CFD Study on Wire Mesh Inserts Enhancing Heat Transfer in Double Pipe Heat Exchanger
DOI:
https://doi.org/10.18196/jmpm.v9i1.27332Abstract
The efficiency of heat transfer in conventional double pipe heat exchangers (DPHE) was often limited by low heat transfer coefficients. This posed a challenge for compact-scale industrial applications requiring enhanced thermal performance without increasing system dimensions. One potential solution was the insertion of wire mesh inside the pipe to induce local turbulence and intensify forced convection. This study was conducted numerically using Computational Fluid Dynamics (CFD) in ANSYS Fluent 2024 R2. The DPHE consisted of concentric copper pipes with a length of 1240 mm, inner pipe diameter of 26/34 mm, and outer pipe diameter of 68/76 mm. Water was used as the working fluid in counterflow mode, with inlet hot water at 70 °C (Re 4000–16000) and cold water at 31 °C (Re 2000). The parameters varied were wire mesh angle (30°, 60°, 90°), wire spacing (3 mm, 4 mm, 5 mm), and mesh spacing (4 cm, 5 cm, 6 cm), arranged using an L9 orthogonal array. Three-way ANOVA and Tukey HSD test were applied to identify significant effects. The configuration of 30°, 3 mm, and 4 cm was found to be the most optimal, yielding a 34.55% increase in heat transfer compared to the plain DPHE.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rizky Nanda Parely, Nanang Ruhyat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License
JMPM (Jurnal Material dan Proses Manufaktur) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. You are free to :
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, which include the following:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.