A Map of Nationalism Message on Twitter/X Users in Indonesia
DOI:
https://doi.org/10.18196/jkm.v17i1.25738Keywords:
Digital, Indonesia, Message, Nationalism, Twitter (X)Abstract
This research was motivated by the global rise in social media usage, which has introduced and disseminated universal values. In Indonesia, nationalism is increasingly challenged by the influx of global information through platforms like social media. The study aims to map the production of nationalism-related messages posted by Twitter/X users in Indonesia. A mixed-methods approach—combining both quantitative and qualitative techniques—was employed to analyze how nationalism messages were produced. The analysis focused on public participation, particularly in relation to gender, the geographic location of tweets, sentiment and emotion analysis, as well as the most commonly used hashtags and keywords on August 17, 2024. The findings reveal that nationalism messages from Indonesian Twitter/X users are organically generated by the public, with the predominant theme being expressions of Independence Day congratulations. The most influential actor in the message network was the account @aingriwehuy. In conclusion, public participation in celebrating Indonesia’s Independence Day was evident across all regions of the country and involved both female and male users. The messages were largely characterized by positive emotions and sentiments.
Keywords: map; message; nationalism, Twitter (X); Indonesia
References
Abraham, L. B., Mörn, M. P., & Vollman, A. (2010). Women on the Web: How Women are Shaping the Internet. comScore. http://uploadi.www.ris.org/editor/1282084676WomenontheWeb_comScore_English.pdf
Ahmed, W., Vidal-Alaball, J., Downing, J., & Seguí, F. L. (2020). COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. Journal of Medical Internet Research, 22(5), e19458. https://doi.org/10.2196/19458
Anoraga, B., & Sakai, M. (2023). From Pemuda to Remaja: Millennials reproducing civic nationalism in post-New Order Indonesia. Indonesia and the Malay World, 51(150), 209–230. https://doi.org/10.1080/13639811.2023.2225928
antaranews.com. (2022, September 22). Indonesia’s large, growing population poses complex problem: BKKBN. Antara News. https://en.antaranews.com/news/250985/indonesias-large-growing-population-poses-complex-problem-bkkbn
Ben Labidi, I., & Al Zo’by, M. A. (2025). “Not just a game”: Power, politics, and media coverage of Qatar’s World Cup 2022. International Journal of Cultural Studies, 13678779241303929. https://doi.org/10.1177/13678779241303929
Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 U.S. Presidential election online discussion. First Monday. https://doi.org/10.5210/fm.v21i11.7090
Bimber, B. (2000). Measuring the Gender Gap on the Internet. Social Science Quarterly, 81(3), 868–876.
Bode, L. (2017). Closing the gap: Gender parity in political engagement on social media. Information, Communication & Society, 20(4), 587–603. https://doi.org/10.1080/1369118X.2016.1202302
Bruna, O., Avetisyan, H., & Holub, J. (2016). Emotion models for textual emotion classification. Journal of Physics: Conference Series, 772, 012063. https://doi.org/10.1088/1742-6596/772/1/012063
Bruns, A., & Burgess, J. (2011). The Use of Twitter Hashtags in the Formation of Ad Hoc Publics. Proceedings of the 6th European Consortium for Political Research (ECPR) General Conference, Reykjavik. https://ecpr.eu/Events/Event/PaperDetails/8779
Burgess, R., Jedwab, R., Miguel, E., Morjaria, A., & Padró i Miquel, G. (2015). The Value of Democracy: Evidence from Road Building in Kenya. American Economic Review, 105(6), 1817–1851. https://doi.org/10.1257/aer.20131031
Busro, B. (2024). Reflections on Religious, Cultural, and Political Dynamics in Contemporary Studies. Religious: Jurnal Studi Agama-Agama Dan Lintas Budaya, 8(1), Article 1. https://doi.org/10.15575/rjsalb.v8i1.38927
Calenda, D., & Meijer, A. (2009). Young People, the Internet and Political Participation: Findings of a web survey in Italy, Spain and The Netherlands. Information, Communication & Society, 12(6), 879–898. https://doi.org/10.1080/13691180802158508
Carpini, M. X. D., & Keeter, S. (2005). Gender and Political Knowledge. In Gender and American Politics (2nd ed., p. 27). Routledge.
Castells, M. (2002). The Internet Galaxy: Reflections on the Internet, Business, and Society. OUP Oxford.
Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2010). Who is tweeting on Twitter: Human, bot, or cyborg? Proceedings of the 26th Annual Computer Security Applications Conference, 21–30. https://doi.org/10.1145/1920261.1920265
DiMaggio, P., Hargittai, E., Neuman, W. R., & Robinson, J. P. (2001). Social Implications of the Internet. Annual Review of Sociology, 27(Volume 27, 2001), 307–336. https://doi.org/10.1146/annurev.soc.27.1.307
Dimock, M. (2019, January 17). Defining generations: Where Millennials end and Generation Z begins. Pew Research Center. https://www.pewresearch.org/short-reads/2019/01/17/where-millennials-end-and-generation-z-begins/
Drabowicz, T. (2014). Gender and digital usage inequality among adolescents: A comparative study of 39 countries. Computers & Education, 74, 98–111. https://doi.org/10.1016/j.compedu.2014.01.016
Esteve-Del-Valle, M. (2022). Homophily and Polarization in Twitter Political Networks: A Cross-Country Analysis. Media and Communication, 10(2), 81–92. https://doi.org/10.17645/mac.v10i2.4948
Fallows, D. (2005, December 28). How Women and Men Use the Internet. Pew Research Center. https://www.pewresearch.org/internet/2005/12/28/how-women-and-men-use-the-internet/
Fridkin, K. L., & Kenney, P. J. (2014). How the Gender of U.S. Senators Influences People’s Understanding and Engagement in Politics. The Journal of Politics, 76(4), 1017–1031. https://doi.org/10.1017/S0022381614000589
Gabriel, M.-C., & Lentz, C. (2020). Studying National Commemoration and Political Celebrations in Africa: The Online Archive African Independence Days. Africa Bibliography, 2019, vii–xxviii. https://doi.org/10.1017/S026667312000001X
Galston, W. A. (2001). Political Knowledge, Political Engagement, and Civic Education. Annual Review of Political Science, 4(Volume 4, 2001), 217–234. https://doi.org/10.1146/annurev.polisci.4.1.217
Gibson, R., & Cantijoch, M. (2013). Conceptualizing and Measuring Participation in the Age of the Internet: Is Online Political Engagement Really Different to Offline? The Journal of Politics, 75(3), 701–716. https://doi.org/10.1017/S0022381613000431
Gil de Zúñiga, H., Veenstra, A., Vraga, E., & Shah, D. (2010). Digital Democracy: Reimagining Pathways to Political Participation. Journal of Information Technology & Politics, 7(1), 36–51. https://doi.org/10.1080/19331680903316742
Gorodnichenko, Y., Pham, T., & Talavera, O. (2021). Social media, sentiment and public opinions: Evidence from #Brexit and #USElection. European Economic Review, 136, 103772. https://doi.org/10.1016/j.euroecorev.2021.103772
Green, B. (2021). U.S. Digital Nationalism: A Habermasian Critical Discourse Analysis of Trump’s ‘Fake News’ Approach to the First Amendment. In A. MacKenzie, J. Rose, & I. Bhatt (Eds.), The Epistemology of Deceit in a Postdigital Era: Dupery by Design (pp. 95–117). Springer International Publishing. https://doi.org/10.1007/978-3-030-72154-1_6
Hadmar, A. M., Yuniarti, S., Nurmandi, A., Lawelai, H., Sadat, A., & Misran. (2024). Analysing digital campaigns of nationalist parties in Indonesia through political party tweets. Jurnal Studi Komunikasi, 8(3), 573–582. https://doi.org/10.25139/jsk.v8i3.8442
Hargittai, E., & Shafer, S. (2006). Differences in Actual and Perceived Online Skills: The Role of Gender. Social Science Quarterly, 87(2), 432–448. https://doi.org/10.1111/j.1540-6237.2006.00389.x
Hargittai, E., & Shaw, A. (2015). Mind the skills gap: The role of Internet know-how and gender in differentiated contributions to Wikipedia. Information, Communication & Society, 18(4), 424–442. https://doi.org/10.1080/1369118X.2014.957711
Hargittai, E., & Walejko, G. (2008). THE PARTICIPATION DIVIDE: Content creation and sharing in the digital age1. Information, Communication & Society, 11(2), 239–256. https://doi.org/10.1080/13691180801946150
Hassan, A. A. M., & Wang, J. (2024). The Qatar World Cup and Twitter sentiment: Unraveling the interplay of soft power, public opinion, and media scrutiny. International Review for the Sociology of Sport, 59(5), 679–704. https://doi.org/10.1177/10126902231218700
He, R. (2023). Hashtag nationalism: A discursive and networked digital activism. Media, Culture & Society, 45(7). https://doi.org/10.1177/01634437231169917
Helsper, E. (2012). Which children are fully online? In S. Livingstone & L. Haddon (Eds.), Children, risk and safety on the internet: Research and policy challenges in comparative perspective. Policy Press. https://doi.org/10.1332/policypress/9781847428837.003.0004
