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Abstract 
The rate of morbidity and mortality attributed to diabetes has 
become a concern and challenge for individuals and 
governments. The availability, affordability, and efficacy of 
plant-based drugs make them an attractive choice for diabetic 
management in low-income countries and rural communities. 
Thus, their application in folkloric medicine for diabetic 
management. This study investigated the antidiabetic activity 
of the crude ethanol extract (CRE), ethyl acetate (EAF), and 
aqueous (AQF) fractions Diospyros mespiliformis (DM) in 
alloxan-induced diabetic rats to justify its acclaimed 
applications in folkloric medicine. The effect of the plant 
extract and its fractions on the aspartate aminotransferase, 
glutamyl aminotransferase, albumin, urea, creatinine, 
electrolytes, and lipid profile was determined by biochemical 
assay methods. The result showed a significant (p < 0.05) 
decrease in fasting blood glucose for all the extracts, while the 
aspartate aminotransferase, gamma-glutamyl transferase, 
and albumin were significantly (p < 0.05) decreased in the EAF 
only. The urea and creatinine levels of the CRE and AQF were 
decreased significantly (p < 0.05), while K+, Cl-, and HCO3- 
levels decreased significantly (p < 0.05) for the treatment 
groups. Furthermore, a significant (p < 0.05) decrease in total 
cholesterol and triglyceride was observed for the EAF. 
Conclusively, DM exhibited significant hypoglycemic and 
hypolipidemic potential with improved lipid profile and 
hepato-renal function. Thus, the observed antidiabetic activity 
of the plant might justify its acclaimed utilization in the 
treatment/management of diabetes and its related ailment.     
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INTRODUCTION 
Diabetes is a metabolic ailment composed 
of a collection of metabolic disorders 
associated with persistent hyperglycemia 
accompanied by acute and chronic 
complications, including nephropathy, 
retinopathy, and neuropathy.1 It has been 
regarded to be among the leading causes 
of morbidity and mortality, yet treatment 

remains a challenge.2 The recommended 
treatment option is proper diet and 
exercise, though drugs are used in 
necessary situations.3 Worldwide, the 
ailment continues to be a concern to 
individuals and governments, creating 
financial and welfare burdens for the 
concerned entity.2 A 2021 global report 
showed diabetic prevalence to be up to 
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10% in adults between the ages of 20 and 
72 years, and the expected projection to be 
12% by 2045, irrespective of gender.2 
Moreover, the global expenditure on 
diabetes and related ailments was 
estimated to rise to 1,054 billion USD by 
2045 from the reported 966 billion USD in 
2021.2 Thus, the cost and affordability of 
antidiabetic drugs are also a 
consideration, especially for low-income 
countries and rural communities.  
Diabetes as a multifactorial metabolic 
disorder creates more challenges in 
treatment, often leading to combined 
therapy and multiple doses of antidiabetic 
agents.4 The continued use of antidiabetic 
drugs is often rendered undesirable to 
individuals, leading to prospects for other 
treatment options. Moreover, these drugs 
were reported to possess undesirable 
adverse effects, including hypoglycemia, 
bloating, nausea, and anorexia.4 

Furthermore, for rural communities, in 
addition to poverty, access to proper 
healthcare is a challenge, often relying on 
herbal formulations for therapeutic 
purposes.5 Thus, they often indulge in the 
use of plant-based drugs as an alternative 
to achieve therapeutic goals. Medicinal 
plants in different preparations and 
formulations of varying efficacy are used 
in folkloric medicine for the treatment of 
ailments, including diabetes.5 The 
pharmacological activities of these plants 
are attributed to their secondary 
metabolite contents, including flavonoids 
and saponins.6 Moreover, the diverse and 
synergistic effects of plant-based drugs 
make them an attractive choice of 
therapy, considering diabetes as a 
collection of multiple metabolic 
disorders.7 Previous reports showed the 
use of plants in the management of 
diabetes, including Diospyros 
mespiliformis.8-10  

 

