STATISTICAL OUTPUT

A. BASELINE MODEL A.1 Initial Regression- Baseline model

Summary of Descriptive Statistics of original variables						
Variable	Obs	Mean	Std. Dev.	Min	Max	
RGDP	171	4.615e+11	6.563e+11	1.261e+10	3.174e+12	
FDI	171	9.249e+09	2.912e+10	۔ 2.506e+10	3.248e+11	
UR	171	6.365	4.875	.1	19.292	
GII	171	32.382	10.578	967	62.4	

Diagnostic test with the Final Variables Regression results: Fixed-effects

. xtreg RGDP F	DI UR GII,fe						
Fixed-effects (within) regression Group variable: country1					f obs = f groups =	171 19	
R-sq:				Obs per	group:		
within =	= 0.0412				min =	. 9	
between =	= 0.5899				avg =	9.0	
overall =	= 0.5241				max =	- 9	
corr(u_i, Xb)	= -0.7478			F(3,149) Prob > F	-	2.13 0.0982	
RGDP	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
FDI	2456804	.1713083	-1.43	0.154	5841878	.0928271	
UR	-2.66e+09	3.66e+09	-0.73	0.468	-9.89e+09	4.57e+09	
GII	-2.90e+09	1.44e+09	-2.02	0.045	-5.75e+09	-6.13e+07	
_cons	5.75e+11	5.66e+10	10.15	0.000	4.63e+11	6.87e+11	
sigma_u sigma_e rho	6.948e+11 5.090e+10 .99466116	(fraction	of variar	nce due to	u_i)		
F test that all u_i=0: F(18, 149) = 683.61 Prob > F = 0.0000							

Regression results-Random-effects . xtreg RGDP FDI UR GII,re

Random-effects Group variable	GLS regressi country1	on		Number o Number o	f obs = f groups =	171 19
R-sq: within = between = overall =	0.0082 0.3155 0.2873			Obs per	group: min = avg = max =	9 9.0 9
corr(u_i, X)	= 0 (assumed)		Wald chi Prob > c	2(3) = hi2 =	0.91 0.8228
RGDP	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
FDI UR GII _cons	0876128 -8.52e+08 1.72e+09 4.12e+11	.2588614 5.18e+09 2.08e+09 1.05e+11	-0.34 -0.16 0.83 3.94	0.735 0.869 0.409 0.000	5949719 -1.10e+10 -2.36e+09 2.07e+11	.4197464 9.31e+09 5.79e+09 6.17e+11
sigma_u sigma_e rho	1.870e+11 5.090e+10 .93102332	(fraction	of varian	ice due to	u_i)	

Skewness Test

Variables	Level Form	Log-form	Square Form
Real Gross Domestic Product	2.980316	2955093	3.936108
Foreign Direct Investment	8.378092	.0593982	12.10201
Unemployment Rate	1.103742	-1.514035	1.951582
Global Innovation Index	.3500793	-3.208821	1.934293

Hausman (1978) specification test

. hausman fe re,sigmamore

Note: the rank of the differenced variance matrix (2) does not equal the number of coefficients being tested (3); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi	cients		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fe	re	Difference	S.E.
FDI	2456804	0876128	1580676	.0162829
UR	-2.66e+09	-8.52e+08	-1.81e+09	1.95e+09
GII	-2.90e+09	1.72e+09	-4.62e+09	6.47e+08
В	b b inconsistent	= consistent under Ha, eff	under Ho and Ha icient under Ho	; obtained from xtreg ; obtained from xtreg
Test: Ho:	difference i	n coefficients	not systematic	
	chi2(2) = =	(b-B)'[(V_b-V_ 51.44	B)^(-1)](b-B)	
	Prob>chi2 =	0.0000		

Remarks: The P-value is 0.0000. Hence, the appropriate panel data of the model is fixed- effects regression model.

Post-Estimation (Fixed Effects Regression)

. xttest3

Wald test for heteroskedasticity (Fixed-effects)

Modified Wald test for groupwise beteroskedesticity	
in fixed effect regression model	Remarks: The Prob>chi2 is 0.0000
H0: sigma(i)^2 = sigma^2 for all i	
chi2 (19) = 2.3e+05	which is less than 5% level of
Frob/(112 - 0.0000	significance.Therefore, the model
	suffers from heteroskedasticity.