Highfield, T. (2018). Emoji hashtags // hashtag emoji: Of platforms, visual affect, and discursive flexibility. First Monday. https://doi.org/10.5210/fm.v23i9.9398
Hoffmann, C. P., Lutz, C., & Meckel, M. (2015). Content creation on the Internet: A social cognitive perspective on the participation divide. Information, Communication & Society, 18(6), 696–716. https://doi.org/10.1080/1369118X.2014.991343
Ilie, V., Slyke, C. V., Green, G., & Lou, H. (2005). Gender Differences in Perceptions and Use of Communication Technologies: A Diffusion of Innovation Approach. Information Resources Management Journal (IRMJ), 18(3), 13–31. https://doi.org/10.4018/irmj.2005070102
Jana, R. K., & Maity, S. (2023). An Accuracy Based Comparative Study on Different Techniques and Challenges for Sentiment Analysis. In G. Ranganathan, R. Bestak, & X. Fernando (Eds.), Pervasive Computing and Social Networking (pp. 601–619). Springer Nature. https://doi.org/10.1007/978-981-19-2840-6_46
Karpowitz, C. F., & Mendelberg, T. (2014). The Silent Sex: Gender, Deliberation, and Institutions. Princeton University Press.
Kemp, S. (2024). Digital 2024: Indonesia. https://datareportal.com/reports/digital-2024-indonesia
Kimbrough, A. M., Guadagno, R. E., Muscanell, N. L., & Dill, J. (2013). Gender differences in mediated communication: Women connect more than do men. Computers in Human Behavior, 29(3), 896–900. https://doi.org/10.1016/j.chb.2012.12.005
Kumar, A., & Thussu, D. (2023). Media, digital sovereignty and geopolitics: The case of the TikTok ban in India. Media, Culture & Society, 45(8), 1583–1599. https://doi.org/10.1177/01634437231174351
Lahuerta-Otero, E., Cordero-Gutiérrez, R., & Prieta-Pintado, F. D. la. (2018). Retweet or like? That is the question. Online Information Review, 42(5), 562–578. https://doi.org/10.1108/OIR-04-2017-0135
Li, N., & Kirkup, G. (2007). Gender and cultural differences in Internet use: A study of China and the UK. Computers & Education, 48(2), 301–317. https://doi.org/10.1016/j.compedu.2005.01.007
Lim, M. (2017). Freedom to hate: Social media, algorithmic enclaves, and the rise of tribal nationalism in Indonesia: Critical Asian Studies: Vol 49, No 3. Critical Asian Studies, 49(3), 411–427. https://doi.org/10.1080/14672715.2017.1341188
Liu, A. (2009). Digital Humanities and Academic Change. English Language Notes, 47(1), 17–35. https://doi.org/10.1215/00138282-47.1.17
Lutz, C., Hoffmann, C. P., & Meckel, M. (2014). Beyond just politics: A systematic literature review of online participation. First Monday. https://doi.org/10.5210/fm.v19i7.5260
Maltby, J., Day, L., Gill, P., Colley, A., & Wood, A. M. (2008). Beliefs around luck: Confirming the empirical conceptualization of beliefs around luck and the development of the Darke and Freedman beliefs around luck scale. Personality and Individual Differences, 45(7), 655–660. https://doi.org/10.1016/j.paid.2008.07.010
Marsili, N. (2021). Retweeting: Its linguistic and epistemic value. Synthese, 198(11), 10457–10483. https://doi.org/10.1007/s11229-020-02731-y
Meeks, L. (2016). Gendered styles, gendered differences: Candidates’ use of personalization and interactivity on Twitter. Journal of Information Technology & Politics, 13(4), 295–310. https://doi.org/10.1080/19331681.2016.1160268
Meštrović, A., Petrović, M., & Beliga, S. (2022). Retweet Prediction Based on Heterogeneous Data Sources: The Combination of Text and Multilayer Network Features. Applied Sciences, 12(21), Article 21. https://doi.org/10.3390/app122111216
Metaxas, P., Mustafaraj, E., Wong, K., Zeng, L., O’Keefe, M., & Finn, S. (2014). Do Retweets indicate Interest, Trust, Agreement? https://doi.org/10.48550/arXiv.1411.3555
Metaxas, P., Mustafaraj, E., Wong, K., Zeng, L., O’Keefe, M., & Finn, S. (2015). What Do Retweets Indicate? Results from User Survey and Meta-Review of Research. Proceedings of the International AAAI Conference on Web and Social Media, 9(1), Article 1. https://doi.org/10.1609/icwsm.v9i1.14661
Mihelj, S., & Jiménez-Martínez, C. (2021). Digital nationalism: Understanding the role of digital media in the rise of ‘new’ nationalism. Nations and Nationalism, 27(2), 331–346. https://doi.org/10.1111/nana.12685
Morozov, E. (2013). To Save Everything, Click Here: The Folly of Technological Solutionism. Public Affairs.
