
Journal of Robotics and Control (JRC)

Volume 2, Issue 5, September 2021

ISSN: 2715-5072 DOI: 10.18196/jrc.25120 441

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Discussing the Reality Gap by Comparing Physics

Engines in Kilobot Simulations

Andreas Meier1, Sascha Carroccio2, Rolf Dornberger3, Thomas Hanne4*
1, 2, 3, 4 School of Business, Institute for Information Systems

University of Applied Sciences and Arts Northwestern Switzerland

Olten/Basel, Switzerland

Email: 1 andreas.meier@students.fhnw.ch, 2 sascha.carroccio@students.fhnw.ch, 3 rolf.dornberger@fhnw.ch,
4 thomas.hanne@fhnw.ch, *Corresponding Author

Abstract—The difference between real experiments and their

simulated counterparts, the so-called reality gap, is dependent on

various factors and a challenging issue for every simulation-based

robot experiment. The reality gap in robot experiments is often

caused by software, which is not always able to sufficiently capture

particular details and process them properly. In order to minimize

this difference, this paper strives to assess different simulation

physics engines in V-REP, the simulation framework for the

Kilobot swarm robots. The outcome of the simulation software

adaption is based on a unified multi robot experiment applied to

Kilobots. This paper proposes a simulation attitude, which reflects

the outcomes of a real world experiment with Kilobots accurately.

Keywords—Kilobot, physics engines, reality gap, simulation,

swarm robotic, V-REP

I. INTRODUCTION

Increasing interaction quality of robots with their
environment based on automatically adapting their behavior and
skills is an emerging topic in the domain of robotics [1]. Over
the last years, several researchers published numerous papers
proposing various optimizations of robot behaviors considering
different reactive learning frameworks and self-restricting
adaption in the operating environment [2]. Simulation of robotic
behavior does not only enable performing a considerable
number of training cycles without endangering or adapting the
required physical environment, it also creates the opportunity of
an enhanced reinforcement learning process in order to improve
the robots’ performance. A simulation is therefore helpful in
order to transfer the learnings into reality.

Despite all these relevant advantages, simulation have still
the restriction of not being able to fully capture the real
environment a robot is finally supposed to act in. For example,
there are many real factors, such as collision of robots, mass or
traction [3], which might have an influence on the simulated
outcomes, but, still are not, or only insufficiently, considered by
the simulation software. On the other hand, there is simulation
software available with the capabilities to simulate real world
environments in a more precise way. Nevertheless, such
software requires a high amount of computational power, which
leads to hours or even days of processing time for just a few
seconds of simulation [3]. In the field of robotics, according to
Jakobi, it is hard to model a simulation accurately and
appropriately to the applied physical environment, which

becomes even more difficult with increasing complexity and the
number of included robots [4]. A lot of different features and
environmental circumstances can influence the robots’ behavior
in a real world scenario: sensor and communication behavior,
noise, physical characteristics and hardware calibration.

In the specific case of the Kilobots’ experiment according to
Zhong et al. [5], the orbiting functionality, as example, was not
noticeably performed by the robots in the real experiment as it
was in the simulation. This Kilobot experiment (including
simulation and real experiment) indicates a reality gap of swarm
robotic behavior in the transmission of simulated training policy
and real world test scenario. Christiano et al. refer to the reality
gap when the main goal is accurate simulation [3]. However, in
order to gain a relevant amount of training data for the robots,
software simulations depict an attractive alternative to design
and enhance algorithms evaluating different solution approaches
[6].