Pesaran's Test for cross-sectional dependence

. xtcsd,pesaran abs

Pesaran's test of cross sectional independence = 6.404, Pr = 0.0000

Average absolute value of the off-diagonal elements = 0.607 **Remarks:** The Pr is 0.0000, therefore there is a cross-sectional dependence among variables.

Mulicollinearity Test Variance inflation factor

. vif		
Variable	VIF	1/VIF
GII FDI UR	1.50 1.26 1.22	0.666767 0.791425 0.822428
Mean VIF	1.33	

. pwcorr RGDP FDI UR GII, sig

Remarks: The mean VIF is 1.33 , therefore there is no serious multicollinearity issue among variables.

Correlation test

	GII	UR	FDI	RGDP	
				1.0000	RGDP
Remarks: None of the controlled			1.0000	0.5920	FDI
variables are highly correlated				0.0000	
		1.0000	-0.0571	-0.0545	UR
with each other as the coefficient			0.4584	0.4790	
	1.0000	-0.4003	0.4381	0.6400	GII
is less than 0.8.		0.0000	0.0000	0.0000	

Serial Correlation test

Wooldridge test for autocorrelation in panel data H0: no first order autocorrelation F(1, 18) = 2.086 Prob > F = 0.1658

Remarks: The statistical value is 0.1658 hence; the model does not suffer autocorrelation.

A.2 Regression with transformed variables – Baseline model

Variable	Obs	Mean	Std. Dev.	Min	Max
InRGDP	171	26.133	1.287	23.258	28.786
InFDI	160	21.939	1.421	17.988	26.507
UR	171	6.365	4.875	.1	19.292
GII	171	32.382	10.578	967	62.4

Summary of Descriptive Statistics

Regression results: Fixed-effects

. xtreg lnRGDP lnFDI UR GII,fe						
Fixed-effects Group variable	Number o Number o	f obs = f groups =	160 19			
R-sq: within = between = overall =	0.0953 0.2011 0.1825	Obs per (group: min = avg = max =	4 8.4 9		
corr(u_i, Xb)	-0.4891			F(3,138) Prob > F	Ξ	4.85 0.0031
1nRGDP	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnFDI UR GII _cons	0057631 .0014091 008817 26.56556	.0105716 .0058692 .0025416 .241882	-0.55 0.24 -3.47 109.83	0.587 0.811 0.001 0.000	0266664 010196 0138424 26.08728	.0151402 .0130143 0037915 27.04383
sigma_u sigma_e rho	1.3621223 .08079252 .99649422	(fraction	of variar	nce due to	u_i)	
$+$ test that all $u_1=0$: $+(18, 138) = 909.86$ Prob > $+ = 0.0000$						

Regression results: Random-effects

. xtreg lnRGDP lnFDI UR GII,re						
Random-effects Group variable	GLS regressi country1	on		Number o Number o	of obs = of groups =	160 19
R-sq: within = between = overall =	Obs per	group: min = avg = max =	4 8.4 9			
corr(u_i, X)	= 0 (assumed	1)		Wald chi Prob > c	i2(3) = :hi2 =	8.60 0.0351
lnRGDP	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lnFDI UR GII _cons	0011593 .0012742 0077736 26.40463	.0118571 .0065256 .0028327 .3314502	-0.10 0.20 -2.74 79.66	0.922 0.845 0.006 0.000	0243988 0115157 0133256 25.755	.0220801 .0140642 0022215 27.05426
sigma_u sigma_e rho	.74712522 .08079252 .98844137	(fraction o	of variar	nce due to	o u_i)	

Hausman (1978) specification test

. hausman fe i	re,sigmamore			
	Coeffi	cients		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fe	re	Difference	S.E.
lnFDI	0057631	0011593	0046038	.0008633
UR	.0014091	.0012742	.0001349	.0009898
GII	008817	0077736	0010434	.0003803
В	t = inconsistent) = consistent under Ha, eff	under Ho and Ha icient under Ho	; obtained from xtreg ; obtained from xtreg
Test: Ho	: difference i	n coefficients	not systematic	
	chi2(3) = =	(b-B)'[(V_b-V_ 35.02	B)^(-1)](b-B)	
	Prob>chi2 =	0.0000		

Remarks: The appropriate panel data model is fixed-effects regression model since P-values

are statistically significant.

