Development of a Web-Based Music Recommendation System Based on Facial Expression Using a Convolutional Neural Networks Model

Authors

  • Dimas Aditya Putra Wardhana Department of Robotics and Artificial Intelligence Engineering, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya
  • Fridy Mandita Department of Robotics and Artificial Intelligence Engineering, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya
  • Elvianto Dwi Hartono Department of Robotics and Artificial Intelligence Engineering, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya
  • Dwi Hendra Rosli Department of Information Systems and Technology, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya
  • Bima Putra Purnawirawan Department of Information Systems and Technology, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya
  • Muhammad Aldi Syafrillah Hidayat Department of Information Systems and Technology, Faculty of Engineering, Universitas 17 Agustus 1945 Surabaya

DOI:

https://doi.org/10.18196/jet.v9i1.27805

Keywords:

CNN, Face-api.js, Facial expression, Music recommendation, Web

Abstract

This research presents the development of a web-based music recommendation system that uses facial expression recognition to match songs with users' emotional states. Real-time facial detection and expression classification are conducted in the browser using two CNN models implemented via the face-api.js library. Each classified expression is mapped to a specific music genre, and relevant songs are retrieved using the SoundCloud API. The system was evaluated through two aspects, accuracy and user satisfaction. Accuracy was measured using a dichotomous questionnaire, with results showing that 91% of users agreed that the recommended songs reflected their current emotions. User satisfaction was also assessed using a similar questionnaire and reached 86%, indicating a high level of comfort and relevance in the user experience. Compared to previous studies that used Likert scales, this study offers a different yet equally effective evaluation approach. The findings suggest that integrating facial expression recognition into music recommendation systems can provide a practical and user-friendly way to support emotional regulation through music.

References

N. N. Hanifah and D. C. Aprilia, “Analisis Penggunaan Bahasa Pada Lirik Lagu ‘BUKTI’ Karya Virgoun Sebagai Bentuk Ekspresi Dan Komunikasi Emosional,” J. Ilmu Bhs. Dan Pendidik. Guru Sekol. Dasar, vol. 1, Jan. 2025.

Lussy Putri Khadijah, “Efektivitas Terapi Musik Untuk Menurunkan Tingkat Stres Dan Kecemasan,” Detect. J. Inov. Ris. Ilmu Kesehat., vol. 1, no. 3, pp. 91–98, Jul. 2023, doi: 10.55606/detector.v1i3.2101.

A. A. Reki and Y. Yensharti, “Analisis Struktur Lagu Biar Menjadi Kenangan Ciptaan Ahmad Dhani,” J. Sendratasik, vol. 9, no. 3, p. 15, Sep. 2020, doi: 10.24036/jsu.v9i1.109300.

N. Ula, C. Setianingsih, and R. A. Nugrahaeni, “Sistem Rekomendasi Lagu Dengan Metode Content-Based Filtering Berbasis Website,” E-Proceeding Eng., vol. 8, p. 12193, Dec. 2021.

C. Hatton, “IFPI’s global study finds we’re listening to more music in more ways than ever,” IFPI. Accessed: Jun. 26, 2025. [Online]. Available: https://www.ifpi.org/ifpis-global-study-finds-were-listening-to-more-music-in-more-ways-than-ever/

F. A. Saputra and S. R. Nudin, “Pengembangan Sistem Rekomendasi Pada Pemutar Musik menggunakan Face Emotion Detection dan Resnet Berbasis Website,” J. Manaj. Inform., vol. 2, May 2024.

D. Sukietra, “Aplikasi Rekomendasi Musik Berdasarkan Klasifikasi Genre Menggunakan Convolutional Neural Networks,” KALBISIANA J. Sains Bisnis Dan Teknol., vol. 10, no. 1, pp. 91–98, Mar. 2024, doi: 10.53008/kalbisiana.v10i1.3527.

A. Ardiansyah, R. A. Ramadhani, and D. Swanjaya, “Pengembangan Sistem Rekomendasi Lagu Berdasarkan Ekspresi Wajah Menggunakan YOLO v8,” Semin. Nas. Teknol. Sains STAINS, vol. 4, Jan. 2025.

“API - Panduan - Pengembang SoundCloud.” Accessed: Jul. 26, 2025. [Online]. Available: https://developers.soundcloud.com/docs#authentication

V. Mühler, justadudewhohacks/face-api.js. (Jun. 28, 2025). TypeScript. Accessed: Jun. 29, 2025. [Online]. Available: https://github.com/justadudewhohacks/face-api.js

S. Iftekar, “The ‘face-api.js’ Library for Accurate Face Recognition in Web- Applications and Possible use Cases with Accuracy Metrics,” Int. J. Comput. Appl., vol. 186, 2024.

Y. Indrasari, “Efesiensi Saluran Distribusi Pemasaran Kopi Rakyat Di Desa Gending Waluh Kecamatansempol (Ijen) Bondowoso,” J. Manaj. Pemasar., vol. 14, no. 1, pp. 44–50, Mar. 2020, doi: 10.9744/pemasaran.14.1.44-50.

“FER-2013.” Accessed: Jul. 24, 2025. [Online]. Available: https://www.kaggle.com/datasets/msambare/fer2013

D. R. Kusuma and F. P. Artharina, “Analisis Implementasi Projek Penguatan Profil Pelajar Pancasila Sekolah Dasar Negeri 01 Penyangkringan Kecamatan Weleri Kabupaten Kendal,” Didakt. J. Ilm. PGSD FKIP Univ. Mandiri, vol. 10, no. 04, Dec. 2024.

R. F. Utami, S. Prasetyo, and D. Z. Nurizin, “Validitas dan Reliabilitas Kuesioner Chinese Positive Youth Development Scales (CPYDS) Mengukur Keterampilan Hidup Pelajar SMP di Babakan Madang Kabupaten Bogor 2019,” J. Biostat. Kependud. Dan Inform. Kesehat., vol. 2, no. 3, Jul. 2022, doi: DOI: 10.7454/bikfokes.v2i3.1029.

S. Ishak, M. H. Koniyo, and N. Pakaya, “Analisis Pengaruh Kualitas Sistem Informasi dan Kualitas Informasi Terhadap Kepuasan Pengguna Sistem Informasi Skripsi dan Kerja Praktek (SISKP) Jurusan Teknik Informatika Universitas Negeri Gorontalo,” Diffus. J. Syst. Inf. Technol., vol. 2, Jan. 2022.

Downloads

Published

2025-06-30

How to Cite

Wardhana, D. A. P., Mandita, F., Dwi Hartono, E. ., Rosli, D. H., Purnawirawan, B. P., & Hidayat, M. A. S. (2025). Development of a Web-Based Music Recommendation System Based on Facial Expression Using a Convolutional Neural Networks Model. Journal of Electrical Technology UMY, 9(1), 39–44. https://doi.org/10.18196/jet.v9i1.27805

Issue

Section

Articles