II. RELATED WORK

The reality gap in robotics simulation has been studied
frequently in the literature and dates back at least to the 1990s
[7]. In the following we discuss some approaches for analyzing
and reducing the reality gap including a few selected application
areas

In [8] a concept of noise induction is used for modelling the
reality gap and artificial evolution is used to develop recurrent
dynamical network controllers for the simulated robot. The
resulting controllers were used in a real robot leading to an
almost identical robot behavior. In [9], [10], and [11] the gap
between reality and simulation denoted as transferability is used
an optimization criterion in a multiobjective optimization
approach. The other considered objective is the control goal of
the robot denoted as fitness. The problem is solved by a
multiobjective evolutionary algorithm. In [12] an illusory sub-
system is incorporated in the robot control for adaptation and
minimizing the differences of robot behavior evaluations in
reality and in simulations without explicit calibration. Authors
in [13] suggest an anticipation-enabled control architecture
which builds a partial model of the simulated environment
within robot control. In reality, then error estimation of the
model is done which is then used for improving the control.

http://journal.umy.ac.id/index.php/jrc
mailto:jrc@umy.ac.id

Journal of Robotics and Control (JRC) ISSN: 2715-5072 442

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

In [14] and [15] abstraction of the sensory inputs and motor
actions (i.e. preprocessed sensory inputs) is successfully used
for reducing the reality gap. In recent years the applications of
machine learning approaches have been used successfully for
reducing the reality gap. For instance, neural networks are used
in [16] and [17].

In [18] a set of small obstacles is added to the simulated
environment which is shown to lead to more robust robot
movements when transferred to a real world robot, especially in
difficult scenarios. In [19] the reality gap is considered in the
context of an evolutionary robotics approach for robots used to
control the growth and motion of natural plants. The reality gap
in the context of robotics and virtual or mixed reality
applications is discussed in [20] and [21].

III. PROBLEM DESCRIPTION

The need to effectively analyze various outcomes of
potential robot behavior has led researches to apply simulated
robot experiments instead of conducting real world tests [6].
Having the advantage of lower costs and faster results than real
world experiments, robot simulation software is available for
different platforms or distributions, for example MATLAB or
SD/FAST [22]. Based on the numerous availabilities of
simulation tools, it appears inviting to assume that the gained
results for robot behavior in simulators perform equally in the
real world [6]. Although, simulated training data seem to
replicate and optimize the main functionality of the robots in an
appropriate manner, the simulation software fails to consider
several adjustments based on the real environment the robot is
operating in [3]. For example, Christiano et al. [3] list different
factors, such as exact measuring or friction. Such differences
regarding the performance of robots, detected between the
simulation and the applied experiment, is regarded as reality gap
[1].

Zhong et al. refer to the reality gap in connection with a
particular Kilobot experiment and its simulation applying noisy
circumstances [5]. When several swarm robots are organizing
themselves at the same time, the accuracy can be considerably
decreased due to communication failures and collision issues
between the robots. Considering the results with the Kilobot
experiment and the comparison between simulation and real
world experiment, shown in [5], several reality gap issues were
identified. For example, the exploring tendencies of the Kilobots
were more noticeable in the real implementation than in the
simulations, conducted with the simulation framework V-REP.
Another reality gap was hinted by the absent orbiting-a-fellow
functionality. Although this function was running in the
simulations, in the real implementation it was not noticeable,
which lead to a reduced success rate of finding the target in the
real experiment. An explanation for this might be that the real
Kilobots are technically only able to process one infrared (IR)
signal (the applied communication technology) at a time, while
the simulation software does not use this limitation. Apparently,
the arising time delay in communication between real Kilobots
could not be considered in the simulations. In consequence, the
simulations proposed that more Kilobots would reach the target
than the real implementation revealed [5].

The problem, discussed in this paper, is defined as follows:
The reality gap (see Fig. 1) is an inevitable disturbance factor
when producing training data for robots in simulators [1].
Consequently, there are several intentions to minimize the
reality gap as much as possible. Building upon the performed
experiment of Zhong et al. with the Kilobots, our paper
evaluates alternative settings within the simulation software by
recreating and reprocessing the exact same experiment and its
attributes with different physics engines. The recorded outcomes
of each simulator run will be evaluated and assessed similarly as
in the experiments of Zhong et al. The goal therefore is to
suggest a more suitable physics engine setting for multi robot
experiments in V-REP with Kilobots in order to reflect the
outcomes of the real world experiment more precisely. For this
reason, the relating tests, analysis and assumptions of Zhong et
al. are taken as basic concept for this paper. Therefore, the
assessment of different simulated outcomes is based on the
comparison of the documented outcomes with V-REP and the
results of the real implementation of Zhong et al. Based on that,
the reality gap severity of each physics engine is determined and
discussed. Recommendations are given in the conclusions.

