Development of a Web-Based Music Recommendation System Based on Facial Expression Using a Convolutional Neural Networks Model
DOI:
https://doi.org/10.18196/jet.v9i1.27805Keywords:
CNN, Face-api.js, Facial expression, Music recommendation, WebAbstract
This research presents the development of a web-based music recommendation system that uses facial expression recognition to match songs with users' emotional states. Real-time facial detection and expression classification are conducted in the browser using two CNN models implemented via the face-api.js library. Each classified expression is mapped to a specific music genre, and relevant songs are retrieved using the SoundCloud API. The system was evaluated through two aspects, accuracy and user satisfaction. Accuracy was measured using a dichotomous questionnaire, with results showing that 91% of users agreed that the recommended songs reflected their current emotions. User satisfaction was also assessed using a similar questionnaire and reached 86%, indicating a high level of comfort and relevance in the user experience. Compared to previous studies that used Likert scales, this study offers a different yet equally effective evaluation approach. The findings suggest that integrating facial expression recognition into music recommendation systems can provide a practical and user-friendly way to support emotional regulation through music.
References
N. N. Hanifah and D. C. Aprilia, “Analisis Penggunaan Bahasa Pada Lirik Lagu ‘BUKTI’ Karya Virgoun Sebagai Bentuk Ekspresi Dan Komunikasi Emosional,” J. Ilmu Bhs. Dan Pendidik. Guru Sekol. Dasar, vol. 1, Jan. 2025.
Lussy Putri Khadijah, “Efektivitas Terapi Musik Untuk Menurunkan Tingkat Stres Dan Kecemasan,” Detect. J. Inov. Ris. Ilmu Kesehat., vol. 1, no. 3, pp. 91–98, Jul. 2023, doi: 10.55606/detector.v1i3.2101.
A. A. Reki and Y. Yensharti, “Analisis Struktur Lagu Biar Menjadi Kenangan Ciptaan Ahmad Dhani,” J. Sendratasik, vol. 9, no. 3, p. 15, Sep. 2020, doi: 10.24036/jsu.v9i1.109300.
N. Ula, C. Setianingsih, and R. A. Nugrahaeni, “Sistem Rekomendasi Lagu Dengan Metode Content-Based Filtering Berbasis Website,” E-Proceeding Eng., vol. 8, p. 12193, Dec. 2021.
C. Hatton, “IFPI’s global study finds we’re listening to more music in more ways than ever,” IFPI. Accessed: Jun. 26, 2025. [Online]. Available: https://www.ifpi.org/ifpis-global-study-finds-were-listening-to-more-music-in-more-ways-than-ever/
F. A. Saputra and S. R. Nudin, “Pengembangan Sistem Rekomendasi Pada Pemutar Musik menggunakan Face Emotion Detection dan Resnet Berbasis Website,” J. Manaj. Inform., vol. 2, May 2024.
D. Sukietra, “Aplikasi Rekomendasi Musik Berdasarkan Klasifikasi Genre Menggunakan Convolutional Neural Networks,” KALBISIANA J. Sains Bisnis Dan Teknol., vol. 10, no. 1, pp. 91–98, Mar. 2024, doi: 10.53008/kalbisiana.v10i1.3527.
A. Ardiansyah, R. A. Ramadhani, and D. Swanjaya, “Pengembangan Sistem Rekomendasi Lagu Berdasarkan Ekspresi Wajah Menggunakan YOLO v8,” Semin. Nas. Teknol. Sains STAINS, vol. 4, Jan. 2025.
“API - Panduan - Pengembang SoundCloud.” Accessed: Jul. 26, 2025. [Online]. Available: https://developers.soundcloud.com/docs#authentication
V. Mühler, justadudewhohacks/face-api.js. (Jun. 28, 2025). TypeScript. Accessed: Jun. 29, 2025. [Online]. Available: https://github.com/justadudewhohacks/face-api.js
S. Iftekar, “The ‘face-api.js’ Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics,” Int. J. Comput. Appl., vol. 186, 2024.
Y. Indrasari, “Efesiensi Saluran Distribusi Pemasaran Kopi Rakyat Di Desa Gending Waluh Kecamatansempol (Ijen) Bondowoso,” J. Manaj. Pemasar., vol. 14, no. 1, pp. 44–50, Mar. 2020, doi: 10.9744/pemasaran.14.1.44-50.
“FER-2013.” Accessed: Jul. 24, 2025. [Online]. Available: https://www.kaggle.com/datasets/msambare/fer2013
D. R. Kusuma and F. P. Artharina, “Analisis Implementasi Projek Penguatan Profil Pelajar Pancasila Sekolah Dasar Negeri 01 Penyangkringan Kecamatan Weleri Kabupaten Kendal,” Didakt. J. Ilm. PGSD FKIP Univ. Mandiri, vol. 10, no. 04, Dec. 2024.
R. F. Utami, S. Prasetyo, and D. Z. Nurizin, “Validitas dan Reliabilitas Kuesioner Chinese Positive Youth Development Scales (CPYDS) Mengukur Keterampilan Hidup Pelajar SMP di Babakan Madang Kabupaten Bogor 2019,” J. Biostat. Kependud. Dan Inform. Kesehat., vol. 2, no. 3, Jul. 2022, doi: DOI: 10.7454/bikfokes.v2i3.1029.
S. Ishak, M. H. Koniyo, and N. Pakaya, “Analisis Pengaruh Kualitas Sistem Informasi dan Kualitas Informasi Terhadap Kepuasan Pengguna Sistem Informasi Skripsi dan Kerja Praktek (SISKP) Jurusan Teknik Informatika Universitas Negeri Gorontalo,” Diffus. J. Syst. Inf. Technol., vol. 2, Jan. 2022.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Electrical Technology UMY. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Authors should sign Copyright Transfer Agreement when they have approved the final proofs sent by the journal prior the publication. JET UMY strives to ensure that no errors occur in the articles that have been published, both data errors and statements in the article.
JET UMY keep the rights to articles that have been published. Authors are permitted to disseminate published article by sharing the link of JET UMY website. Authors are allowed to use their works for any purposes deemed necessary without written permission from JET UMY with an acknowledgement of initial publication in this journal.
License
All articles published in JET UMY are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.