Developing a Scalable IoT-Based Platform for Enhancing Air Quality Monitoring in Public Transport Using Node-RED

Authors

  • Hasan Zidni Department of Electrical Engineering Education, Faculty of Engineering, Universitas Negeri Yogyakarta
  • Karisma Trinanda Putra Center of Artificial Intelligence and Robotics Studies, Research and Innovation Centre, Universitas Muhammadiyah Yogyakarta
  • Fahrul Galih Santosa Department of Electrical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta
  • Arif Nugroho Department of Electrical Engineering Education, Faculty of Engineering, Universitas Negeri Yogyakarta
  • Sarwo Pranoto Department of Electrical Engineering Education, Faculty of Engineering, Universitas Negeri Yogyakarta
  • Mosiur Rahaman Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan
  • Hsueh-Ting Chu Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan

DOI:

https://doi.org/10.18196/jet.v8i2.24701

Keywords:

Air Quality Monitoring, IoT (Internet of Things), Node-RED, Real-Time, Public Transportation

Abstract

Air quality monitoring is a critical factor in ensuring human safety and well-being. However, existing monitoring systems are often limited to specific locations, resulting in a lack of comprehensive information regarding air quality conditions in various areas. This study proposes the development of an (Internet of Things) IoT-based air quality monitoring platform utilizing Node- RED, implemented in public transportation facilities in Yogyakarta. The system provides real-time data that enhances public awareness and understanding of air quality conditions, particularly in densely populated transportation hubs. The prototype utilizes MQ-7 and MQ-135 sensors to measure key air quality indicators, including carbon monoxide (CO) and carbon dioxide (CO2). Air quality data is collected every minute and can be viewed in real-time through the Node-RED platform, with the data stored in CSV format for further analysis. The system demonstrated consistent performance, with an average transmission time of 2706 𝑚𝑠, ensuring near real-time updates across all test locations. The highest average concentrations of CO and CO2 recorded were 28 ppm and 124 ppm, respectively. According to the World Health Organization (WHO) Air Quality Guidelines, carbon monoxide (CO) levels below 50 ppm and carbon dioxide (CO₂) levels below 300 ppm are considered safe. This indicates that the air quality in the monitored locations is generally acceptable.

References

B. P. Pratiwi, A. S. Handayani, & S. Sarjana. “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix”. Jurnal Informatika Upgris, Vol. 6, No. 2, 66–75, 2021.

K. Van Ryswyk, G. J. Evans, R. Kulka, L. Sun, K. Sabaliauskas, M. Rouleau, A. T. Anastasopolos, L. Wallace, & S. Weichenthal. “Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study”. Journal of Exposure Science and Environmental Epidemiology, Vol. 31, No. 4, 628–640, 2021.

L. J. Nunes. “The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments, Vol. 10, No. 4, 66, 2023.

K. T. Putra, T. A. Nugraha, N. Hayati, D. Nisrina, L. H. Anwari, & H. Subastiyan. “Enhancing Industrial Dryer Machines through IIoT- Enabled Sensor Integration and Node-RED”. AIP Conference Proceedings Vol. 3115, No. 1. AIP Publishing, 2024.

M. B. Manurung, D. Darmawan, & R. F. Iskandar. “Perancangan Alat Ukur Kadar Karbon Monoksida (CO) Pada Kendaraan Berbasis Sensor MQ7”. eProceedings of Engineering, Vol. 5, No. 2, 2018.

Y. R. Carrillo-Amado, M. A. Califa-Urquiza, & J. A. Ramón-Valencia. “Calibration and standardization of air quality measurements using MQ sensors”. Respuestas, 25(1), 70-77, 2020.

M. A. Hai, W. B. Jyoty, R. S. Uddin, R. Mahfuza, & Y. Rahman. “IoT-Based Automated Miner Tracking an Imperilment Observance System”. 2022 IEEE Delhi Section Conference (DELCON), 1-6, 2022.

M. Prantica. “Sistem Monitoring Kadar Gas Karbon Monoksida, Karbon Dioksida, Hidrogen, dan Amonia Menggunakan Sensor Mq-2 dan Mq- 135 Berbasis Nodemcu Esp32 Sebagai Pemantau Pencemaran Udara”. 2 ,הארץ(8.5.2017), 2005–2003, 2022.

P. D. Potbhare, K. Bhange, G. Tembhare, R. Agrawal, S. Sorte, & P. Lokulwar. ”IoT based Smart Air Pollution Monitoring System”. International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 1829- 1834, 2022.

A. A. Taiwo, O. J. Femi, A. A. Ruth, & P. J. Olusogo. “Determination of Optimum Load Resistances of MQ-Series Gas Sensor Circuit for Specific Gas Concentrations”. TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 20, No. 1, 158-165, 2022.

P. S. Macheso, T. D. Manda, A. G. Meela, J. S. Mlatho, G. T. Taulo, & B. M'mame, B. “Environmental Parameter Monitoring System Based on Nodemcu Esp8266, MQTT and Node-Red. 2022 International Conference on Computer Communication and Informatics (ICCCI), 1-4, 2022.

M. J. A. Baig, M. T. Iqbal, M. Jamil, & J. Khan. “Design and Implementation of An Open-Source IoT and Blockchain-Based Peer-to-Peer Energy Trading Platform Using ESP32-S2, Node-Red and, MQTT Protocol”. Energy Reports, Vol. 7, 5733-5746, 2021.

I. V. Nițulescu, & A. Korodi. “Supervisory Control and Data Acquisition Approach in Node-RED: Application and Discussions”. IoT, Vol. 1, No. 1, 5, 2020.

Downloads

Published

2024-12-16

How to Cite

Zidni, H., Putra, K. T., Santosa, F. G., Nugroho, A., Pranoto, S., Rahaman, M., & Chu, H.-T. (2024). Developing a Scalable IoT-Based Platform for Enhancing Air Quality Monitoring in Public Transport Using Node-RED. Journal of Electrical Technology UMY, 8(2), 60–66. https://doi.org/10.18196/jet.v8i2.24701

Issue

Section

Articles