Interference Coordination Using Precoding Schemes for Indoor Hotspots
DOI:
https://doi.org/10.18196/jet.1105Keywords:
Wireless, Hotspots, Cooperative Communication, MIMO, PrecodingAbstract
This paper investigates an interference coordination method for indoor hotspot deployment which includes cooperative communication between access points. Coordination between indoor hotspots access point with a method of coordination strategy is used by using of multiple-input multiple-output (MIMO) antennas technique. In order to achieve the capacity, some preceding technique is implemented in MIMO such as Minimum Mean Square Error (MMSE) and Block Diagonalization (BD). MMSE and BD precoding is used to coordinate the transmissions across multiple antenna in transmitter and receiver in case of multiple antenna transmissions. Water-Filling (WF) power allocation is also implemented in this scheme. This schemes is proposed to mitigate inter user interference. Based on the simulation, the results show that coordination scheme in indoor hotspots deployment using BD pre-coding demonstrates a higher data rate than MMSE. The achievable sum rate of hotspot with coordination three access points using BD better around 5 Bps/Hz compared to MMSE method in the same cases.
References
Chen, S., & Zhao, J. (2014). The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36-43.
Wang, K., Nirmalathas, A., Lim, C., & Skafidas, E. (2011). High-speed optical wireless communication system for indoor applications. IEEE Photon. Technol. Lett., 23(8), 519-521.
Shin, S. Y., & Nugraha, T. A. (2013). Cooperative water filling (coopwf) algorithm for small cell networks. In ICT Convergence (ICTC), 2013 International Conference on (pp. 959-961). IEEE.
Chu, X., López-Pérez, D., Yang, Y., & Gunnarsson, F. (Eds.). (2013). Heterogeneous Cellular Networks: Theory, Simulation and Deployment. Cambridge University Press.
Wang, C. X., Hong, X., Ge, X., Cheng, X., Zhang, G., & Thompson, J. (2010). Cooperative MIMO channel models: A survey. IEEE Communications Magazine, 48(2).
Shin, S. Y., & Nugraha, T. A. (2014). Effect of Channel Estimation Error on Coordinated Small- Cells with Block Diagonalization. In Applied Mechanics and Materials (Vol. 556, pp. 4501- 4504). Trans Tech Publications.
Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590-3600.
Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE transactions on wireless communications, 9(5).
Wang, Q., Debbarma, D., Cao, Z. Z., Niemegeers, I., & de Groot, S. H. (2015). Performance Analysis of Large Centralized and Distributed MU-MIMO Systems in Indoor WLAN. In European Wireless 2015; 21th European Wireless Conference; Proceedings of (pp. 1-6). VDE.
F. Kaltenberger, M. Kountouris, L. Cardoso, R. Knopp, and D. Gesbert (2008), “Capacity of linear multi-user mimo pre-coding schemes with measured channel data,” in Signal Processing Advances in Wireless Communications, 2008. SPAWC 2008. IEEE 9th Workshop
Ng, C. T., & Huang, H. (2010). Linear precoding in cooperative MIMO cellular networks with limited coordination clusters. IEEE Journal on Selected Areas in Communications, 28(9), 1446-1454.
Pal, S. K., Nugraha, T. A., Shams, S., & Rahman, A. (2014). Resource Allocation Strategy using optimal power control for mitigating two-tier interference in heterogeneous networks. In Wireless Communications and Networking Conference Workshops (WCNCW), 2014 IEEE (pp. 104-109). IEEE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Electrical Technology UMY. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Authors should sign Copyright Transfer Agreement when they have approved the final proofs sent by the journal prior the publication. JET UMY strives to ensure that no errors occur in the articles that have been published, both data errors and statements in the article.
JET UMY keep the rights to articles that have been published. Authors are permitted to disseminate published article by sharing the link of JET UMY website. Authors are allowed to use their works for any purposes deemed necessary without written permission from JET UMY with an acknowledgement of initial publication in this journal.
License
All articles published in JET UMY are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.