Performance Analysis of Lung Cancer Diagnosis Algorithms on X-Ray Images
Abstract
Keywords
Full Text:
PDFReferences
World Cancer Research Fund (2007). Food, Nutrition, Physical Activity, and the Prevention of Cancer : a Global Perspective. American Institute for Cancer Research.
American Cancer Society. Cancer Facts and Figures (2014). Atlanta : American Cancer Society.
Tarambale, M.R., Lingayat, N.S. (2012). Soft Tool Development for Characterization of Lung Nodule From Chest X-Ray Image. International Journal of Image Processing and Vision Sciences Vol-2 Issue-1.
Lingayat, N.S., Tarambale, M.R. (2013). A Computer Based Feature Extraction of Lung Nodule in Chest X-Ray Image. International Journal of Bioscience, Biochemistry and Bioinformatics, Vol 3 No 16.
Ramaraju, P.V., Praveen, S. (2014). Classification og Lung Tumour Using Geometrical and Texture features of Chest X-ray Images. International Journal for Research in Applied Science and Engineering Technology (IJRASET).
Haralick, R.M., Shanmugam, K., Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transaction on Systems, Man, and Cybernetics, Vol. SMC-3 No 6.
Patil, S.A., Kuchanur, M.B. (2012). Lung Cancer Classification Using Image Processing. International Journal of Engineering and Innovative Technology (IJEIT).
Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K, Matsui M, Fujita H, Kodera Y, and Doi K. (2000): Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. AJR 174; 71-74.
Listyalina, Latifah (2013). Implementasi Learning Vector Quantization untuk Klasifikasi Kanker Paru dari Citra Foto Rontgen. Surabaya: Universitas Airlangga.
Putra, Darma (2010). Pengolahan Citra Digital. Penerbit Andi: Yogyakarta.
Dougherty, Geoff (2009). Digital Image Processing for Medical Applications. Cambridge University Press: UK.
GONZALES, R. C., WOODS, R. E. (2008). Digital Image Processing Third Edition, Pearson Prentice Hall, New Jersey.
Long, F. H. Zhang and DD. Feng (2003). “Fundamentals of Content-Based Image Retrieval”, Multimedia Information Retrieval and Management: Technological Fundamentals and Applications
A. Lutfiarta, J. Zeniarja, and A. Salam (2013). "Algoritma Latent Symantic Analysis (LSA) Pada Peringkas Dokumen Otomatis Untuk Proses Clustering Dokumen," Seminar Teknologi Informasi & Komunikasi Terapan, pp. 13-18, Nov. 2013
Timp, Sheila (2006). Analysis of Temporal Mammogram Pairs to Detect and Characterise Mass Lesions, Groningen, 2006. http://webdoc.ubn.ru.nl/mono/t/timp_s/analoft em.pdf
Goujon G, Chaoqun, Jianhong W. (2007). Data Clusterin :Theory, Algorithms, and Applications. Virginia: ASA;
Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)--a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627-2636. 1998
DOI: https://doi.org/10.18196/jet.2232
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Journal of Electrical Technology UMY
Office Address:
Journal of Electrical Technology UMY
Department of Electrical Engineering, Universitas Muhammadiyah Yogyakarta
Jl. Brawijaya, Kasihan, Bantul, Daerah Istimewa Yogyakarta
Phone/Fax: +62274-387656/ +62274-387646,
E-mail: jet@umy.university
Journal of Electrical Technology UMY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.