Implementation of Backpropagation Artificial Neural Network as a Forecasting System of Power Transformer Peak Load at Bumiayu Substation
Abstract
The National Electricity Company (PT PLN) should have an estimated peak load of the substation transformer in the future. This is useful to be able to achieve transformer capability and can be used as a first step to anticipate the possibility of replacement of a new transformer. This research presents a peak load forecasting system transformer1 and transformer2 in Bumiayu substation using Backpropagation Artificial Neural Network (ANN). This study includes the procedures for establishing a network model and manufacture forecasting system based GUI (Graphic User Interface) using MATLAB 2015a. The formation of the network model refers to input variables consisting of GRDP data, population data and historical data of peak load of transformer. In this research, a multilayer network model, which consists of 1 input layer, 2 hidden layers and 1 output layer, is used. The peak load forecasting of transformer1 produces 5.7593e-08 for training MSE and 5.3784e-04 for testing MSE. Meanwhile, forecasting the peak load transformer2 generated 3.3433e-08 for training MSE and 9,4710e-04 for testing MSE.
Keywords
Full Text:
PDFReferences
Fitriyah, Q., Istardi, D. 2011. “Prediksi Beban Listrik Pulau Bali dengan Menggunakan Metode Backpropagasi”. Seminar Nasional Informatika 2011 (semnasIF 2011). UPN Veteran Yogyakarta, 2 July 2011.
Fitzgerald, A.E. (1992). “Mesin-Mesin Listrik Edisi Keempat”. Jakarta : Penerbit Erlangga.
Haidaroh, A. 2013. “Pengenalan Kecerdasan Buatan (Artificial Intellegence)”. Kupang : STIKOM Artha Buana.
Heizer, J., Render, B. (2009). “Manajemen Operasi. Edisi 9. Terjemahan Chriswan Sungkono”. Jakarta : Salemba Empat.
Kusumadewi, F. (2014). “Peramalan Harga Emas Menggunakan Feedforward Neural Network Dengan Algoritma Backpropagation”. Yogyakarta : Universitas Negeri Yogyakarta.
Laughton, M.A., Warne, D. F.. (2003). “Electrical Engineer’s Reference Book 16th Edition”. Great Britain : Newnes
Muis, S. (2017). “Jaringan Syaraf Tiruan ; Sistem Kecerdasan Tiruan dengan Kemampuan Belajar dan Adaptasi”. Yogyakarta : Teknosain.
Nurkholiq, N. 2014. “Analisis Perbandingan Metode Logika Fuzzy dengan Jaringan Syaraf Tiruan Backpropagation Pada Peramalan Kebutuhan Energi Listrik Jangka Panjang di Indonesia Sampai Tahun 2022”. TRANSIENT Vol. 3, No. 2, ISSN : 2302-9927 (Juni 2014), pp. 245 -251.
Pratama, R. A. Anifah, L. (2016). “Peramalan Beban Listrik Jangka Panjang D.I.Yogyakarta Menggunakan Neural Network Backpropagation”. Jurnal Teknik Elektro. Volume 05 Nomor 03 Tahun 2016, p.p 37-47.
Purnomo, H. (2004). “Peramalan Beban Listrik Jangka Pendek dengan Menggunakan Model Jaringan Syaraf Tiruan di PT. PLN Region III Jawa Tengah dan DIY”. Yogyakarta : Universitas Gadjah Mada.
Purnomo, M.H., Kurniawan, A. (2006). “Supervised Neural Networks dan Aplikasinya”. Yogyakarta : Graha Ilmu.
Siang, J. J. (2009). “Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan MATLAB”. Yogyakarta : ANDI.
Syahputra, R., Soesanti, I. (2016). “Power System Stabilizer Model Using Artificial Immune System for Power System Controlling”. International Journal of Applied Engineering Research (IJAER), 11(18), pp. 9269-9278.
Syahputra, R. (2016). “Transmisi dan Distribusi Tenaga Listrik”. Yogyakarta : LP3M UMY Yogyakarta.
Syeto, G. J. (2010). “Peramalan Beban Listrik Menggunakan Jaringan Syaraf Tiruan Metode Kohonen”. Surabaya : Institut Teknologi Surabaya.124
Tamizharasi, G dkk. 2014. “Energy Forecastingnusing Artificial Neural Networks”. IJAREEIE Vol. 3,
Issue 3. March 2014, pp. 7568-7576.
Syahputra, R., Soesanti, I., Ashari, M. (2016). Performance Enhancement of Distribution Network with DG Integration Using Modified PSO Algorithm. Journal of Electrical Systems (JES), 12(1), pp. 1-19.
Syahputra, R., Robandi, I., Ashari, M. (2015). Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm. International Review of Electrical Engineering (IREE), 10(2). pp. 293-304.
Syahputra, R., Robandi, I., Ashari, M. (2014). Optimization of Distribution Network Configuration with Integration of Distributed Energy Resources Using Extended Fuzzy Multi-objective Method. International Review of Electrical Engineering (IREE), 9(3), pp. 629-639.
Syahputra, R., Robandi, I., Ashari, M. (2015). Reconfiguration of Distribution Network with DER Integration Using PSO Algorithm. TELKOMNIKA, 13(3). pp. 759-766.
Syahputra, R., Soesanti, I. (2016). Design of Automatic Electric Batik Stove for Batik Industry. Journal of Theoretical and Applied Information Technology (JATIT), 87(1), pp. 167-175.
Soesanti, I., Syahputra, R. (2016). Batik Production Process Optimization Using Particle Swarm Optimization Method. Journal of Theoretical and Applied Information Technology (JATIT), 86(2), pp. 272-278.
Syahputra, R., Robandi, I., Ashari, M. (2015). PSO Based Multi-objective Optimization for Reconfiguration of Radial Distribution Network. International Journal of Applied Engineering Research (IJAER), 10(6), pp. 14573-14586.
Syahputra, R., Soesanti, I. (2016). DFIG Control Scheme of Wind Power Using ANFIS Method in Electrical Power Grid System. International Journal of Applied Engineering Research (IJAER), 11(7), pp. 5256-5262.
Jamal, A., Suripto, S., Syahputra, R. (2015). MultiBand Power System Stabilizer Model for Power Flow Optimization in Order to Improve Power System Stability. Journal of Theoretical and Applied Information Technology (JATIT), 80(1), pp. 116-123.
Syahputra, R., Soesanti, I. (2015). Power System Stabilizer model based on Fuzzy-PSO for improving
power system stability. 2015 International Conference on Advanced Mechatronics, Intelligent
Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, 15-17 Oct. 2015 pp. 121 - 126.
Syahputra, R. (2017). Distribution Network Optimization Based on Genetic Algorithm. Jurnal Teknologi, Journal of Electrical Technology UMY (JET-UMY), 1(1), pp. 1-9.
Syahputra, R., Soesanti, I. (2016). Application of Green Energy for Batik Production Process. Journal of Theoretical and Applied Information Technology (JATIT), 91(2), pp. 249-256.
Syahputra, R. (2016). Application of Neuro-Fuzzy Method for Prediction of Vehicle Fuel Consumption. Journal of Theoretical and Applied Information Technology (JATIT), 86(1), pp. 138-149
DOI: https://doi.org/10.18196/jet.1316
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Journal of Electrical Technology UMY
Office Address:
Journal of Electrical Technology UMY
Department of Electrical Engineering, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Kasihan, Bantul, Daerah Istimewa Yogyakarta
Phone/Fax: +62274-387656/ +62274-387646,
E-mail: jet@umy.university
Journal of Electrical Technology UMY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.