Implementation of Backpropagation Artificial Neural Network as a Forecasting System of Power Transformer Peak Load at Bumiayu Substation
DOI:
https://doi.org/10.18196/jet.1316Keywords:
peak load forecasting, Artificial Neural Network (ANN), Backpropagation, MATLABAbstract
The National Electricity Company (PT PLN) should have an estimated peak load of the substation transformer in the future. This is useful to be able to achieve transformer capability and can be used as a first step to anticipate the possibility of replacement of a new transformer. This research presents a peak load forecasting system transformer1 and transformer2 in Bumiayu substation using Backpropagation Artificial Neural Network (ANN). This study includes the procedures for establishing a network model and manufacture forecasting system based GUI (Graphic User Interface) using MATLAB 2015a. The formation of the network model refers to input variables consisting of GRDP data, population data and historical data of peak load of transformer. In this research, a multilayer network model, which consists of 1 input layer, 2 hidden layers and 1 output layer, is used. The peak load forecasting of transformer1 produces 5.7593e-08 for training MSE and 5.3784e-04 for testing MSE. Meanwhile, forecasting the peak load transformer2 generated 3.3433e-08 for training MSE and 9,4710e-04 for testing MSE.
References
Fitriyah, Q., Istardi, D. 2011. “Prediksi Beban Listrik Pulau Bali dengan Menggunakan Metode Backpropagasi”. Seminar Nasional Informatika 2011 (semnasIF 2011). UPN Veteran Yogyakarta, 2 July 2011.
Fitzgerald, A.E. (1992). “Mesin-Mesin Listrik Edisi Keempat”. Jakarta : Penerbit Erlangga.
Haidaroh, A. 2013. “Pengenalan Kecerdasan Buatan (Artificial Intellegence)”. Kupang : STIKOM Artha Buana.
Heizer, J., Render, B. (2009). “Manajemen Operasi. Edisi 9. Terjemahan Chriswan Sungkono”. Jakarta : Salemba Empat.
Kusumadewi, F. (2014). “Peramalan Harga Emas Menggunakan Feedforward Neural Network Dengan Algoritma Backpropagation”. Yogyakarta : Universitas Negeri Yogyakarta.
Laughton, M.A., Warne, D. F.. (2003). “Electrical Engineer’s Reference Book 16th Edition”. Great Britain : Newnes
Muis, S. (2017). “Jaringan Syaraf Tiruan ; Sistem Kecerdasan Tiruan dengan Kemampuan Belajar dan Adaptasi”. Yogyakarta : Teknosain.
Nurkholiq, N. 2014. “Analisis Perbandingan Metode Logika Fuzzy dengan Jaringan Syaraf Tiruan Backpropagation Pada Peramalan Kebutuhan Energi Listrik Jangka Panjang di Indonesia Sampai Tahun 2022”. TRANSIENT Vol. 3, No. 2, ISSN : 2302-9927 (Juni 2014), pp. 245 -251.
Pratama, R. A. Anifah, L. (2016). “Peramalan Beban Listrik Jangka Panjang D.I.Yogyakarta Menggunakan Neural Network Backpropagation”. Jurnal Teknik Elektro. Volume 05 Nomor 03 Tahun 2016, p.p 37-47.
Purnomo, H. (2004). “Peramalan Beban Listrik Jangka Pendek dengan Menggunakan Model Jaringan Syaraf Tiruan di PT. PLN Region III Jawa Tengah dan DIY”. Yogyakarta : Universitas Gadjah Mada.
Purnomo, M.H., Kurniawan, A. (2006). “Supervised Neural Networks dan Aplikasinya”. Yogyakarta : Graha Ilmu.
Siang, J. J. (2009). “Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB”. Yogyakarta : ANDI.
Syahputra, R., Soesanti, I. (2016). “Power System Stabilizer Model Using Artificial Immune System for Power System Controlling”. International Journal of Applied Engineering Research (IJAER), 11(18), pp. 9269-9278.