 Simulated Kilobots in
 Physics Engine

Real Kilobots in Environment Virtual Machine

Fig. 1. The problem of the reality gap between real robot experiment and
simulation of robots using physics engine.

IV. SOLUTION METHOD

The reality gap between simulated outcomes and the real
world experiment depends on various factors: The simulation
software, computational power, which includes memory and
CPU cores as well as the ability of using multiple CPU cores
[23], and physics engines used within the simulation software
[24, 25]. Often, a distinction is made between open source and
commercial [26], which relates to both software and physics
engines. It should be noted that professional software is not
necessarily commercial. Pitonakova [23] compared three
different simulators V-REP, Gazebo and ARGoS in regards to
built-in capabilities like available physics engines, scene editor
and mesh manipulations, robot libraries and other models,
programming methods, and user interfaces [25]. The analysis
has shown that V-REP, even though it is very complex and
resource-intensive, it is the most comprehensive simulation
software compared to the others. In terms of features, Gazebo is
closer to V-REP than ARGoS. For example, ARGoS has no
Kilobot libraries compared to V-REP.

V-REP is a multifunctional application for different robot
simulation scenarios. It does not only contain an implemented
Kilobot model, but also several other robot models and
optimization methods, for example the Hexapod model or the
Delta Arm manipulator [27]. V-REP as a framework is a
standard to simulate robotic behavior. However, the variety of

gap

Journal of Robotics and Control (JRC) ISSN: 2715-5072 443

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

possible settings inside the software, considering the simulation
performance, makes its correct use very complex.

Fig. 2. Physics engines overview in V-REP [28]

The motion of rigid bodies in the physical world is
increasingly often modelled and simulated by using physics
engines [25]. The simulation software V-REP supports four
different physics engines: Bullet, ODE, Vortex and Newton (see
Fig. 2). Each physics engine has predefined standard values for
e.g. static or dynamic properties, material and shape. It is
possible to adjust the default parameters (e.g. friction, restitution
and damping [27]) in the simulation software (see Fig. 3).

Fig. 3. Physics engines material properties [28]

Default settings are documented and can be found on the
producer's website. Simulations, performed with different
physics engines or customized parameters, will lead to
dissimilar results. Therefore, the adjustment of the parameters
per simulation needs to be done carefully in order to simulate a
real behavior correctly.

A circumstance that has a major impact on such experiments
is the collision behavior of two or more robots, which itself is a
widely studied field [26]. The behavior of a collision in real
world experiments is based on physical behavior of the objects,
which is influenced by various factors such as their kinematics
or the structure of their surfaces. In simulations, the collision
behavior is based on algorithms [26]. As it is illustrated in the
results by Zhong et al., none of the Kilobot searchers tipped over
during the real world test runs as predicted in the simulation [5].
This is resulting in a huge reality gap, because a searching robot
that has tipped over has no further chance to reach the target
Kilobot. In order to reduce this reality gap, the parameters for
the collision behavior can be adjusted in V-REP via the physics
engines material properties (see Fig. 3). The question is, how?

Zhong et al. compared one particular real world experiment
against two V-REP simulations [5]. The only parameter, which
differed between the two simulations, was the desired distance
for reaching the target. In one simulation, the value was set to 4
cm, and in the other simulation, the value was set to 6 cm. The
value in the real world experiment was given with 6 cm. In order
to compare the results from the experiments, the same value of
6 cm was used as configuration for the experiments with the
different physics engines. Thus, our simulations were carried out
and documented analogous to the procedure of Zhong et al. [5].

The simulation test runs were recorded using the integrated
video recorder [30]. The properties can be adjusted in the
simulation software, which are for example launching the
recording at the next simulation start or define the location for
the generated video files.