Wald Test for Heteroskedasticity for Fixed-effects

. xttest3	
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model	Remarks: The Prob>chi2 is 0.0000,
H0: sigma(i)^2 = sigma^2 for all i	therefore the model is suffering from
chi2 (19) = 3968.99 Prob>chi2 = 0.0000	heteroskedasticity.

Pesaran's Test for cross-sectional dependence

```
. xtcsd,pesaran abs
Pesaran's test of cross sectional independence = 14.317, Pr = 0.0000
Average absolute value of the off-diagonal elements = 0.646
```

Remarks: There is cross-sectional dependence among variables.

Multicollinearity Test

Variance inflation factor

Remarks: The model does not have serious multicollinearity since VIF is less than 10.

Serial Correlation test

. xtser	ial	1nRGDP	lnFDI U	R GII			Remarks:	The model
Wooldri	dge	test fo	r autoc	orrelation	in panel	data	suffers	from
H0: no F(firs 1,	st order 18	autoco) =	rrelation 71.233			autocorrel	ation with a
		Prob >	F =	0.0000			Prob>F of (0.0000.

Final Baseline Model

Panel Corrected Standard Errors

. xtpcse lnRGDP lnFDI UR GII

Number of gaps in sample: 4 is less than half of the average number of observations per panel, e(n_avg) = 8.4210526; you may want to consider the pairwise option)

Linear regression, correlated panels corrected standard errors (PCSEs)

Group variable: Time variable: Panels:	country1 Year correlated	d (unbalance	d)	Number of Number of Obs per g	obs groups roup:	=	160 19
Autocorrelation:	no autocor	relation	·		min	=	4
Sigma computed by	casewise s	selection			avg	=	8.4210526
					max	=	9
Estimated covariar	ices =	= 190		R-squared		=	0.5901
Estimated autocorr	relations =	= 0		Wald chi2	(3)	=	562.60
Estimated coeffici	ients =	= 4		Prob > ch	i2	=	0.0000
	Par	nel-correcte			[05% Cor		Intonvoll
INKOP	COET.	Stu. Err.	2	P>[2]	[95% CO	IT.	Incerval
lnFDI UR GII _cons 1	.6997182 011882 .0028241 10.98347	.0701736 .0085425 .0055735 1.389641	9.97 -1.39 -0.51 7.90	0.000 0.164 0.612 0.000	.5621804 0286251 0137479 8.259828	4 L Ə 3	.8372559 .0048611 .0080998 13.70712

A.1 Initial Regression – with IFCI

Summary of Descriptive Statistics of original variables

Variable	Obs	Mean	Std. Dev.	Min	Max
RGDP	171	4.615e+11	6.563e+11	1.261e+10	3.174e+12
FDI	171	9.249e+09	2.912e+10	-2.506e+10	3.248e+11
UR	171	6.365	4.875	.1	19.292
GII	171	32.382	10.578	967	62.4
IFCI	171	28.662	24.794	1.07	83.55

Regression results: Fixed-effects

. xtreg RGDP FDI UR GII IFCI,fe						
Fixed-effects	(within) regr	ression		Number o	fobs =	171
droup variable	e. countryi			Number	i groups -	15
R-sq:				Obs per	group:	
within =	= 0.2350				min =	9
between =	= 0 . 0046				avg =	9.0
overall =	= 0.0058				max =	9
				F(4,148)	=	11.36
corr(u_i, Xb)	= -0.0138			Prob > F	=	0.0000
RGDP	Coet.	Std. Err.	t	P>[t]	[95% Conf.	Interval
FDT	2535888	.1535435	-1.65	0.101	5570096	.049832
UR	-5.36e+09	3.31e+09	-1.62	0.107	-1.19e+10	1.17e+09
GII	1.56e+09	1.48e+09	1.05	0.293	-1.37e+09	4.49e+09
IFCI	1.91e+09	3.12e+08	6.12	0.000	1.29e+09	2.53e+09
cons	3.93e+11	5.88e+10	6.68	0.000	2.76e+11	5.09e+11
sigma_u	6.690e+11					
sigma_e	4.562e+10					
rho	.99537178	(fraction	of variar	nce due to	u_i)	
F test that all u_i=0: F(18, 148) = 851.10 Prob > F = 0.0000						

