Automatic Measurement Application of Heart Area from Chest X-Ray Images Using the U-Net Deep Learning Method
Abstract
Heart health is a basic human right and a crucial component of global health justice. In an ever-more-advanced age, every task becomes simple due to science, technology, and information development. However, certain tasks are still performed manually. Therefore, innovation in computerized system design is required. The human heart area calculation was performed by combining image processing and deep learning techniques. Deep learning is a scientific subfield of machine learning, while image segmentation is a step in image processing. This study employed the U-Net segmentation method to identify different stages of heart area calculation. U-Net could conduct image segmentation with the small training dataset accurately. This study’s population consisted of 800 chest X-ray images obtained from the Kaggle website, with human hearts as the sample. The findings revealed that the training data with the U-Net architecture model acquired an accuracy of 09.98. However, the testing data accuracy was still determined manually. In this work, the U-Net model employed an input shape measuring 256x256, a kernel size of 3x3, and 50 epochs.
Keywords
Full Text:
PDFReferences
Basuki, Achmad. 2005. Pengolahan Citra Digital Menggunakan Visual Basic. Graha Ilmu. Yogyakarta.
Falk, T., Mai, D., Bensch, R., Cicek, O., Abdulkadir, A., Marrakchi, Y, Ronneberger.,O. (2019). U-Net – Deep Learning For Cell Counting, Detection, And Morphometry .
Kadir, A., & Susanto, A. (2013). Segmentasi Citra. Pengolahan Citra; Teori Dan Aplikasi, 403–494.
Listyalina, L. (2017). Peningkatan Kualitas Citra Foto Rontgen Sebagai Media Deteksi Kanker Paru. Jurnal Teknologi Informasi, XII(34), 110– 118. http://jti.respati.ac.id/index.php/jurnal jti/article/viewFile/1/1
Lukman, A. (2014). Software As a Service Untuk Machine Learning Klasifikasi Citra Digital. Seminar Nasional Teknologi Informasi Dan Multimedia 2014, 50(6), 500–503.
Mohri, et al. (2012). Foundations of Mechine Learning. Cambridge: MIT Press.
Neneng, N., Adi, K., & Isnanto, R. (2016). Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co Occurrence Matrices (GLCM). Jurnal Sistem Informasi Bisnis, 6(1), 1. https://doi.org/10.21456/vol6iss1pp1- 10
Noviando, E. S., Ervianto, E., Yasri, I., Teknik, A., Universitas, E., Jurusan, R., Elektro, T., & Riau, U. (2016). Studi Penerapan ANN ( Artificial Neural Network ) Untuk Menghilangkan Harmonisa Pada Gedung Pusat Komputer Abstrack Gambar 2 Bentuk Gelombang Harmonisa ( Dugan dan Mc Granaghan , 1996 dalam Sungkowo H , 2013 ) Sedangkan Untuk Batas distorsi tegangan yang . 3(2), 1–6.
Pendidikan, F. B., Pelatihan, D., Bawah, T., Sawahlunto, T., & Gultom, Y. (n.d.). Aplikasi Deep Learning dalam Berbagai Domain : Review Paper. http://bdtbt.esdm.go.id/index.php/file/ file/irwan9.pdf
DOI: https://doi.org/10.18196/eist.v2i1.16864
Refbacks
- There are currently no refbacks.
Editorial Office:
EMERGING INFORMATION SCIENCE AND TECHNOLOGY
Department of Information Technology, Faculty of Engineering,
Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656