The simulations have been performed on a virtualized
computing environment running Acropolis Hypervisor (AHV)
version 20170830.166. The used virtual machine on the
hypervisor was a Windows 10 Enterprise edition with 8 GB
Memory and 4 CPU cores with Intel Xeon E5 2.1 GHz
processor.

The simulations were carried out with V-REP PRO EDU
V3.6.1 using the three physics engines Bullet, ODE and Newton.
Simulation with the Vortex physics engine were not performed
as the Vortex Studio Essentials software was no longer
available.

V. RESULTS

Simulation I: Table I shows the test results from the
simulation carried out with the physics engine Bullet 2.83 in
regards to the number of searchers close to the target.
Throughout the test runs, on average of 2.6 Kilobots of 10
Kilobots in total reached the target within the simulation time.
In test run three, none of the searcher reached the target. Four
searchers, which represents the highest number of searchers,
reached the target within all test runs.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 444

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

In the simulation, regarding the time the searcher needed to
reach the target for the first time, the time span is between 31
and 41 seconds (see Fig. 4). The time span, a further searcher
needed to reach the target is 32 and 46 seconds. In test run three,
five and nine no further searcher reached the target.

 Concerning collisions, an average of 2.8 Kilobots tipped
over during the simulation. In the worst case, seven Kilobots
tipped over in one test run.

Fig. 5, which represents the pictures taken at the end of the
test runs, shows a similar situation for all test runs. Right at
simulation start, some of the searchers did not move towards the
target. This caused some of the searchers to stay quite far away
from the target after the end of the test runs.

After 15 to 20 seconds on average, the first searcher detected
another searcher, which was indicated by the white color. An
exception is the first test run, where it took 30 seconds to let the
first two Kilobots detect each other.

Simulation II: Table II shows the test results from the
simulation carried out with the physics engine ODE in regards
to the number of searchers close to the target. On average 2.3
Kilobots reached the target within the simulation time. In all test
runs, a minimum of one Kilobot reached the target. In test run
five, six and ten, only one searcher reached the target, which
represents the lowest number of searchers reached the target.
Four searchers reached the target in test run two and nine, which
represents the highest number of searchers reached the target.

With respect to the time the searcher needed to reach the
target for the first time, the time span is between 32 and 45
seconds (see Fig. 6). The time span, a further searcher needed to
reach the target is 35 and 53 seconds. In three out of the ten test
runs no further searcher reached the target.

TABLE I. NUMBER OF SEARCHERS CLOSE TO THE TARGET IN

SIMULATION (BULLET 2.83)

Test

run

Number of searchers close to the target

Green:

target

found

Yellow:

approach

-ing

target

White:

Other

searchers

detected,

still

searching

Cyan:

No

message

received,

keep

searching

Total

1 3 3

2 3 2 5

3 0

4 2 1 1 4

5 1 2 3

6 3 1 2 6

7 3 1 4

8 3 2 5

9 1 1 1 3

10 4 1 5

Avera

ge
2,6 3,8

Media

n
3 4

Fig. 4. Time needed to find the target and to reach it in simulation (Bullet 2.83)

Fig. 5. Simulation results with Bullet 2.83

Journal of Robotics and Control (JRC) ISSN: 2715-5072 445

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

TABLE II. NUMBER OF SEARCHERS CLOSE TO THE TARGET IN

SIMULATION (ODE)

Test

run

Number of searchers close to the target

Green:

target

found

Yellow:

approach

-ing

target

White:

Other

searchers

detected,

still

searching

Cyan:

No

message

received,

keep

searching

Total

1 2 1 3

2 4 4

3 2 1 3

4 3 1 4

5 1 1 2

6 1 1 2

7 2 1 3

8 3 3

9 4 1 5

10 1 1 1 3

Avera

ge
2,3 3,2

Media

n
2 3

Concerning collisions, an average of 3.1 Kilobots tipped
over during the simulation. In one particular test run, even the
target Kilobot tipped over due collision.

