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ABSTRAK 

Kata kunci:  

Finite element 
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Tubesheet 

 

Alat penukar kalor merupakan sebuah peralatan yang digunakan untuk memindahkan 

kalor tanpa disertai dengan perpindahan massa. Peralatan tersebut harus didesain 

berdasarkan standar yang telah ditetapkan. Standar yang banyak digunakan yaitu 

standar yang dikeluarkan oleh TEMA (Tubular Exchanger Manufacturer Association). 

Hasil desain alat penukar kalor dengan standar tersebut dirasa kurang efisien dilihat 

dari sisi materialnya. Efisiensi material yang digunakan dapat dianalisis dengan analisis 

tegangan pada komponen yang menahan gaya dan salah satu komponen tersebut yaitu 

tubesheet. Analisis tegangan pada tubesheet dapat menggunakan software berbasis finite 

element. Hasil analisis menunjukkan bahwa desain tubesheet pada desain yang 

mengacu pada standar TEMA relative aman karena tegangan von Mises maksimal 

berada dibawah yield strength material yang digunakan, sedangkan nilai overdesign 

relative besar karena tegangan von Mises rata-rata juga berada jauh dibawah yield 

strength material yang digunakan.   

 

ABSTRACT 

 

A heat exchanger is a device used to transfer heat without mass transfer. The equipment must be 

designed according to established standards. The standard that is widely used is the standard 

issued by TEMA (Tubular Exchanger Manufacturer Association). The results of the design of the 

heat exchanger with these standards are considered less efficient in terms of the material. The 

efficiency of the material used can be analyzed by stress analysis on the components that 

withstand the force, and one of these components is the tube sheet. Stress analysis on tube sheets 

can use finite element-based software. The results of the research show that the tube sheet design 

that refers to the TEMA standard is relatively safe because the maximum von Mises stress is 

below the yield strength of the material used, while the overdesign value is rather significant 

because the average von Mises stress is also far below the yield strength of the material used. 
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1. INTRODUCTION  

 The heat exchanger is the main equipment in the industry to transfer heat without mass [1], [2]. 

Conduction and convection processes occur in the device [3]. The most widely used heat exchanger is 

shell and tube heat exchanger because it has a simple construction, easy maintenance process, and can be 

used in various conditions [4]–[6]. The shell and tube heat exchanger design usually refers to a standard 

[7], and the standard that is widely used is the standard from the Tubular Exchanger Manufacturer 

Association or TEMA [8], but many opinions state that this standard results in an inefficient design [9]. 

Dimensions in the design affect the stress [10], and the average stress analysis can be used to analyze the 

efficiency of the material used [11], while the maximum stress analysis can be used to obtain the safety 

value [12] [13]. Stress on equipment can occur because there is a force acting on the equipment [12]. The 

stress that occurs in equipment or component can be analyzed by the finite element method (FEM) [14]. 
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One of the components in the heat exchanger is tube sheet and tube sheet design refer to the TEMA 

standard. Therefore, the stress analysis on the tube sheet needs to be investigated to know the 

distribution stress on the component, the safety, and the overdesign of the tube sheet.  

 

2. METHODS 
 The first step in this research is to study the literature and obtain the daily production capacity of the 

heat exchanger. The production capacity is used to determine the overall dimensions of the heat 

exchanger. The specifications of the heat exchanger are calculated based on the standards issued by 

TEMA. After obtaining the specifications of the heat exchanger as shown in Table 1, the next process is to 

design the geometry of the heat exchanger using Autodesk Inventor Software. 

