Classification of Duration in Global Terorism using ResNet

Authors

  • Adinda Nurhayati Adriansyah Universitas Muhammadiyah Yogyakarta
  • Slamet Riyadi (Scopus ID : 6503991450), Department of Informatics Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta http://orcid.org/0000-0003-1981-8876

DOI:

https://doi.org/10.18196/eist.v5i2.24756

Keywords:

Terrorism, Classification, SMOTE, ResNet

Abstract

Terrorism is a global threat that affects the political, economic, and social stability of many countries. The number of victims killed is based on the duration of the terrorism incident. This study uses the Residual Network (ResNet) model to classify terrorism incidents based on the duration of the incident (less than 24 hours and more than 24 hours) using the Global Terrorism Database (GTD) dataset. The GTD data used covers terrorism incidents from 1970 to 2017, with a total of 181,691. After preprocessing the data by converting categorical features to numeric and removing missing values, the data was divided into training, validation, and test sets with a composition of 70%, 15%, and 15%. The results show that the ResNet model is able to achieve a validation accuracy of 99.61% and a validation loss value of 0.0183. These findings show that the ResNet model is effective in classifying the duration of terrorism incidents and has the potential to be used in the development of better terrorism prevention systems.

Author Biography

Slamet Riyadi, (Scopus ID : 6503991450), Department of Informatics Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta

References

M. Nuruzzaman, “Terorisme dan Media Sosial Sisi Gelap Berkembangnya Teknologi Informasi Komunikasi,” Syntax Lit. J. Ilm. Indones., vol. 3, no. 9, hlm. 61–76, 2018.

M. Dunning dan S. Purohit, “Higher Order Temporal Analysis of Global Terrorism Data.,” arXiv: Social and Information Networks. 2020. [Daring]. Tersedia pada: http://arxiv.org/pdf/2005.14002.pdf

Z. Li, L. Xiangchun, C. Dong, F. Guo, F. Zhang, dan Q. Zhang, “Quantitative Analysis of Global Terrorist Attacks Based on the Global Terrorism Database,” Sustainability, vol. 13, no. 14, 2021, doi: 10.3390/SU13147598.

R. Lu, J. Huang, Y. Qu, dan L. Li, “Study on Combined-CNN Model for Classification of Terrorism Text,” 2024, doi: 10.1109/icaace61206.2024.10548392.

M. Junaedi, A. Fachrurozi, M. R. Kusumayudha, dan W. Gata, “Analysis of the classification of terrorist attacks in Indonesia,” J. Inform. Telecommun. Eng., vol. 4, no. 1, hlm. 57–66, 2020.

K. Singh, A. S. Chaudhary, dan P. Kaur, “A Machine Learning Approach for Enhancing Defence Against Global Terrorism,” 2019, hlm. 1–5. doi: 10.1109/IC3.2019.8844947.

J. Zhu, H. Tang, L. Zhang, B. Jin, dan X. P. Wei, “A Global View-Guided Autoregressive Residual Network for Irregular Time Series Classification,” dalam Lecture Notes in Computer Science, 2023, hlm. 289–300. doi: 10.1007/978-3-031-33383-5_23.

J. Wu, Z. Zhang, Y. Ji, S. Li, dan L. Lin, “A ResNet with GA-based Structure Optimization for Robust Time Series Classification,” 2019, hlm. 69–74. doi: 10.1109/SMILE45626.2019.8965287.

A. Ukil, L. Marin, dan A. Jara, “ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem,” 2022, hlm. 1–8. doi: 10.1109/IJCNN55064.2022.9892370.

A. Ukil, S. Bandyopadhyay, dan A. Pal, “DyReg-FResNet: Unsupervised Feature Space Amplified Dynamic Regularized Residual Network for Time Series Classification,” 2019, hlm. 1–8. doi: 10.1109/IJCNN.2019.8852392.

F. Zhu, H. Wang, dan Y. Zhang, “GRU Deep Residual Network for Time Series Classification,” 2023, hlm. 1289–1293. doi: 10.1109/ITNEC56291.2023.10082454.

L. Mutawalli, M. T. A. Zaen, dan Y. Yuliadi, “Komparasi CNN dengan ResNet Untuk Klasifikasi Paling Akurat Tingkat Keganasan Diabetes Berdasarkan Citra Retinopathy,” J. Comput. Syst. Inform. JoSYC, vol. 4, no. 3, hlm. 522–529, 2023.

A. Ridhovan dan A. Suharso, “Penerapan Metode Residual Network (RESNET) Dalam Klasifikasi Penyakit Pada Daun Gandum,” JIPI J. Ilm. Penelit. Dan Pembelajaran Inform., vol. 7, no. 1, hlm. 58–65, 2022.

R. W. Pratiwi dan Y. S. Nugroho, “Prediksi Rating Film Menggunakan Metode Naïve Bayes,” DutaCom, vol. 12, no. 1, hlm. 91–108, 2016.

K. He, X. Zhang, S. Ren, dan J. Sun, “Deep residual learning for image recognition,” dalam Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, hlm. 770–778.

Downloads

Published

2024-11-30

Issue

Section

Big Data