Syahputra, R. (2016). “Transmisi dan Distribusi Tenaga Listrik”. Yogyakarta : LP3M UMY Yogyakarta.
Syeto, G. J. (2010). “Peramalan Beban Listrik Menggunakan Jaringan Syaraf Tiruan Metode Kohonen”. Surabaya : Institut Teknologi Surabaya.124
Tamizharasi, G dkk. 2014. “Energy Forecastingnusing Artificial Neural Networks”. IJAREEIE Vol. 3,
Issue 3. March 2014, pp. 7568-7576.
Syahputra, R., Soesanti, I., Ashari, M. (2016). Performance Enhancement of Distribution Network with DG Integration Using Modified PSO Algorithm. Journal of Electrical Systems (JES), 12(1), pp. 1-19.
Syahputra, R., Robandi, I., Ashari, M. (2015). Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm. International Review of Electrical Engineering (IREE), 10(2). pp. 293-304.
Syahputra, R., Robandi, I., Ashari, M. (2014). Optimization of Distribution Network Configuration with Integration of Distributed Energy Resources Using Extended Fuzzy Multi-objective Method. International Review of Electrical Engineering (IREE), 9(3), pp. 629-639.
Syahputra, R., Robandi, I., Ashari, M. (2015). Reconfiguration of Distribution Network with DER Integration Using PSO Algorithm. TELKOMNIKA, 13(3). pp. 759-766.
Syahputra, R., Soesanti, I. (2016). Design of Automatic Electric Batik Stove for Batik Industry. Journal of Theoretical and Applied Information Technology (JATIT), 87(1), pp. 167-175.
Soesanti, I., Syahputra, R. (2016). Batik Production Process Optimization Using Particle Swarm Optimization Method. Journal of Theoretical and Applied Information Technology (JATIT), 86(2), pp. 272-278.
Syahputra, R., Robandi, I., Ashari, M. (2015). PSO Based Multi-objective Optimization for Reconfiguration of Radial Distribution Network. International Journal of Applied Engineering Research (IJAER), 10(6), pp. 14573-14586.
Syahputra, R., Soesanti, I. (2016). DFIG Control Scheme of Wind Power Using ANFIS Method in Electrical Power Grid System. International Journal of Applied Engineering Research (IJAER), 11(7), pp. 5256-5262.
Jamal, A., Suripto, S., Syahputra, R. (2015). MultiBand Power System Stabilizer Model for Power Flow Optimization in Order to Improve Power System Stability. Journal of Theoretical and Applied Information Technology (JATIT), 80(1), pp. 116-123.
Syahputra, R., Soesanti, I. (2015). Power System Stabilizer model based on Fuzzy-PSO for improving
power system stability. 2015 International Conference on Advanced Mechatronics, Intelligent
Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, 15-17 Oct. 2015 pp. 121 - 126.
Syahputra, R. (2017). Distribution Network Optimization Based on Genetic Algorithm. Jurnal Teknologi, Journal of Electrical Technology UMY (JET-UMY), 1(1), pp. 1-9.
Syahputra, R., Soesanti, I. (2016). Application of Green Energy for Batik Production Process. Journal of Theoretical and Applied Information Technology (JATIT), 91(2), pp. 249-256.
Syahputra, R. (2016). Application of Neuro-Fuzzy Method for Prediction of Vehicle Fuel Consumption. Journal of Theoretical and Applied Information Technology (JATIT), 86(1), pp. 138-149
Downloads
Published
How to Cite
Issue
Section
License
Copyright
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Journal of Electrical Technology UMY. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Authors should sign Copyright Transfer Agreement when they have approved the final proofs sent by the journal prior the publication. JET UMY strives to ensure that no errors occur in the articles that have been published, both data errors and statements in the article.
JET UMY keep the rights to articles that have been published. Authors are permitted to disseminate published article by sharing the link of JET UMY website. Authors are allowed to use their works for any purposes deemed necessary without written permission from JET UMY with an acknowledgement of initial publication in this journal.
License
All articles published in JET UMY are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.