Retinal Digital Image Quality Improvement as A Diabetes Retinopatic Disease Detection Effort

Authors

  • Latifah Listyalina Department of Electrical Engineering, Faculty of Science and Technology, Universitas Respati Yogyakarta
  • Yudianingsih Yudianingsih Department of Electrical Engineering, Faculty of Science and Technology, Universitas Respati Yogyakarta
  • Dhimas Arief Dharmawan Department of Electrical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta

DOI:

https://doi.org/10.18196/jet.v4i2.8590

Keywords:

Image processing, retinal imagery, diabetic retinopathy

Abstract

Image processing is a technical term useful for modifying images in various ways. In medicine, image processing has a vital role. One example of images in the medical world, namely retinal images, can be obtained from a fundus camera. The retina image is useful in the detection of diabetic retinopathy. In general, direct observation of diabetic retinopathy is conducted by a doctor on the retinal image. The weakness of this method is the slow handling of the disease. For this reason, a computer system is required to help doctors detect diabetes retinopathy quickly and accurately. This system involves a series of digital image processing techniques that can process retinal images into good quality images. In this research, a method to improve the quality of retinal images was designed by comparing the methods for adjusting histogram equalization, contrast stretching, and increasing brightness. The performance of the three methods was evaluated using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR). Low MSE values and high PSNR and SNR values indicated that the image had good quality. The results of the study revealed that the image was the best to use, as evidenced by the lowest MSE values and the highest SNR and PSNR values compared to other techniques. It indicated that adaptive histogram equalization techniques could improve image quality while maintaining its information.

References

Dillak, R. Y. & Bintiri, M.G. (2012). Identifikasi Fase Penyakit Retinopati Diabetes menggunakan Jaringan Syaraf Tiruan Multi Layer Perceptron. Prosiding Lokakarya: Seminar Nasional Informatika 2012 (semnasIF 2012) UPN ”Veteran” Yogyakarta. Yogyakarta, 30 Juni 2012.

Jain, A. K. (1989). Fundamental of Digital Image Processing. Prentice Hall. New Jersey.

Efford, N. (2000). Digital Image Processing a Practical Introduction Using Java. Addison-Wesley Longman Publishing Co., Inc. Boston.

Pratama, A. P., Atmaja, R. D. & Fauzi, H. TSP. (2016). Deteksi Diabetes Retinopati Pada Foto Fundus Menggunakan Color Histogram & Transformasi Wavelet. e-Proceeding of Engineering. 3, 4552–4559.

Putra, I. K. G. D. & Surjana, I. G. (2010). Segmentasi Citra Retina Digital Retinopati Diabetes untuk Membantu Pendeteksian Mikroaneurisma. Teknologi Elektro. 9, 44–49.

Setiawan W., Adi., K. & Sugiharto, A. (2012). Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine. Jurnal Sistem Informasi Bisnis. 3, 109–116.

Putra, A. P., Nurhasanah, Y. I. & Zulkarnain. A. (2017). Deteksi Penyakit Diabetes Retinopati pada Retina Mata berdasarkan Pengolahan Citra. Jurnal Teknik Informatika dan Sistem Informasi. 3, 376–380.

Tentero, I. N., Pangemanan, D. H. C. & Polii, H. (2016). Hubungan diabetes melitus dengan kualitas tidur. Jurnal e-Biomedik (eBm), 4, 1 – 6.

Alghadyan, A. A. (2011). Diabetic retinopathy – An update. Saudi Journal of Ophthalmology, 25, 99–111.

Gonzales, R. C. & Wood, R. E. (2002). Digital Image Processing (2nd ed). Prentice Hall, Inc. New Jersey.

Kadir. A. & Susanto. A. (2013). Pengolahan Citra Teori dan Aplikasi. Penerbit ANDI. Yogyakarta.

Ibrahim. D., Hidayatno, A. & Isnanto, R. R. (2011). Pengaturan Kecerahan dan Kontras Citra Secara Automatis dengan Teknik Pemodelan Histogram. Skripsi, tidak dipublikasikan. Semarang: Fakultas Teknik Universitas Diponegoro.

Munir, R. (2004). Pengolahan Citra Digital dengan Pendekatan Algoritmik. Penerbit Informatika. Bandung.

Handoyo, E. D. (2002). Perancangan Mini Image Editor Versi 1.0 Sebagai Aplikasi Penunjang Mata Kuliah Digital Image Processing. Jurnal Natur Indonesia. 5, 41-49.

Listyalina, l., HA Nugroho, S Wibirama, WKZ Oktoeberza. (2017). Automated localisation of optic disc in retinal colour fundus image for assisting in the diagnosis of glaucoma. Communications in Science and Technology 2 (1).

L Listyalina, DA Dharmawan. Detection of Optic Disc Centre Point in Retinal Image. Journal of Electrical Technology UMY 3 (1), 19-23.

Nugroho, HA., D.A. Dharmawan, L. Listyalina. 2017. Automated segmentation of foveal avascular zone in digital colour retinal fundus images. Jurnal International Journal of Biomedical Engineering and Technology (IJBET). Volume 23Issue 1

Dharmawan, D.A., L Listyalina. 2019. Retinal Blood Vessel Segmentation as a Tool to Detect Diabetic Retinopathy. Journal of Electrical Technology UMY 3 (2), 133-138.

Putra, D. (2012). Pengolahan Citra Digital. Penerbit ANDI. Yogyakarta.

Fadlilah, D., Sawitri, D. R., Suprijono, H. & Wulandari, S. A. (2015). Perbandingan Kinerja Sistem Kompresi pada Citra Digital Retinopath berbasis Transformasi DFT Dan DCT. Skripsi, tidak dipublikasikan. Semarang: Universitas Dian Nuswantoro.

Baharuddin. (2007). Analisa Kinerja Transmisi Citra Digital di Lingkungan Kanal Fading. Teknika Universitas Andalas. 2, 1–7.

Downloads

Published

2020-12-09

Issue

Section

Articles