Diospyros mespiliformis is a tree of African 
origin, often referred to as African ebony, 
which harbors fruits consumed as food.11 
In folkloric medicine, the plant parts are 
employed in the management of 
diabetes12 and its related conditions, 
including inflammation13 and oxidative 
stress.11 Thus, in our study, we justified the 
antidiabetic application of the plant in 
folkloric medicine by investigating the 
antidiabetic activity of its crude ethanol 
extract, ethyl acetate, and aqueous 
fractions in alloxan-induced diabetic rats 
considering the effects in the liver, kidney, 
and lipid profile of the diabetic rats. 
METHOD 
Plant sample and preparation 
The plants’ stem bark sample was 
obtained from the Mayo-belwa area of 
Adamawa State, Nigeria, and 
authenticated in the Forest Technology 
Department of Adamawa State 
Polytechnic, where a voucher specimen 
(no. ASP/FT/091) was deposited. The 
stembark was air-dried and powdered 
with a blender.  
Experimental animals 
Male albino rats were obtained from Hema 
Farms Nigeria Ltd., Yola, Adamawa State. 
The rats weighing 150 ±20 g were kept 
under normal dark/light circles and 
acclimatized for 7 days with free access 
feed (Finisher pellet, Chikun Feed, Crown 
Flour Mill Ltd, Lagos) and water. The 
Norwegian National Committee for 
Research Ethics in Science and 
Technology (NENT) 2018 ethical guideline 
was strictly followed for all the 
experimental procedures. 14 
Extraction and fractionation 
Exactly 1 kg of the sample was macerated 
for 7 days in 70% ethanol (v/v) and filtered, 
followed by drying under reduced pressure 
at 40 ℃ with a rotary evaporator (Buchi 
Rotavapor R-200) yielding 95 g of the 
crude ethanol extract (CRE). Exactly 50 g 
of the CRE was suspended to complete 
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dissolution in 200 ml of distilled water and 
continuously partitioned in a separating 
funnel by the addition of ethyl acetate 
until the formation of a clear ethyl acetate 
layer yielding the ethyl acetate fraction 
(EAF). The remaining aqueous layer was 
regarded as the aqueous fraction (AQF). 
Both the EEF and AQF were subjected to 
the same drying conditions as the CRE, 
yielding 10.60 g and 36.80 g of the EEF and 
AQF, respectively. 
Induction of diabetes  
Alloxan monohydrate (Oxford Lab Fine 
Chem LLP, India) prepared in normal was 
used to induce diabetes at 150 mg/kg body 
weight intraperitoneally to overnight 
fasted diabetic rats. Diabetes was 
confirmed in rats exhibiting fasting blood 
glucose (FBG) above 200 mg/dl, and 
treatment was initiated immediately.15 
Experimental Design  
The animals were randomly grouped into 
6 groups, and treatment was administered 
by intragastric tube daily for 21 days. 
Group I (non-diabetic) and II (diabetic) 
received 10 ml/kg body weight. Group III 
(diabetic) received 150 mg/kg metformin 
while IV (CRE), V (EAF), and VI (AQF) were 
all diabetic and received 300 mg/kg body 
weight CRE, EAF, and AQF, respectively. 
The standard drug metformin 
[(Diabetmin®) Hovid Pharmaceuticals Ltd, 
Nigeria] was employed as a positive 
control. The FBG was read at the 
beginning and end of the experiment by 
tail vein puncture using a glucometer (SD 
CodeFree™, SD Biosensor, Inc., Korea), 
whereas the body weight was measured 
weekly for 3 weeks. The rats were pre-
anesthetized with chloroform before 
blood collection, and then they were 
placed into lithium-heparin tubes by 
cardiac puncture and centrifuged for 20 
minutes at 3000 rpm, separating serum 
from the cells. 
 
 

Biochemical assay 
The following biochemical parameters 
were determined by previously described 
methods as follows: 
1. Aspartate aminotransferase (AST) 

described by Reitmann.16 

2. Gamma-glutamyl transferase (GGT) 

described by Szasz.17 

3. Albumin concentration described by 

Grant.18 

4. Urea concentration described by 

Chaney and Marbach.19 

5. Creatinine concentration described by 

Bartels.20 

6. The estimation of electrolytes was 

according to the kit’s manufacturer’s 

instructions.  