Regression results: Random-effects

. xtreg RGDP FDI UR GII IFCI,re

Random-effects GLS regression Group variable: country1				Number Number	of obs of groups	=	171 19
R-sq:	0.4076			Obs per	group:		
Within =	= 0.1976				min	-	9
between =	= 0.1499				avg	=	9.0
overall =	= 0.1437				max	=	9
				Wald ch	i2(4)	=	25.48
corr(u_i, X)	= 0 (assumed	1)		Prob >	chi2	=	0.0000
RGDP	Coef.	Std. Err.	z	P> z	[95% Con	nf.	Interval]
FDI	1337858	.2265561	-0.59	0.555	5778275	5	.310256
UR	-3.79e+09	4.62e+09	-0.82	0.412	-1.29e+10)	5.27e+09
GII	5.60e+09	2.07e+09	2.70	0.007	1.53e+09	•	9.66e+09
IFCI	2.23e+09	4.47e+08	4.99	0.000	1.35e+09		3.11e+09
_cons	2.42e+11	1.05e+11	2.30	0.021	3.61e+10	•	4.47e+11
sigma_u sigma_e rho	1.892e+11 4.562e+10 .94503477	(fraction	of variar	nce due t	o u_i)		

Skewness test

Variables	Level Form	Log-form	Square Form
Real Gross Domestic Product	2.980316	2955093	3.936108
Foreign Direct Investment	8.378092	.0593982	12.10201
Unemployment Rate	1.103742	-1.514035	1.951582
Global Innovation Index	.3500793	-3.208821	1.934293
Islamic Finance Country Index	.9022757	6586735	1.568389

Hausman (1978) specification test

. hausman fe re,sigmamore

Note: the rank of the differenced variance matrix (3) does not equal the number of coefficients being tested (4); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

	Coeffi	cients						
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>				
	fe	re	Difference	S.E.				
FDI	2535888	1337858	119803	.0125352				
UR	-5.36e+09	-3.79e+09	-1.57e+09	1.59e+09				
GII	1.56e+09	5.60e+09	-4.03e+09	7.05e+08				
IFCI	1.91e+09	2.23e+09	-3.23e+08	1.10e+08				
<pre>b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg</pre>								
Test: Ho:	difference i	n coefficients	s not systematic					

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 48.63 Prob>chi2 = 0.0000

Remarks: The P-value is 0.0000, hence, it indicates that the appropriate model to use is fixed-effects regression model.

Wald test for Heteroskedasticity

. xttest3 Modified Wald test for groupwise heteroskedasticity in fixed effect regression model H0: sigma(i)^2 = sigma^2 for all i	Remarks: The model suffers from heteroskedasticity given with the Prob>chi2 result that is statistically significant.
chi2 (19) = 74382.47 Prob>chi2 = 0.0000 . xtcsd,pesaran abs	Pesaran's Test for cross-sectional dependence
Pesaran's test of cross sectional independence = Average absolute value of the off-diagonal element	8.064, Pr = 0.0000 ts = 0.514

Remarks: There is cross-sectional dependence among variables with a Pr that is 0.0000.

Multicollinearity Test Variance inflation factor

.

Remarks: The model does not have serious multicollinearity since VIF is 1.25 that is less than 10.

Correlation Test

pwcorr RGDP FDI UR GII IFCI,sig							
	RGDP	FDI	UR	GII	IFCI		
RGDP	1.0000						
FDI	0.5920 0.0000	1.0000					
UR	-0.0545 0.4790	-0.0571 0.4584	1.0000				
GII	0.6400 0.0000	0.4381 0.0000	-0.4003 0.0000	1.0000			
IFCI	-0.0655 0.3944	-0.0823 0.2847	0.0037 0.9622	-0.0089 0.9080	1.0000		

Remarks: None of the independent variables are highly correlated with each other as the coefficient is less than 0.8

Serial Correlation test

```
. xtserial RGDP FDI UR GII IFCI
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F( 1, 18) = 2.429
Prob > F = 0.1365
```

Remarks: There is no presence of autocorrelation since probability of f-value is insignificant at 10% level.

