability in crowd density, perspective, and occlusion demands 

a flexible and adaptive approach. 

One notable deep learning model designed specifically for crowd counting is CSRNet 

(Congested Scene Recognition Network)[10]. CSRNet addresses the unique challenges of 

estimating crowd density in highly congested scenes. The model employs dilated 

convolutional layers, which expand the receptive field of the network without sacrificing 

resolution[11]. This architectural feature allows CSRNet to capture a broad range of 

contextual information, enabling it to generate detailed density maps that accurately 

represent the spatial distribution of individuals in an image. By focusing on these 

contextual features, CSRNet has set a new benchmark for crowd counting, particularly in 

scenarios characterized by high complexity and dense populations[12]–[16]. 

The effectiveness of CSRNet, like other deep learning models, relies heavily on the 

quality and diversity of the data used for training and evaluation. In this regard, the 

VisDrone dataset offers a unique and valuable resource for testing crowd counting models 

in aerial imagery[17]. The dataset comprises a large collection of images captured using 

drones, featuring a wide variety of scenes from urban to rural environments. These images 

are taken at different altitudes and angles, reflecting the variability encountered in real-

world aerial surveillance. The diversity of the VisDrone dataset makes it an excellent 

benchmark for evaluating the robustness and adaptability of crowd counting models. 

However, it also introduces unique challenges, such as variations in object scales, 

complex backgrounds, and lighting conditions. These factors make the dataset particularly 

demanding but also ideal for pushing the boundaries of current methodologies. 

 
Figure 1. Crowd Counting in Aerial Image is Challenging, even for a Human 
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Figure 2. Crowd Counting is Important in a Riot, Allowing Government to 

Make an Appropriate Informed Decision 

The task of crowd counting in aerial imagery, such as that represented in the 

VisDrone dataset, is further complicated by several inherent challenges. Scale 

variation is a prominent issue in aerial images, as the size of individuals can differ 

significantly depending on the altitude and angle of the drone camera, as shown in 

Figure 1. This variation makes it difficult for models to consistently identify 

individuals across the entire image. Perspective distortion adds another layer of 

complexity, as aerial images often feature oblique angles that can distort the 

appearance and spatial arrangement of objects. Occlusions, caused by objects like 

trees, buildings, or vehicles, can obscure parts of the scene, making it challenging to 

detect and count individuals. Additionally, the diverse and cluttered backgrounds in 

aerial imagery, combined with varying lighting conditions, increase the likelihood 

of false positives and missed detections. These challenges underscore the need for 

advanced models like CSRNet, which are specifically designed to handle such 

complexities. 

The primary motivation for this research stems from the growing importance of 

crowd counting in aerial imagery for surveillance and decision-making in public 

safety contexts, as shown in Figure 2. Aerial platforms, such as drones, offer 

unparalleled advantages for crowd monitoring, providing a bird’s-eye view of large 

areas and enabling real-time data collection. However, realizing the full potential of 

aerial imagery for crowd counting requires addressing the technical challenges 

posed by this unique perspective. In this study, we aim to explore the application of 

CSRNet to the VisDrone dataset’s crowd counting task, focusing on optimizing the 

model's performance and addressing its limitations. 

The specific objectives of this research are twofold. First, we seek to identify and 

address the technical challenges involved in implementing CSRNet for crowd 

counting in aerial imagery. These challenges include handling scale variation, 

mitigating the effects of perspective distortion, and improving robustness in the 

presence of occlusions and cluttered backgrounds. Second, we aim to optimize the 

performance of CSRNet for counting the number of people in diverse and complex 

scenes. This involves fine-tuning the model for the unique characteristics of the 

VisDrone dataset, experimenting with different training strategies, and evaluating 

the model's performance using standard metrics. 
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To achieve these objectives, we adopt a systematic approach that combines 

theoretical analysis, model implementation, and empirical evaluation. The study 

begins with a comprehensive review of the challenges and requirements of crowd 

counting in aerial imagery, followed by an in-depth exploration of CSRNet's 

architecture and capabilities. We then apply CSRNet to the VisDrone dataset, fine -

tuning the model to adapt to the dataset's specific characteristics. The model's 

performance is evaluated using quantitative metrics such as Mean Absolute Error 

(MAE) and Mean Squared Error (MSE), as well as qualitative analysis of its density 

map predictions. Based on the findings, we propose recommendations for improving 

CSRNet and outline directions for future research. 

The main problem in this research can be summarized as finding the optimal 

ways to count the number of people in a crowd from aerial images. Crowd counting 

is important for surveillance and decision making for safety in public spaces. In this 

work, we aimed to apply the CSRNet model to the VisDrone dataset's crowd 

counting task. The primary objectives were to assess the model's performance on 

aerial images, identify any limitations, and propose future work to enhance its 

effectiveness in such contexts. Specifically, the main objectives of this study are:  

1. Identifying and addressing technical challenges in implementing CSRNet for 

crowd counting. 

2. Optimizing the performance of CSRNet in counting the number of people 

from aerial images. 