Fig. 7, which represents the pictures taken at the end of the
test runs, shows a similar situation for all test runs. Right at
simulation start, some of the searchers did not move towards the
target. This caused some of the searchers to stay quite far away
from the target after the end of the test runs.

After 15 to 29 seconds on average, the first searcher detected
another searcher, which was indicated by the white color.

Simulation III: As shown in Fig. 8, in the simulation, none
of the searchers reached the target in the test runs using the
Newton physics engine.

Fig. 6. Time needed to find the target and to reach it in Simulation (ODE)

Except in the first test run, at least one searcher has
approached the target, however spending more than 60 seconds
as upper limit, (see Fig. 8).. As indicated by the red Kilobots,
some of the searchers came very close to another one in every
of test runs. However, the simulation predicted that none of the
searchers tipped over due to collision.

At simulation start, the searchers walked towards the target in
all test runs. During the simulation, some of the searchers have
changed the direction and moved away from the target (see Fig.
9).

Simulation IV: As an outlook, V-REP provides the Vortex
physics engine, too. However, no simulations could be carried
out, because the license was not available to us during our
experiment.

Fig. 7. Simulation results with ODE

Journal of Robotics and Control (JRC) ISSN: 2715-5072 446

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

Fig. 8. Time needed to find the target and to reach it in simulation (Newton)

VI. DISCUSSION AND ANALYSIS

As the experiments with the different physics engines have
shown, there are potentially better choices than the applied
standard physics engine Bullet 2.78 in the documented
experiments by Zhong et al. The repeated experiments indicated
that the ODE physics engine provided the most reliable results
according to the real implementation with Kilobots. As
considerable reasons for this suggestion is, on one hand, the
average number of successful (shown in green color) searching
Kilobots with ODE of 2.3. In comparison with the average value
in the real implementation with 2.2, ODE reports the closest
result among all tested physics engines towards the real
experiment. Furthermore, as the video evaluation in the test runs
with ODE revealed, the Kilobot searchers tend to move more
randomly in the test field. This led to a higher distance between
the searcher bots and the target bot at the end of every test run.
This was also observed by Zhong et al. by performing the real
implementation. In comparison to the other physics engines,
using ODE, the searching Kilobots had a certain tendency to
head directly toward the target Kilobot. This might be an
explanation for the higher average number of Kilobots, which
have found the target.

During the different simulation runs, it became noticeable
that some physics engines predicted Kilobots falling over after
a collision with a fellow searching bot. For example, Bullet 2.83
and ODE simulated such a behavior. Newton, in fact simulated

collisions between searching Kilobots, but never a fell over of a
robot. Unfortunately, there were no specific cases documented
for the real experiment to draw a conclusion out of it. A more
elaborated test scenario in this direction would therefore provide
further insights, as well as a larger number of test runs with the
different physics engines could discover specific tendencies.
Additionally, the experiments with Newton indicated that none
of the searching robots really reached the target. As there are no
test results in the real implementation confirming this outcome,
the reason for the results of the tests with the Newton physics
engine should be examined in further research.

VII. CONCLUSION AND OUTLOOK

The tested three different physics engines Bullet, ODE and
Newton in V-REP provide a broad range of attributes to simulate
the behavior of Kilobots. As Fig. 3 shows, the physics engines
partly use similar types of attributes. For, example both Bullet
versions and ODE contain attributes called friction, linear
damping and angular damping. However, other attributes are
dissimilar between different physics engines, for example soft
ERP or soft CFM in the ODE physics engine.

Another interesting observation is the same physics engine
in different versions, such as the two mentioned Bullet versions,
can have almost similar attributes, but the simulated outcomes
appear very different. The Bullet 2.78 simulation, conducted by
Zhong et al., has average number 4.6 Kilobots that have found
the target. In comparison, the Bullet 2.83 experiment of this
paper has an average number of 2.6 Kilobots that found the
target using the same parameters. The reason for these different
results is hidden in the physics models implemented in the
software and stays unclear. One explanation for this issue is
probably that the software provides continuous improvements of
the included models without sufficiently informing the users
about respective changes. As consequence, even a comparison
of simulations using the same physics engine in different
versions might lead to different results. However, the outcomes
of Bullet 2.83 are the second closest outcomes compared to the
real experiment after ODE results.