7. Total Cholesterol (TC) as described by 

Stein.21 

8. Triglyceride Concentration (TG) as 

described by McGowan.22 

9. High-density Lipoprotein-Cholesterol 

(HDL-C) as described by Warnick and 

Albers.23 

10. Low-density Lipoprotein Cholesterol 

(LDL-C) as described by Friedewald.24 

Statistics 

The data obtained was statistically 

evaluated with Statistical Package for 

Social Sciences (SPSS) software version 22 

and expressed as mean ± standard mean 

error. One-way analysis of variance was 

employed to evaluate the difference 

among the groups and subsequently 

evaluated by Turkey's multiple 

comparison tests at p < 0.05 significant 

level. 

RESULTS AND DISCUSSION 

FBG and body weight 

The effect of the CRE, EAF, and AQF on 

the FBG and body weight of the diabetic 

rats is presented in Figure 8. The diabetic 
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groups demonstrated a significant (p < 

0.05) rise in initial FBG than the naïve 

control. However, at the end of the 

experiment, the negative control 

exhibited significantly (p < 0.05) higher 

FBG than the treatment groups, with no 

significant (p > 0.05) difference among 

them. The AQF exhibited a significant (p < 

0.05) increase in body weight than the EAF 

at weeks 1 and 2, while the naïve control 

was at week 3. However, the negative 

control demonstrated a significant (p < 

0.05) decrease in body weight than all the 

groups at week 3. The administration of 

alloxan to the rats led to a rise in FBG that 

was persistent to the end of the 

experiment for the negative control. This 

was due to the necrotic action of alloxan 

on the β-cells inhibiting insulin secretion 

and apoptosis to β-cells via the generation 

of free radicals.15 The observed decreased 

hyperglycemia for the treatment groups 

might be attributed to the reversal of the 

alloxan-induced damage to the β-cells via 

the antioxidant activity of the extracts. 

The improvement in β-cell function might 

further be attributed to the improved body 

weight observed in the treated groups as 

opposed to the negative control with 

decreased body weight due to muscle 

wasting.

 
AST, GGT, and albumin 
The effect of the CRE, EAF, and AQF on 
the levels of serum AST, GGT, and albumin 
is presented in Table 4. A significant (p < 
0.05) rise in AST level was observed for the 
negative control (150.00 ± 2.88 IU/L) 
compared to the naïve control (116.40 ± 
8.64 IU/L), CRE (102.80 ± 0.97 IU/L), and 
EAF (82.20 ± 4.92 IU/L). Furthermore, a 
significant (p < 0.05) decrease in the AST 

level was observed for the CRE and EAF 
compared to the AQF (144.00 ± 1.05 IU/L) 
and Metformin (135.60 ± 5.96 IU/L), with 
the latter significantly (p < 0.05) decreased 
than the naïve control. The GGT level of 
the negative control (12.00 ± 0.28 IU/L) 
was significantly (p < 0.05) increased 
compared to the other groups.  

 

  

    a)           b) 

Figure 1. Effects of DM on the; a) FBG and b) Body weights. Values with a and c superscripts are 
significantly (p < 0.05) higher than naïve and negative control respectively while values with b 
superscripts are significantly (p < 0.05) lower than negative control. Values with e superscripts are 
significantly (p < 0.05) higher than EAF 
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Table 1. Effects of CRE, EAF, and AQF of DM on the serum levels of AST, GGT, and albumin 
Groups  AST (IU/L) GGT (IU/L) Albumin (g/L) 

Naïve control 116.40 ± 8.64 8.32 ± 0.42b 25.40 ± 0.93b 

Negative control 150.00 ± 2.88a 12.00 ± 0.28 31.00 ± 1.05 

Metformin 135.60 ± 5.96a 9.08 ± 0.40b 26.40 ± 0.98b 

CRE 102.80 ± 0.97bcd 7.80 ± 0.70b 33.20 ± 0.37ad 

EAF 82.20 ± 4.92abc 7.00 ± 0.55bc 25.00 ± 1.30b 

AQF 144.00 ± 1.05ade 6.6 ± 0.68bc 28.20 ± 0.37d 

Values are expressed as mean ± SEM: n = 5 
Values in the same column with b and c superscripts were significantly (p < 0.05) lower than the 
negative control and Metformin group, respectively, while those with a, d, and e were higher than 
naïve control, EAF, and CRE groups, respectively.   