Regression with Transformed variables -with IFCI

	Summary of Descriptive				
Variable	Obs	Mean	Std. Dev.	Min	Max
LnRGDP	171	26.133	1.287	23.258	28.786
LnFDI	160	21.939	1.421	17.988	26.507
UR	171	6.365	4.875	.1	19.292
GII	171	32.382	10.578	967	62.4
IFCI	171	28.662	24.794	1.07	83.55

Regression results: Fixed-effects

. xtreg lnRGDP lnFDI UR GII IFCI,fe							
Fixed-effects (within) Group variable: country	regression 1		Number of Number of	obs = groups =	160 19		
R-sq: within = 0.3719 between = 0.0167 overall = 0.0206			Obs per g	min = avg = max =	4 8.4 9		
			F(4,137)	=	20.28		
corr(u_i, Xb) = 0.0692			Prob > F	-	0.0000		
InRGDP Coe	f. Std. Err.	t	P> t	[95% Conf.	. Interval]		
lnFDI 00692 UR 00389 GII .00084 IFCI .00370 cons 26.207	05 .0088421 16 .0049555 73 .0024629 16 .0004766 68 .2074639	-0.78 -0.79 0.34 7.77 126.32	0.435 0.434 0.731 0.000 0.000	0244052 0136908 004023 .0027592 25.79743	.0105642 .0059076 .0057175 .0046441 26.61792		
sigma_u 1.30609	36						
rho .997331	95 (fraction	of variar	ce due to	u_i)			
⊢ test that all u_i=0:	+(18, 137) = 12	246.66		Prob >	⊢ = 0.0000		

Regression results: Random-effects

. xtreg lnRGDP lnFDI UR GII IFCI,re						
Random-effects GLS regression Group variable: country1				Number o Number o	of obs = of groups =	160 19
R-sq: within = 0.3705 between = 0.0436 overall = 0.0442				Obs per group: min = 4 avg = 8.4 max = 9		
corr(u_i, X)	= 0 (assumed	1)		Wald ch: Prob > o	i2(4) = chi2 =	66.95 0.0000
1nRGDP	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lnFDI UR GII IFCI _cons	0038729 0039945 .00173 .0038223 26.07882	.0097727 .0054417 .0027009 .000525 .2985309	-0.40 -0.73 0.64 7.28 87.36	0.692 0.463 0.522 0.000 0.000	0230271 0146601 0035637 .0027934 25.49371	.0152814 .006671 .0070237 .0048512 26.66393
sigma_u sigma_e rho	.75845489 .06756545 .9921267	(fraction o	of variar	nce due to	o u_i)	

Hausman (1978) specification test

```
. hausman fe re,sigmamore
            ---- Coefficients ----
              (b) (B) (b-B) sqrt(diag(V_b-V_B))
fe re Difference S.E.
         Т
______
    lnFDI | -.0069205 -.0038729 -.0030477 .0005848
      UR -.0038916 -.0039945
                                 .0001029
                                               .0007027
                    .00173
     GII | .0008473
IFCI | .0037016
                                 -.0008827
                                               .0003761
                                -.0001206
                      .0038223
                                              .0000539
_____
                  b = consistent under Ho and Ha; obtained from xtreg
        B = inconsistent under Ha, efficient under Ho; obtained from xtreg
  Test: Ho: difference in coefficients not systematic
             chi2(4) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)
                         31.83
           Prob>chi2 =
                        0.0000
```

Remarks: The appropriate model is fixed-effects regression model with a P-value of 0.0000.

Wald Test for Heteroskedasticity

```
. xttest3
Modified Wald test for groupwise heteroskedasticity
in fixed effect regression model Remarks: The model suffers
H0: sigma(i)^2 = sigma^2 for all i heteroskedasticity as the Prob>chi2 is
chi2 (19) = 2460.92
Prob>chi2 = 0.0000 0.0000
```

Pesaran's Test for cross-sectional dependence

```
    xtcsd,pesaran abs
    Pesaran's test of cross sectional independence = 12.985, Pr = 0.0000
    Average absolute value of the off-diagonal elements = 0.630
```

Remarks: There is cross-sectional dependence among variables.

Multicollinearity Test Variance inflation factor

. vif		
Variable	VIF	1/VIF
GII lnFDI UR IFCI	1.60 1.36 1.21 1.00	0.626328 0.737502 0.826324 0.998274
Mean VIF	1.29	

Remarks: The model does not suffer serious multicollinearity given with the VIF that is less than 10.

