Retinal Blood Vessel Segmentation as a Tool to Detect Diabetic Retinopathy

Dhimas Arief Dharmawan, Latifah Listyalina

Abstract


The retina is an important part of the eye for humans. Inbesides its main function as part of the sense of sight, in the worldmedically, the retina after an image can be used to detect a numberdiseases, such as diabetic retinopathy. To detect a number of diseases,Retinal digital images taken using a digital fundus camera are used.In detecting diabetic retinopathy, digital images are neededsegmented retina. Nevertheless, automatic segmentation of digital imagesthe retina is a complex work, given the presence of artifactsas well as noise on the retinal digital image, evenly illuminated, intensitylow, low contrast, and varying lengths of retinal blood vessels.In this research, a blood vessel segmentation software system has been designed through three stagesimage processing, namely (i) preprocessing, (ii) improving image quality, (iii) andsegmentation of retinal blood vessels. With three image processing stages, the performance value is obtained, i.e. 84.62.

Keywords


Retina, Vessel, Diabetic, Segmentation

Full Text:

PDF

References


Al-Rawi, M., Qutaishat, M., and Arrar, M. 2007. An improved matched filter for blood vessel detection of digital retinal images. Computers in Biology and Medicine, Science Direct. 37: 262-267.

Ardizzone, E., Pirrone, R., Gambino, O., Radosta, S. 2008. Blood Vessels and Feature Points Detection on Retinal Images. Annual International IEEE EMBS Conference. Hal. 2246-2249.

Bancroft, J. C. 2002. Intorduction to matced filters. Crewes Research Report. Vol 14.

Chanda, B., and Majumder, D. D. 2006, Digital Image Processing and Analysis. Prentice Hall of India, New Delhi.

Chanwimaluang, T., Fan, G. 2003. An Efficient Blood Vessel Detection Algorithm for Retinal Images Using Local Entropy Thresholding. Proceedings Of The 2003 IEEE International Symposium On Circuits And systems. 5: 21-24.

Chauduri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. 1989.

Detection of Blood Vessels in Retinal Images Using Two-Dimensional Matched Filters. IEEE Transaction on Medical Imaging. 8(3): 263-269.

Fadzil, M. H. A, Izhar, L.I., Nugroho, M., and Nugroho, H.A. 2011. Analysis of retinal fundus images for grading of diabetic retinopathy severity. International Federation for Medical and Biological Engineering.

Fraz, M. M., Remagnino, P., Hoppe, A., Velastin, S., Uyyanonvara, B., and Barman, S.A. 2011. A Supervised Method for Retinal Blood Vessel Segmentation Using Line Strength, Multiscale Gabor and Morphological Features. IEEE International Conference on Signal and Image Processing Applications (ICSIPA 2011). hal. 410-415.

Hikmah, N. 2008. Identifikasi Retina Mata Manusia Menggunakan Sistem Inferensi Neuro Fuzzy Adaptif. Departemen Teknik Elektro, Fakultas Teknik, Universitas Indoneisa, Jakarta.

Hilderbrand, G. D. and Fielder, A. R. 2011. Anatomy and Phisiology of the Retina. Dalam Pediatric Retina. eds. J. Reynolds and S. Olitsky. Springer-Verlag Berlin Heidelberg, Berlin.

Karimah, F. 2012. Implementasi Learning Vector Quantization (LVQ) sebagai Alat Bantu Identifikasi Kelainan Jantung melalui Citra Elektrokardiogram. Program Studi S1 Teknobiomedik, Fakultas Sains dan Teknologi, Universitas Airlangga, Surabaya.

Lantuéjoul, Ch. 1977. Sur le modèle de Johnson-Mehl généralisé. Internal report of the Centre de Morph. Math., Fontainebleau.

Liao, M., Zhao, Y., Wang, X., and Dai, P. 2014. Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching. Optics & Laser Techology, Science Direct. 58: 56-62.

Listyalina, L. 2013. Implementasi Learning Vector Quantization (LVQ) untuk Klasifikasi Kanker Paru dari Citra Rontgen. Program Studi S1 Teknobiomedik, Fakultas Sains dan Teknologi, Universitas Airlangga, Surabaya.