 
Moreover, the GGT levels of EAF (7.00 ± 
0.55 IU/L) and AQF (6.6 ± 0.68 IU/L) were 
significantly (p < 0.05) decreased 
compared to the Metformin (9.08 ± 0.40 
IU/L). Additionally, the albumin level of 
the negative control (31.00 ± 1.05 IU/L) was 
significantly (p < 0.05) increased than the 
naïve control (25.40 ± 0.93 IU/L), 
Metformin (26.40 ± 0.98 IU/L), and EAF 
(25.00 ± 1.30 IU/L). The albumin level of 
the EAF was significantly (p < 0.05) 
decreased compared to CRE (33.20 ± 0.37 
IU/L) and AQF (28.20 ± 0.37 IU/L). The 
observed increased levels of AST, GGT, 
and albumin are indicators of liver injury or 
dysfunction26 observed in the negative 
control, which might be attributed to 
hyperglycemia.27 Thus, the decreased 
level observed for the treatment groups 
might be due to improved β-cell function 
and glycemic control. 
Urea, creatinine, electrolytes 
Table 5 reveals the effect of the CRE, EAF, 
and AQF on the serum urea and creatinine 
levels. A significantly (p < 0.05) higher urea 
level (14.66 ± 1.29 mM/L) was 
demonstrated by the EAF compared to the 
other groups. The urea level of the naïve 
control (6.94 ± 0.09 mM/L) and CRE (6.72 ± 
0.45 mM/L) was significantly (p < 0.05) 
decreased compared to the negative 
control (9.70 ± 0.19 mM/L). The naïve 
control (50.00 ± 2.39 µM/L), Metformin 
(58.60 ± 3.42 µM/L), and AQF (71.40 ± 1.17 
µM/L) exhibited a significant (p < 0.05)  

decrease in creatinine levels than the 
negative control (94.60 ± 10.22 µM/L). 
Additionally, the creatinine level of the 
EAF (99.60 ± 2.36 µM/L) exhibited a 
significant (p < 0.05) increase compared to 
Metformin. The Na+ level of all the groups 
wasn’t significantly (p > 0.05) different. 
However, a significant (p < 0.05) increase 
in K+ level was exhibited by the treatment 
groups compared to the naïve (9.54 ± 0.58 
mEq/L) and negative (8.68 ± 0.27 mEq/L) 
control. Furthermore, all the diabetic 
groups showed a significant (p < 0.05) 
decrease in Cl- levels compared to the 
naïve control (102.8 ± 1.83 mM/L). The 
negative control (17.20 ± 0.49 mM/L) 
showed a significant (p < 0.05) rise in 
HCO3- level than the other groups, with all 
the treatments showing a significant (p < 
0.05) decrease compared to the naïve 
control (28.60 ± 0.25 mM/L). 
Kidney dysfunction can be marked by 
increased urea and creatinine levels and 
metabolic waste filtered from blood by the 
kidney.28 In our study, a significant 
decrease in the urea level might indicate 
an improved renal function for the CRE 
and Metformin groups with a decreased 
creatinine level for the AQF. In diabetes, 
increased plasma osmolarity and impaired 
renal function associated with 
hyperglycemia create electrolyte 
imbalance.29 All the treatment groups 
presented hypokalemia, which might be 
induced by the treatments.30 
Furthermore, the diabetic groups 
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exhibited hypochloremia, which might be 
due to ketoacidosis-induced alkalosis.31 
Moreover, all the treatment groups 

presented improved decreased 
bicarbonate due to ketoacidosis31 
observed in the negative control group. 

 
Table 2. Effects of CRE, EAF, and AQF of DM on the serum levels of urea, creatinine, and 
electrolytes

Groups  Urea (mM/L) Creatinine (µM/L) Na+ (mEq/L) K+ (mEq/L) Cl- (mM/L) HCO3
-
 

(mM/L) 

Naïve control 6.94 ± 0.09 50.00 ± 2.39 141.40 ± 1.08 9.54 ± 0.58 102.8 ± 1.83 28.60 

± 

0.25 

Negative control 9.70 ± 0.19a 94.60 ± 10.22a 142.00 ± 0.55 8.68 ± 0.27 96.80 ± 0.80e 17.20 ± 

0.49e 

Metformin 7.82 ± 0.44 58.60 ± 3.42b 141.60 ± 0.40 6.44 ± 0.14rf 98.00 ± 0.45e 25.20 ± 