Correlation Test

. pwcorr lnRGDP lnFDI UR GII IFCI,sig						
	1nRGDP	lnFDI	UR	GII	IFCI	
lnRGDP	1.0000					
lnFDI	0.7671 0.0000	1.0000				
UR	-0.1117 0.1457	-0.1220 0.1243	1.0000			
GII	0.4014 0.0000	0.5032 0.0000	-0.4003 0.0000	1.0000		
IFCI	0.1599 0.0367	0.0397 0.6183	0.0037 0.9622	-0.0089 0.9080	1.0000	

Remarks: There is no correlation among variables since the coefficient is less than 0.8.

Serial Correlation test

```
. xtserial lnRGDP lnFDI UR GII IFCI
Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F( 1, 18) = 58.671
Prob > F = 0.0000
```

Remarks: The model has autocorrelation issue.

Final Corrected Model: Panel Corrected Standard Error (PCSE)

. xtpcse lnRGDP lnFDI UR GII IFCI Number of gaps in sample: 4 (note: the number of observations per panel, e(n_sigma) = 2, used to compute the disturbance of covariance matrix e(Sigma) is less than half of the average number of observations per panel, e(n_avg) = 8.4210526; you may want to consider the pairwise option)

Linear regression, correlated panels corrected standard errors (PCSEs)

country1			Number o	f obs	=	160	
Year			Number o	f groups	=	19	
correlate	correlated (unbalanced)			Obs per group:			
utocorrelation: no autocorrelation				min	=	4	
Sigma computed by casewise selection				avg	=	8.4210526	
				max	=	9	
iances	= 190	9	R-square	d	=	0.6081	
orrelations	= (9	Wald chi	2(4)	=	1468.81	
icients	=	5	Prob > cl	hi2	=	0.0000	
Panel-corrected							
Coef.	Std. Err.	z	P> z	[95% Cor	nf.	Interval]	
.6940129	.0703273	9.87	0.000	.5561739)	.831852	
0118419	.0084638	-1.40	0.162	0284307	7	.0047468	
0025858	.0063001	-0.41	0.681	0149339)	.0097622	
.0068295	.001104	6.19	0.000	.0046656	5	.0089933	
10,90267	1.358492	8.03	0.000	8.240078	3	13.56527	
	country1 Year correlate no autoco y casewise ances prrelations cients Coef. .6940129 .0118419 .0025858 .0068295 10.90267	country1 Year correlated (unbaland no autocorrelation y casewise selection ances = 190 prrelations = 0 cicients = 0 Panel-correct Coef. Std. Err. .6940129 .0703273 0118419 .0084638 0025858 .0063001 .0068295 .001104 10.90267 1.358492	country1 Year correlated (unbalanced) no autocorrelation y casewise selection ances = 190 prrelations = 0 icients = 5 Panel-corrected Coef. Std. Err. z .6940129 .0703273 9.87 0118419 .0084638 -1.40 0025858 .0063001 -0.41 .0068295 .001104 6.19 10.90267 1.358492 8.03	country1 Number of Number of Number of Correlated (unbalanced) Number of Number of Number of Number of Obs per gradients in no autocorrelation Obs per gradients Obs per gradients in no autocorrelation Number of Number of Number of Obs per gradients Obs per gradients in no autocorrelation Number of Obs per gradients Obs per gradients in no autocorrelation Number of Obs per gradients Panel-corrected Number of Obs per gradients Coef. Std. Err. z P> z .6940129 .0703273 .6940129 .0703273 9.87 .00118419 .0084638 -1.40 .0068295 .001104 6.19 .0000 10.90267 1.358492 8.03 0.000	country1 Number of obs Year Number of groups correlated (unbalanced) Obs per group: no autocorrelation min ny casewise selection avg iances = 100 R-squared prrelations 0 Wald chi2(4) icients coef. Std. Err. Panel-corrected P> z Coef. Std. Err. .6940129 .0703273 .0025858 .0063001 .0025858 .0063001 .0068295 .001104 6.19 0.000 .0000 8.240076	country1 Number of obs = Year Number of groups = correlated (unbalanced) Obs per group: min = on autocorrelation min = avg = max = avg = inces = 190 R-squared = inces = 0 Wald chi2(4) = incents = 5 Prob > chi2 = Panel-corrected Coef. Std. Err. z P> z [95% Conf. .6940129 .0703273 9.87 0.000 .5561739 0118419 .0084638 -1.40 0.1620284307 .0025858 .0063001 -0.41 0.6810149339 .0068295 .001104 6.19 0.000 .0046656 10.90267 1.358492 8.03 0.000 8.240078	