Mousavi, R., & Gu, B. (2015). The Effects of Homophily in Twitter Communication Network of U.S. House Representatives: A Dynamic Network Study. Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2666052
Muscanell, N. L., & Guadagno, R. E. (2012). Make new friends or keep the old: Gender and personality differences in social networking use. Computers in Human Behavior, 28(1), 107–112. https://doi.org/10.1016/j.chb.2011.08.016
Nir, L., & McClurg, S. D. (2015). How Institutions Affect Gender Gaps in Public Opinion Expression. The Public Opinion Quarterly, 79(2), 544–567.
Noakes, T., Uys, C. S., Harpur, P. A., & van Zyl, I. (2025). A role for qualitative methods in researching Twitter data on a popular science article’s communication. Frontiers in Research Metrics and Analytics, 9. https://doi.org/10.3389/frma.2024.1431298
Nonnecke, B., Perez de Acha ,Gisela, Choi ,Annette, Crittenden ,Camille, Gutiérrez Cortés ,Fernando Ignacio, Martin Del Campo ,Alejandro, & and Miranda-Villanueva, O. M. (2022). Harass, mislead, & polarize: An analysis of Twitter political bots’ tactics in targeting the immigration debate before the 2018 U.S. midterm election. Journal of Information Technology & Politics, 19(4), 423–434. https://doi.org/10.1080/19331681.2021.2004287
Norris, P. (2002). Democratic Phoenix: Reinventing Political Activism. Cambridge University Press. https://doi.org/10.1017/CBO9780511610073
Omena, J. J., Rabello, E. T., & Mintz, A. G. (2020). Digital Methods for Hashtag Engagement Research. Social Media + Society, 6(3), 2056305120940697. https://doi.org/10.1177/2056305120940697
Ono, H., & Zavodny, M. (2003). Gender and the Internet. Social Science Quarterly, 84(1), 111–121. https://doi.org/10.1111/1540-6237.t01-1-8401007
Öztürk, N., & Ayvaz, S. (2018). Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telematics and Informatics, 35(1), 136–147. https://doi.org/10.1016/j.tele.2017.10.006
Pearce, W., Özkula, S. M., Greene, A. K., Teeling, L., Bansard, J. S., Omena, J. J., & Rabello, E. T. (2020). Visual cross-platform analysis: Digital methods to research social media images. Information, Communication & Society, 23(2), 161–180. https://doi.org/10.1080/1369118X.2018.1486871
Pitroso, G. (2024). The Catalan Digital Republic. A Theoretical Review. Journal on Ethnopolitics and Minority Issues in Europe, 23(1), Article 1. https://doi.org/10.53779/QMBB2588
Putra, I. G. D. D., Budiantara, I. W., Kusumaharani, I. A. A. W., & Sarono, S. (2024). The Role Of Religious Moderation In Political Dynamics In Indonesia. Journal of Politica Governo, 1(3), Article 3. https://doi.org/10.62872/5sv1ey25
Rambukkana, N. (2015). Hashtag Publics: The Power and Politics of Discursive Networks. Peter Lang Publishing.