Lubis, R. R. 2007. Diabetik Retinopati. Departemen Ilmu penyakit Mata, Fakultas Kedokteran Universitas Sumatera Utara, Medan.

Mansson, M., Brautaset, R., Ramsay, M. W., and Nilsson, M. 2012. Fundus autofluorescence with the Canon CR-2 PLUS. International Journal of Ophthalmic Practice. 3(5): 204-212.

Nandy, M., and Banerjee, M. 2012. Retinal Vessel Segmentation Using Gabor Filter and Neural Network. IEEE, 2012 Third International Conference on Emerging Applications of Information Technology (EAIT). hal. 157-160.

Prasetyo, E. 2011. Pengolahan Citra Digital dan Aplikasinya menggunakan Matlab. Penerbit Andi, Yogyakarta.

Pratt, W. K. 2007. Digital Image Processing. WILEY-INTERSCIENCE, Wiley & Sons, Inc, New Jersey.

Putra, D. 2009. Pengolahan Citra Digital. Penerbit Andi, Yogyakarta.

Qin-Li, 2010, Colour Retinal Image Segmentation For Computer-Aided Fundus Diagnosis. The Hong Kong Polytechnic University Department of Computing, Hongkong.

Rahma, O., N. 2013. Implementasi Jaringan Saraf Tiruan Sebagai Alat Bantu Identifikasi Anemia pada Citra Sel Darah Merah. Program Studi S1 Teknobiomedik, Fakultas Sains dan Teknologi, Universitas Airlangga, Surabaya.

Rema, M., and Pradeepa, R. 2007. Diabetic retinopathy: An Indian perspective. Indian J Med Res 125, March 2007. hal. 297-310.

Remington, L. A. 2012. Clinical Aanatomy and Phisiology of The Visual System. Elsevier, Missouri.

Saine, P. J. 1992. Focusing The Fundus Camera: A Clinical Approach. Journal of Ophthalmic Photography. 14(1): 7-24.

Sitompul, R. 2011. Retinopati Diabetik. J Indon Med Assoc. 61(8): 337-41.

Shih, F. Y. 2009. Image Processing and Mathemathical Morphology, Fundamentals and Applications. CRC Press, Boca Raton.

Supot, S., Thanapong, C., Chuchart, P., and Munas, S. 2007. Automatic Segmentation of Blood Vessels in Retinal Image Based on Fuzzy KMedian Clustering. Procedings of the 2007 IEEE International Conference on Integration Technology. hal. 584-588.

Susilawati, I. 2009. Teknik Pengolahan Citra. Universitas Mercu Buana, Yogyakarta.

Tavakoli, H. R., Pourreza, R., and Quchani, S. R. 2010. Study of Gabor and Local Binary Patterns for Retinal Image Analysis. Procedings of the 2007 IEEE Third International Workshop on Advanced Computational Intelegence. hal. 527-532.

Wilkinson, A. J. 2013. Matched Filter. Department of Electrical Engineering University of Cape Town, Cape Town.

Wijaya, M., Ch., dan Prijono, A. 2007. Pengolahan Citra Digital Menggunakan MATLAB Image Processing Toolbox. Penerbit Informatika, Bandung.

Wirayuda, T. A. B. 2006. Pemanfaatan Operasi Morphologi untuk Proses Pendeteksian Sisi pada Pengolahan Citra Digital. Makalah dipresentasikan pada Seminar Nasional Sistem dan Informatika, November 17, Bali.




DOI: https://doi.org/10.18196/jet.3253

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Journal of Electrical Technology UMY


 

Office Address:

Journal of Electrical Technology UMY

Department of Electrical Engineering, Universitas Muhammadiyah Yogyakarta

Jl. Brawijaya, Kasihan, Bantul, Daerah Istimewa Yogyakarta

Phone/Fax: +62274-387656/ +62274-387646,

E-mail: jet@umy.university

Creative Commons License
Journal of Electrical Technology UMY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. situs slot gacor server kamboja slot