 
Table 1 Shell and Tube Heat Exchanger Specifications 

No Specification Value 

1 Type BEM (horizontal) 

2 Standard TEMA 

3 Material SS 304 

4 Safety Factor 2 

5 Yield Strength 205 MPa 

6 Allowable Stress 102,5 MPa 

7 Shell Diameter 273,1 mm 

8 Shell Thickness 3,4 mm 

9 Tubesheet Diameter 266,3 mm 

10 Tubesheet Thickness 19,1 mm 

11 Baffle Type Segmental 

12 Baffle Cut 25 % 

13 Number of Baffles 2 

14 Number of Tie Rod 4 

15 Tie Rod Diameter 9,5 mm 

16 Tube Diameter 19,05 mm 

17 Tube Thickness 0,5 mm 

18 Number of Tube 64 

19 Internal Pressure (shell) 0,36 MPa 

 

The results of the geometry design of the heat exchanger using Autodesk Inventor software are 

shown in Figure 1. The geometry is then imported into the SimScale platform for stress analysis to 

determine the stress distribution that occurs in the equipment. 

 

 
Figure 1 Shell and tube heat exchanger geometry 

 

Von mises stress on the simulation results' shell compared with the calculated stress using equation 

1 [15]. These calculations are used to validate that the simulation results are accurate [16]. The allowable 

deviation rate is 5% [17]. 
2 2

1 3 1 1.vm                        (1) 

 

 where: 

 1    : hoop stress (MPa) 
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 3    : longitudinal stress (MPa) 

 vm    : von Mises stress (MPa) 

 

 Equation 1 requires longitudinal stress and hoop stress values. Longitudinal stress can be calculated 

by equation 2, and hoop stress can be calculated by equation 3 [18]. 
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  where:  

  P     : internal pressure (MPa) 

  D    : shell diameter (m) 

  t     : shell thickness (m) 

 

 The accurate simulation results are then used to conclude the design safety and material efficiency 

by calculating the tube sheet overdesign value. The overdesign value can be calculated by equation 4 [19]. 
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  where: 

  
allowable  : allowable stress (MPa) 

  
average  : average stress (MPa) 

 

3. RESULT AND DISCUSSION 
  The simulation results of applying pressure to the geometry using the SimScale platform is von 

Mises stress distribution on the shell are shown in Figure 2, tube sheet 1 in Figure 3, and tube sheet 2 in 

Figure 4. The stress on the shell presented in Figure 2 is used to validate the simulation results. 

Tubesheets 1 and 2 presented in Figures 3 and 4 are used to conclude the safety and efficiency of the 

component design. 

 

 
Figure 2 Stress distribution on the shell 

  

 Validation is done by comparing the von Mises stress on the shell presented in Figure 2 and the 

calculation results using equation 1. The stress calculation results using equation 1 are 12.20 MPa, and the 

simulation stress is 12.55 MPa. The deviation of the simulation results is 2.8%. These results are still 

below the predetermined limit of 5% and are considered valid simulation results. 
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Figure 3 Stress distribution on tube sheet 1 

  

 The maximum stress on tube sheet 1 is 57.59 MPa. Therefore, it is still relatively far below the yield 

strength of the material used in the equipment so that it can be ascertained that the design of tube sheet 1, 

which refers to the TEMA Standard, is still safe from failure. While the average stress on these 

components is 3,143 MPa, it can be ascertained that tube sheet 1 has an overdesign value of 3164% or is 

very wasteful of material because it has dimensions that exceed the design requirements.  

 

 
Figure 4 Stress distribution on tube sheet 2 

 

 The maximum stress on tube sheet 2 is 48.06 MPa. The maximum stress is still relatively far below 

the yield strength of the material used in the equipment so that it can be ascertained that the design of 

tube sheet 2, which refers to TEMA Standard, is still safe from failure. On the other hand, the average 

stress on these components is 3.396 MPa, so that it can be ascertained that tube sheet 2 has an overdesign 

value of 2923% or is very wasteful of material because it has dimensions that exceed the design 

requirements. However, in determining the tube sheet specifications, the maximum and average stress 

values must be considered. 

 

 

 



 

Krisdiyanto, et.al. 
 

 

 

56 JMPM Vol. (5), No. (1), Tahun (2021), pp (52-56)  

 

 

4. CONCLUSION 

The simulation results show that the tube sheet design following the TEMA standard has very high 

safety. The maximum von mises stress is very far below the yield strength value of the material used; 

besides that, there is material wastage or overdesign because the stress on the tube sheet is very high. 

After all, it is below the yield strength of the material used. 
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