Voice Verification System Based on Bark-frequency Cepstral Coefficient
DOI:
https://doi.org/10.18196/jet.1104Keywords:
artificial neural network, bark-frequency cepstral coefficient, voice activity detectionAbstract
Data verification systems evolve towards a more natural system using biometric media. In daily interactions, human use voice as a tool to communicate with others. Voice charactheristic is also used as a tool to identify subjects who are speaking. The problem is that background noise and signal characteristics of each person which is unique, cause speaker classification process becomes more complex. To identify the speaker, we need to understand the speech signal feature extraction process. We developed the technology to extract voice characteristics of each speaker based on spectral analysis. This research is useful for the development of biometric-based security application. At first, the voice signal will be separated by a pause signal using voice activity detection. Then the voice characteristic will be extracted using a bark-frequency cepstral coefficient. Set of cepstral will be classified according to the speaker, using artificial neural network. The accuracy reached about 82% in voice recognition process with 10 speakers, meanwhile, the highest accuracy was 93% with only 1 speaker.
References
Fardana, A. R., Jain, S., Jovancevic, I., Suri, Y., Morand, C. and Robertson, N. M. (2013). “Controlling a Mobile Robot with Natural Commands based on Voice and Gesture”, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
Barbu, T. (2010). “Gabor Filter-Based Face Recognition Technique”, Proceedings of the Romanian Academy, Series A, Volume 11, Romania.
Anitha, D., M.Suganthi, M., Suresh, P. (2011). “Image Processing of Eye to Identify the Iris Using Edge Detection Technique based on ROI and Edge Length” Proceedings of the International Conference on Signal, Image Processing and Applications (ICEEA), Singapore.
Purwanto, D., Mardiyanto, R., Arai, K. (2009). “Electric wheelchair control with gaze direction and eye blinking” Proceedings of the 14th International Symposium on Artificial Life and Robotics, Oita, Japan.
Damaryam, G., Dunbar, G. (2005). “A Mobile Robot Vision System for Self navigation using the Hough Transform and neural networks”, Proceedings of the EOS Conference on Industrial Imaging and Machine Vision, Munich, pp. 72.
Putra, K. T., Purwanto, D., Mardiyanto, R., (2015). “Indonesian Natural Voice Command for Robotic Applications”, Proceedings of the International Conference on Electrical Engineering and Informatics (ICEEI), Bali.
Jangmyung, L., MinCheol, L. (2013). “A Robust Control of Intelligent Mobile Robot Based on Voice Command”. Proceedings of the 6th International Conference, ICIRA.
Teller, S., Walter, M. R., Antone, M., Correa, A., Davis, R., Fletcher, L., Frazzoli, E., Glass, J., How, J. P., Huang, A. S., Jeon, J. H., Karaman, S., Luders, B., Roy, N., Sainath, T. (2010). “A Voice- Commandable Robotic Forklift Working Alongside Humans in Minimally-Prepared Outdoor Environments”, Proceedings of the Robotics and Automation (ICRA).
Kumar, P., Biswas, A., Mishra, A .N., and Chandra, M. (2010). "Spoken Language Identification Using Hybrid Feature Extraction Methods", Journal of Telecommunications. Volume 1. Issue 2.
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K. (1988). "Phoneme Recognition: Neural Networks vs Hidden Markov Models", Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Downloads
Published
How to Cite
Issue
Section
License
Copyright
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Electrical Technology UMY. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Authors should sign Copyright Transfer Agreement when they have approved the final proofs sent by the journal prior the publication. JET UMY strives to ensure that no errors occur in the articles that have been published, both data errors and statements in the article.
JET UMY keep the rights to articles that have been published. Authors are permitted to disseminate published article by sharing the link of JET UMY website. Authors are allowed to use their works for any purposes deemed necessary without written permission from JET UMY with an acknowledgement of initial publication in this journal.
License
All articles published in JET UMY are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.