Improving YOLO Object Detection Performance on Single-Board Computer using Virtual Machine
Abstract
Keywords
Full Text:
PDFReferences
J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.
M. Satyanarayanan, “The Emergence of Edge Computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan. 2017, doi: 10.1109/MC.2017.9.
U. Drolia, K. Guo, and P. Narasimhan, “Precog: prefetching for image recognition applications at the edge,” in Proceedings of the Second ACM/IEEE Symposium on Edge Computing, in SEC ’17. New York, NY, USA: Association for Computing Machinery, Oct. 2017, pp. 1–13. doi: 10.1145/3132211.3134456.
M. A. Haq, S.-J. Ruan, and J.-H. Chen, “Detecting Obstacle in 3D Space using Monocular Camera,” in 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Mar. 2022, pp. 431–432. doi: 10.1109/LifeTech53646.2022.9754879.
M. A. Haq, S.-J. Ruan, M.-E. Shao, Q. M. U. Haq, P.-J. Liang, and D.-Q. Gao, “One Stage Monocular 3D Object Detection Utilizing Discrete Depth and Orientation Representation,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 21630–21640, Nov. 2022, doi: 10.1109/TITS.2022.3175198.
Md. I. Uddin, Md. S. Alamgir, Md. M. Rahman, M. S. Bhuiyan, and M. A. Moral, “AI Traffic Control System Based on Deepstream and IoT Using NVIDIA Jetson Nano,” in 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Jan. 2021, pp. 115–119. doi: 10.1109/ICREST51555.2021.9331256.
E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep Learning Inference Parallelization on Heterogeneous Processors With TensorRT,” IEEE Embedded Systems Letters, vol. 14, no. 1, pp. 15–18, Mar. 2022, doi: 10.1109/LES.2021.3087707.
G. Jocher et al., “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference,” Zenodo, Feb. 2022, doi: 10.5281/zenodo.6222936.
I. Miell and A. Sayers, Docker in Practice, Second Edition. Simon and Schuster, 2019.
J. Nickoloff and S. Kuenzli, Docker in Action, Second Edition. Simon and Schuster, 2019.
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv, Apr. 08, 2018. doi: 10.48550/arXiv.1804.02767.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The Pascal Visual Object Classes Challenge: A Retrospective,” Int J Comput Vis, vol. 111, no. 1, pp. 98–136, Jan. 2015, doi: 10.1007/s11263-014-0733-5.
A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
“PyTorch | SpringerLink.” Accessed: Apr. 01, 2024. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-57077-4_10
“Vision meets robotics: The KITTI dataset - A Geiger, P Lenz, C Stiller, R Urtasun, 2013.” Accessed: Apr. 01, 2024. [Online]. Available: https://journals.sagepub.com/doi/full/10.1177/0278364913491297
DOI: https://doi.org/10.18196/eist.v5i1.22486
Refbacks
- There are currently no refbacks.
Editorial Office:
EMERGING INFORMATION SCIENCE AND TECHNOLOGY
Department of Information Technology, Faculty of Engineering,
Universitas Muhammadiyah Yogyakarta.
Jln. Brawijaya Tamantirto Kasihan Bantul 55183 Indonesia
Telp:(62)274-387656, Fax.:(62)274-387656