Fig. 9. Results of simulation with Newton

Journal of Robotics and Control (JRC) ISSN: 2715-5072 447

Andreas Meier, Discussing the Reality Gap by Comparing Physics Engines in Kilobot Simulations

As a further aspect, the ODE physics engines comprises,
together with the Newton physics engine, the lowest number of
attributes and none of them are similar among both physics
engines. In the context of the ODE physics engine, it might be
interesting to learn, which specific attributes or combination of
attributes are capable to create the similar results as in the real
implementation.

Overall, the results show that the physics engines are
difficult to compare, because they comprise many different
parameters, which are difficult to adjust to the real experiment.
Particularly, the correct simulation of collisions of Kilobots is
difficult to compute: a small change in the initial conditions
might result in a very different number of fallen robots or robots
reaching the target.

The different physics engines experiments were conducted
on a virtualized Windows 10 client on Acropolis Hypervisor,
which is Linux-based. A further research, relying on the
elaborated results, might be to check if the simulation software
runs platform-independent. Repeating tests on different
computing platform using the same physics engines in the same
versions might if the CPU or other hardware specifications have
an influence in the results.

REFERENCES

[1] J. Zagal, J. Ruiz-del-Solar and P. Vallejos, "Back to reality: Crossing the
reality gap in evolutionary robotics", IFAC Proceedings Volumes, vol.
37, no. 8, pp. 834-839, 2004.

[2] J-P. Mouret and K. Chatzilygeroudis, “20 Years of Reality Gap: a few
Thoughts about Simulators in Evolutionary Robotics”, GECCO ’17
Companion, Berlin, Germany, July 15-19, 2017, 4 pages

[3] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin,
P. Abbeel and W. Zaremba "Transfer from simulation to real world
through learning deep inverse dynamics model”, arXiv preprint
arXiv:1610.03518, 2016

[4] N. Jakobi, Ph. Husbands and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics”, In European Conference on
Artificial Life, Springer, Berlin, Heidelberg, 704–720, 1995

[5] V. J. Zhong, R. Dornberger and Th. Hanne, "Comparison of the behavior
of swarm robots with their computer simulations applying target-
searching algorithms", International Journal of Mechanical Engineering
and Robotics Research, 7(5). 2018

[6] S. Koos, J. Mouret and S. Doncieux, "The transferability approach:
crossing the reality gap in evolutionary robotics", IEEE Transactions on
Evolutionary Computation, vol. 17, no. 1, pp. 122-145, 2013

[7] J. C. Bongard, “Evolutionary robotics”, Communications of the ACM,
56(8), 74-83, 2013.

[8] N. Jakobi, P.Husbands, and I. Harvey, “Noise and the reality gap: The use
of simulation in evolutionary robotics”, In European Conference on
Artificial Life (pp. 704-720). Springer, Berlin, Heidelberg, 1995.

[9] S. Koos, J. B. Mouret and S. Doncieux, “Crossing the reality gap in
evolutionary robotics by promoting transferable controllers”, In
Proceedings of the 12th annual conference on Genetic and evolutionary
computation (pp. 119-126), 2010.

[10] S. Koos, J. B. Mouret and S. Doncieux, “The transferability approach:
Crossing the reality gap in evolutionary robotics”, IEEE Transactions on
Evolutionary Computation, 17(1), 122-145, 2012.

[11] J. B. Mouret, S. Koos and S. Doncieux,”Crossing the reality gap: a short
introduction to the transferability approach”, arXiv preprint
arXiv:1307.1870, 2013.

[12] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality in
evolutionary robotics. Journal of Intelligent and Robotic Systems, 50(1),
19-39, 2007.