1.69f 

CRE 6.72 ± 0.45bd 91.2 ± 4.13ac 141.20 ± 1.66 6.04 ± 0.33ef 95.60 ± 1.21e 21.80 ± 

0.37ef 

EAF 14.66 ± 1.29abc 99.60 ± 2.36ac 140.40 ± 0.93 7.24 ± 0.13ef 97.00 ± 0.89e 22.20 ± 

0.20ef 

AQF 8.10 ± 0.07d 71.40 ± 1.17bd 141.00 ± 0.71 7.06 ± 0.19ef 97.40 ± 0.40e 24.40 ± 

0.75ef 

Values are expressed as mean ± SEM: n = 5 
Values in the same column with a, c, and f superscripts were significantly (p < 0.05) higher than naïve 
control, Metformin, and negative control groups, respectively, while those with b, d, and e 
superscripts were significantly (p < 0.05) lower than negative control, EAF, and naïve control groups 
respectively.

 
TC, TG, HDL-C, and LDL-C 
Table 6 reveals the effects of the CRE, 
EAF, and AQF on the serum TC, TG, HDL-
C, and LDL-C levels. A significantly (p < 
0.05) higher TC level was exhibited by the 
negative control (85.02 ± 3.78 mg/dl) than 
the other groups without a significant (p > 
0.05) difference among the treatment 
groups. Moreover, the TG level of the 
negative control (275.90 ± 6.29 mg/dl) was 
significantly (p < 0.05) increased compared 
to the other groups except for the CRE 
(201.14 ± 31.14 mg/dl) with a significant (p 
< 0.05) rise than EAF (110.36 ± 7.23 mg/dl) 
and AQF (90.78 ± 17.21 mg/dl). The CRE 
and Metformin (28.08 ± 4.34 mg/dl) 
exhibited a significantly (p < 0.05) 
decreased HDL-C level than the naïve 
(101.4 ± 7.99 mg/dl) and negative (99.06 ± 
7.04 mg/dl) control while the EAF (94.38 ± 
6.09 mg/dl) and AQF (82.68 ± 2.887 mg/dl) 

were higher than Metformin only. The 
LDL-C level of Metformin (28.08 ± 4.34 
mg/dl) was significantly (p < 0.05) 
decreased compared to the naïve control 
(64.74 ± 13.93 mg/dl) and EAF (63.96 ± 
10.58 mg/dl). 
The loss of glycemic control in diabetes 
can lead to dyslipidemia with a rise in TC, 
TG, LDL-C, and decreased HDL-C levels. 
However, the LDL-C might remain 
unchanged.32 An increased TC and TG 
level might indicate dyslipidemia; 
however, all the treatment groups 
demonstrated improved levels, thus 
improving renal functions. 
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Table 3. Effects of CRE, EAF, and AQF of DM on the serum levels of TC, TG, HDL-C, and LDL-C 
Groups  TC (mg/dl) TG (mg/dl) HDL-C (mg/dl) LDL-C (mg/dl) 

Naïve control 52.26 ± 2.65b 131.72 ± 15.26b 101.4 ± 7.99c 64.74 ± 13.93c 

Negative control 85.02 ± 3.78 275.90 ± 6.29 99.06 ± 7.04 49.92 ± 2.87 

Metformin 52.26 ± 3.40b 131.72 ± 10.30b 41.34 ± 5.02b 28.08 ± 4.34 

CRE 60.06 ± 3.65b 201.14 ± 31.14 67.08 ± 5.43bf 49.14 ± 4.71 

EAF 49.92 ± 4.51b 110.36 ± 7.23bd 94.38 ± 6.09ce 63.96 ± 10.58c 

AQF 47.58 ± 0.78b 90.78 ± 17.21bd 82.68 ± 2.887c 53.04 ± 6.36 

Values are expressed as mean ± SEM: n = 5 
Values in the same column with a, c, and e superscripts were significantly (p < 0.05) higher than naïve 
control, Metformin, and CRE groups, respectively, while those with b, d, and f were significantly (p < 
0.05) lower than negative control, CRE, and naïve control groups respectively.

CONCLUSION 
DM exhibited significant hypoglycemic 
and hypolipidemic potential with 
improved lipid profile and hepato-renal 
function. Thus, the observed antidiabetic 
activity of the plant might justify its 
acclaimed utilization in the 
treatment/management of diabetes and 
its related ailment.  
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