Design of Monitoring Device for the Process of Organic Waste Decomposition into Compost Fertilizer and Plant Growth through Smartphones based on Internet of Things Smart Farming

Authors

  • Haris Isyanto Universitas Muhammadiyah Jakarta http://orcid.org/0000-0001-6723-1506
  • Jumail Jumail Department of Informatics Engineering, Universitas Muhammadiyah Jakarta
  • Rahayu Rahayu Department of Electrical Engineering, Universitas Muhammadiyah Jakarta
  • Nofian Firmansyah Department of Electrical Engineering, Universitas Muhammadiyah Jakarta

DOI:

https://doi.org/10.18196/jet.v5i2.12815

Keywords:

Decomposition Process, Organic Waste, Compost Fertilizer, Monitoring Device, Internet of Things

Abstract

Based on data published by the Ministry of Living Environment and Forestry in 2020, Indonesia produces at least 93,200 tons of waste per day in various types of composition or around 34 million tons of waste per year. From the collection of waste, it could be used as compost fertilizer which is taken from leaf waste. From these problems, a device was designed that could monitor the decomposition process of organic waste into compost fertilizer. This device is equipped with a temperature sensor, humidity sensor, sensor of soil pH, soil moisture sensor, and color sensor to monitor the composting fertilizer process. The device could also detect plant growth as an indication that the compost fertilizer made is in good condition. Our device was used on the Internet of Things (IoT) and the blynk application as a monitoring application. From the test results, the temperature sensor's accuracy is 98.2%, the humidity sensor is 96.1%, the soil pH sensor is 95.26%, the soil moisture sensor is 98.55%, and the color sensor successfully detects the results of plant growth well. The design of this device is expected to invite the public to be wiser in sorting waste and using it for the surrounding environment.

Author Biography

Haris Isyanto, Universitas Muhammadiyah Jakarta

Department of Electrical Engineering, Faculty of Engineering, Universitas Muhammadiyah Jakarta

References

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, “Timbulan Sampah,” Kementeri. Lingkung. Hidup dan Kehutan. Republik Indonesia., p. 1, 2020, [Online]. Available: https://sipsn.menlhk.go.id/sipsn/public/data/timbulan.

V. D. K and M. Syaryadhi, “Monitoring Suhu Dan Kelembaban Menggunakan Mikrokontroler Atmega328 Pada Proses Dekomposisi Pupuk Kompos,” J. Karya Ilm. Tek. Elektro, vol. 2, no. 3, pp. 91–98, 2017.

S. Puengsungwan, “IoT based Soil Moisture Sensor for Smart Farming,” Proc. 2020 Int. Conf. Power, Energy Innov. ICPEI 2020, no. Icpei, pp. 221–224, 2020, doi: 10.1109/ICPEI49860.2020.9431455.

H. Isyanto and A. Nandiwardhana, “Perancangan DC Cooler Berbasis Internet of Things,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 2, p. 95, 2019, doi: 10.24853/resistor.2.2.95-104.

R. S. T. Atmojo, “Rancang Bangun Pemantauan Proses Dekomposisi Pupuk Kompos Berbasis Low Cost & Multi Point Modul Board,” vol. 4, no. 1, pp. 174–179, 2019.

W. Octavia, F. Masykur, and A. Prasetyo, “SISTEM INDIKATOR PADA DAUN MENGGUNAKAN SENSOR WARNA BERBASIS MIKROKONTROLER AT-MEGA32,” KOMPUTEK, vol. 2, p. 85, Apr. 2018, doi: 10.24269/jkt.v2i1.72.

R. Gunawan, T. Andhika, . S., and F. Hibatulloh, “Monitoring System for Soil Moisture, Temperature, pH and Automatic Watering of Tomato Plants Based on Internet of Things,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 7, no. 1, pp. 66–78, 2019, doi: 10.34010/telekontran.v7i1.1640.

F. Y. Q. Ontowirjo et al., “Implementasi Internet of Things Pada Sistem Monitoring Suhu dan Kelembaban Pada Ruangan Pengering Berbasis Web,” J. Tek. Elektro dan Komput., vol. 7, no. 3, pp. 331–338, 2018, doi: 10.35793/jtek.7.3.2018.23638.

H. S. Doshi, M. S. Shah, and U. S. A. Shaikh, “INTERNET of THINGS ( IoT ): INTEGRATION of BLYNK for DOMESTIC USABILITY,” Vishwakarma J. Eng. Res., vol. 1, no. 4, pp. 149–157, 2017.

A. Thorat, S. Kumari, and N. D. Valakunde, “An IoT-based smart solution for leaf disease detection,” 2017 Int. Conf. Big Data, IoT Data Sci. BID 2017, vol. 2018-January, pp. 193–198, 2018, doi: 10.1109/BID.2017.8336597.

P. Serikul, N. Nakpong, and N. Nakjuatong, “Smart Farm Monitoring via the Blynk IoT Platform : Case Study: Humidity Monitoring and Data Recording,” Int. Conf. ICT Knowl. Eng., vol. 2018-November, pp. 70–75, 2019, doi: 10.1109/ICTKE.2018.8612441.

L. Kamelia, S. Nugraha, M. R. Effendi, and S. Gumilar, “Real-Time Monitoring System for Measurement of Soil Fertility Parameters in Smart Farming Applications,” Proceeding 2019 5th Int. Conf. Wirel. Telemat. ICWT 2019, pp. 2019–2022, 2019, doi: 10.1109/ICWT47785.2019.8978268.

J. A. T. Urmeneta and J. R. N. De Los Santos, “PlantOne: An Arduino-based Ph and Moisture Based Soil Plant Identifier,” 2020 IEEE 12th Int. Conf. Humanoid, Nanotechnology, Inf. Technol. Commun. Control. Environ. Manag. HNICEM 2020, pp. 12–16, 2020, doi: 10.1109/HNICEM51456.2020.9400019.

N. Mukhayat, P. W. Ciptadi, and R. H. Hardyanto, “Sistem Monitoring pH Tanah , Intensitas Cahaya Dan Kelembaban Pada Tanaman Cabai ( Smart Garden ) Berbasis IoT,” Seri Pros. Semin. Nas. Din. Inform., vol. 5, no, pp. 179–184, 2021.

D. Ratnawati and Vivianti, “Alat Pendeteksi Warna Menggunakan Sensor Warna Tcs3200 Dan Arduino Nano,” Pros. Semin. Nas. Vokasi Indones., vol. 1, no. November, pp. 167–170, 2018.

Badan Standardisasi Nasional, “Spesifikasi kompos dari sampah organik domestik,” Badan Stand. Nas., p. 12, 2004.

Downloads

Published

2021-12-09

How to Cite

Isyanto, H., Jumail, J., Rahayu, R., & Firmansyah, N. (2021). Design of Monitoring Device for the Process of Organic Waste Decomposition into Compost Fertilizer and Plant Growth through Smartphones based on Internet of Things Smart Farming. Journal of Electrical Technology UMY, 5(2), 52–60. https://doi.org/10.18196/jet.v5i2.12815

Issue

Section

Articles