[13] C. Hartland and N. Bredeche, “Evolutionary robotics, anticipation and the
reality gap”, In 2006 IEEE International Conference on Robotics and
Biomimetics (pp. 1640-1645). IEEE, 2006.

[14] K. Y. Scheper and G. C. de Croon, “Abstraction, sensory-motor
coordination, and the reality gap in evolutionary robotics”, Artificial Life,
23(2), 124-141, 2017.

[15] K. Y Scheper and G. C. de Croon, ”Abstraction as a mechanism to cross
the reality gap in evolutionary robotics”, In International Conference on
Simulation of Adaptive Behavior (pp. 280-292). Springer, Cham, 2016.

[16] N. Cruz and J. Ruiz-del-Solar, “Closing the simulation-to-reality gap
using generative neural networks: Training object detectors for soccer
robotics in simulation as a case study”, In 2020 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE, 2020.

[17] F. Golemo, A. A. Taiga, A. Courville and P. Y. Oudeyer, “Sim-to-real
transfer with neural-augmented robot simulation”, In Conference on
Robot Learning (pp. 817-828), 2018.

[18] K. Glette, A. L. Johnsen and E. Samuelsen, ”Filling the reality gap: Using
obstacles to promote robust gaits in evolutionary robotics”, In 2014 IEEE
International Conference on Evolvable Systems (pp. 181-186). IEEE,
2014.

[19] M. Wahby, D. N. Hofstadler, M. K. Heinrich, P. Zahadat and H. Hamann,
“An evolutionary robotics approach to the control of plant growth and
motion: Modeling plants and crossing the reality gap”, In 2016 IEEE 10th
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO) (pp. 21-30). IEEE, 2016.

[20] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas and N. Ayanian,
“Mixed reality for robotics”, In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 5382-5387). IEEE, 2015.

[21] E. Freund and J. Rossmann, “Projective virtual reality: Bridging the gap
between virtual reality and robotics”, IEEE transactions on robotics and
automation, 15(3), 411-422, 1999.

[22] T. Erez, Y. Tassa and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX”,
IEEE International Conference on Robotics and Automation (ICRA),
4397-4404, 2015

[23] L. Pitonakova, M. Giuliani, A. Pipe and A. Winfield, "Feature and
performance comparison of the V-REP, Gazebo and ARGoS robot
simulators", Annual Conference Towards Autonomous Robotic Systems,
2018, pp 357-368

[24] I. Bzhikhatlov and S. Perepelkina, "Research of robot model behaviour
depending on model parameters using physic engines Bullet Physics and
ODE", International Conference on Industrial Engineering, Applications
and Manufacturing (ICIEAM), 2017, pp. 1-4

[25] A. Roennau, F. Sutter, G. Heppner, J. Oberlaender and R. Dillmann,
"Evaluation of physics engines for robotic simulations with a special
focus on the dynamics of walking robots," 2013 16th International
Conference on Advanced Robotics (ICAR), Montevideo, 2013, pp. 1-7

[26] Y. Yu, J. Yang, X. Zan, J. Huang and X. Zhang, “Research of simulation
in character animation based on physics engine,” International Journal of
Digital Multimedia Broadcasting, vol. 2017, Article ID 4815932, 7 pages,
2017

[27] E. Rohmer, S. P. N. Singh and M. Freese, "V-REP: A versatile and
scalable robot simulation framework," 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, 2013, pp. 1321-
1326

[28] CoppeliaSim, “Dynamics engines general properties”, 2020 [Online].
Available:http://www.coppeliarobotics.com/helpFiles/en/dynamicsEngi
neDialog.htm

[29] CoppeliaSim, “Simulation dialog”, 2020 [Online].
Available:http://www.coppeliarobotics.com/helpFiles/en/simulationProp
ertiesDialog.htm

[30] CoppeliaSim, “Video recorder”, 2020 [Online].
Available:http://www.coppeliarobotics.com/helpFiles/en/aviRecorder.ht
m