Rogers, R. (2013). Digital Methods. The MIT Press. https://mitpress.mit.edu/9780262528245/digital-methods/
Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment analysis from Twitter text. Journal of Computational Science, 36, 101003. https://doi.org/10.1016/j.jocs.2019.05.009
Sari, D. K., Ahmad, J., Hergianasari, P., Harnita, P. C., & Wibowo, N. A. (2021). Quantitative Study of the Cyber-Nationalism Spreading on Twitter with Hashtag Indonesia and Malaysia using Social Network Analysis. Media Watch, 12(1), 161–171. https://doi.org/10.15655/mw_2021_v12i1_205465
Sari, D. K., Kumorotomo, W., & Kurnia, N. (2022). Delivery structure of nationalism message on Twitter in the context of Indonesian netizens. Social Network Analysis and Mining, 12(1), 173. https://doi.org/10.1007/s13278-022-01006-3
Schumacher, P., & Morahan-Martin, J. (2001). Gender, Internet and computer attitudes and experiences. Computers in Human Behavior, 17(1), 95–110. https://doi.org/10.1016/S0747-5632(00)00032-7
Shaheer, I., Carr, N., & Insch, A. (2022). Qualitative Analysis of Social Media Historical Data: A Case Study of Twitter and Tourism Boycotts. In F. Okumus, S. M. Rasoolimanesh, & S. Jahani (Eds.), Advanced Research Methods in Hospitality and Tourism (pp. 163–178). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80117-550-020221009
Smith, D. A., & Timberlake, M. (1995). Conceptualising and Mapping the Structure of the World System’s City System. Urban Studies, 32(2), 287–302. https://doi.org/10.1080/00420989550013086
Smith, M. D. and A. (2013, December 30). Social Media Update 2013. Pew Research Center. https://www.pewresearch.org/internet/2013/12/30/social-media-update-2013/
Sumartias, S., Pulubuhu, D. A. T., Sudarmono, S., Adi, A. N., & Ratnasari, E. (2023). Democracy in the Indonesian Digital Public Sphere: Social Network Analysis of Twitter Users’ Responses to the Issue of Nationalism Knowledge Test at the Corruption Eradication Commission (TWK-KPK). Jurnal Ilmu Sosial Dan Ilmu Politik, 26(3), Article 3. https://doi.org/10.22146/jsp.70896
Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of Twitter networks. Social Networks, 34(1), 73–81. https://doi.org/10.1016/j.socnet.2011.05.006
The Center for Generational Kinetics. (2024). Generational breakdown: Info about all of the generations. https://genhq.com/the-generations-hub/generational-faqs/
Theocharis, Y. (2015). The Conceptualization of Digitally Networked Participation. Social Media + Society, 1(2), 2056305115610140. https://doi.org/10.1177/2056305115610140
Toraman, C., Şahinuç, F., Yilmaz, E. H., & Akkaya, I. B. (2022). Understanding social engagements: A comparative analysis of user and text features in Twitter. Social Network Analysis and Mining, 12(1), 47. https://doi.org/10.1007/s13278-022-00872-1
Vesnic-Alujevic, L. (2012). Political participation and web 2.0 in Europe: A case study of Facebook. Public Relations Review, 38(3), 466–470. https://doi.org/10.1016/j.pubrev.2012.01.010
Vochocová, L., Štětka, V., & Mazák, J. (2016). Good girls don’t comment on politics? Gendered character of online political participation in the Czech Republic. Information, Communication & Society, 19(10), 1321–1339. https://doi.org/10.1080/1369118X.2015.1088881
Weng, Z., & Lin, A. (2022). Public Opinion Manipulation on Social Media: Social Network Analysis of Twitter Bots during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(24), 16376. https://doi.org/10.3390/ijerph192416376
Wilken, R. (2014). Twitter and Geographical Location. In Twitter and Society (pp. 155–167). Peter Lang.
Wilson, C. (2017). I Spent Two Years Botting on Instagram—Here’s What I Learned. PetaPixel. https://petapixel.com/2017/04/06/spent-two-years-botting-instagram-heres-learned/
Wimmer, A., & Glick Schiller, N. (2002). Methodological nationalism and beyond: Nation–state building, migration and the social sciences. Global Networks, 2(4), 301–334. https://doi.org/10.1111/1471-0374.00043
Witschge, T. (2008). Examining online public discourse in context: A mixed method approach. Javnost-The Public, 15(2), 75–91.
Wodak, R., Meyer, M., & Siegfried, S. (2001). Discourse and Knowledge: Theoretical and Methodological Aspects of A Critical Discourse and Dispositive Analysis. In Methods of Critical Discourse Analysis (pp. 32–62). SAGE Publications, Ltd. https://doi.org/10.4135/9780857028020
Wu, X.-K., Gu, G., Xie, T.-T., Zhao, T.-F., & Min, C. (2024). Unveiling evolving nationalistic discourses on social media: A cross-year analysis in pandemic. Humanities and Social Sciences Communications, 11(1), 1–12. https://doi.org/10.1057/s41599-024-03425-3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Komunikator

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Komunikator as publisher of the journal. Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Authors should sign Copyright Transfer Agreement when they have approved the final proofs sent by Komunikator prior the publication. Komunikator strive to ensure that no errors occur in the articles that have been published, both data errors and statements in the article.
Komunikator keep the rights to articles that have been published. Authors are allowed to use their works for any purposes deemed necessary without written permission from Komunikator with an acknowledgement of initial publication in this journal.
License
All articles published in Komunikator are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.