 

2. Methodology 

Data Selection 

The UAV Human and VisDrone datasets were selected for their relevance and 

richness in UAV-captured imagery: (1) VisDrone Dataset [10]: A large-scale dataset 

that includes various objects such as pedestrians, vehicles, and bicycles in drone -

captured images. (2) UAV Human Dataset [18]: Contains images focused on human 

detection in UAV images, offering diverse scenarios and perspectives. Data 

preprocessing involved cleaning the datasets to remove anomalies, annotating 

images accurately, and splitting the data into training, validation, and testing sets to 

ensure unbiased model evaluation. From the two datasets, the VisDrone data is the 

primary dataset used for training, whereas UAV-Human is used for validation to 

determine whether the training is successful or not. 

 

CSRNet Architecture 

CSRNet is composed of two main components: a front-end based on the VGG-16 

[19] architecture and a back-end of dilated convolutional layers, as shown in Figure 

3 CSRNet Architecture. The design leverages the strengths of both components to 

effectively estimate crowd densities. The front-end of CSRNet uses the first ten 

layers of the VGG-16 network, which are pre-trained on the ImageNet dataset. 

These layers serve as feature extractors, capturing low-level visual features such as 

edges, textures, and basic shapes. This pre-trained front-end helps in accelerating 

the training process and improving the model's ability to generalize by utilizing 

knowledge gained from a vast dataset. 

The back-end consists of six convolutional layers with dilated convolutions [20]. 

Dilated convolutions allow the network to have a larger receptive field without 

increasing the number of parameters or losing spatial resolution. By increasing the 

dilation rate in successive layers, the model can capture contextual information over 
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larger areas of the image, which is essential for accurate crowd counting, especially 

in high-density regions. 

Table 1. CSRNet Layers and Architecture 

Configurations of CSRNet 

A B C D 

Input (unfixed-resolution color image) 

Front-end 

(fine-tune from VGG-16) 

 

conv3-64-1 

conv3-64-1 

Max-pooling 

conv3-128-1 

conv3-128-1 

Max-pooling 

conv3-256-1 

conv3-256-1 

conv3-256-1 

Max-pooling 

conv3-512-1 

conv3-512-1 

conv3-512-1 

Back-end (four different configurations 

conv3-512-1 

conv3-512-1 

conv3-512-1 

conv3-256-1 

conv3-128-1 

conv3-64-1 

conv3-512-2 

conv3-512-2 

conv3-512-2 

conv3-256-2 

conv3-128-2 

conv3-64-2 

conv3-512-3 

conv3-512-3 

conv3-512-3 

conv3-256-3 

conv3-128-3 

conv3-64-3 

conv3-512-4 

conv3-512-4 

conv3-512-4 

conv3-256-4 

conv3-128-4 

conv3-64-4 

Conv1-1-1 

 

The combination of the VGG-16 front-end and the dilated 

convolutional back-end enables CSRNet to effectively handle varying 

crowd densities and scales. The model outputs a density map where the 

integral over any region corresponds to the estimated number of people 

in that region. This approach allows for detailed spatial information 

about crowd distribution, rather than just a single count per image. By 

adapting CSRNet to the VisDrone dataset for the training stage, the 

model aims to address the specific challenges posed by aerial imagery. 

The dilated convolutions are particularly beneficial in capturing the 

wide range of scales and densities present in drone-captured images, 
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where people can appear significantly smaller and vary greatly in size 

due to changes in altitude and camera angle.  

 

3. Main Title 

The CSRNet model was trained on the VisDrone dataset, and its performance was 

subsequently evaluated on the test set. The results of this evaluation were as follows: (1) 

Mean Absolute Error (MAE): 18.5; (2) Root Mean Squared Error (RMSE): 24.2 These 

metrics highlight the model's ability to estimate crowd density and count effectively, even 

in challenging aerial imagery scenarios.The MAE of 18.5 indicates that, on average, the 

model's predicted crowd count differed from the actual count by approximately 18 people 

per image. Given the complexity of the aerial images and the challenges inherent in the 

dataset, this is a reasonable performance. 

 

Figure 4. Crowd Counting Results along with the Groundtruth 

 
Figure 5. Visualization of the Crowd Counting Task in Visdrone Dataset 

The RMSE value suggests some variance in the errors, highlighting that certain 

predictions had larger discrepancies, which may be due to factors like extreme crowd 

densities or unusual scenes.The Results and Discussion section of this study meticulously 

evaluates the performance of deep learning models, specifically the YOLO algorithm, 

across various computing platforms and configurations. This evaluation is crucial for 
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understanding the effectiveness of our proposed solution, leveraging Docker and 

NVIDIA's DeepStream and TensorRT, in optimizing these models for single-board 

computers (SBCs). Our analysis is structured around three pivotal aspects: model 

accuracy, inference time, and resource consumption, each represented by detailed 

experimental data. 

 

4. Conclusion 

In this work, we successfully developed and optimized a CSRNet-based model 

for object detection in aerial images. The adapted CSRNet achieved a MAE of 

18.5%, meeting the project's objectives. The model demonstrated strong capabilities 

in detecting small and densely packed objects, validating the effectiveness of using 

dilated convolutions to capture contextual information without sacrificing spatial 

resolution. The project provided significant learning opportunities and contributed 

valuable insights into applying CSRNet to aerial image object detection for crowd 

counting task. 
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