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Abstract—The difference between real experiments and their 

simulated counterparts, the so-called reality gap, is dependent on 

various factors and a challenging issue for every simulation-based 

robot experiment. The reality gap in robot experiments is often 

caused by software, which is not always able to sufficiently capture 

particular details and process them properly. In order to minimize 

this difference, this paper strives to assess different simulation 

physics engines in V-REP, the simulation framework for the 

Kilobot swarm robots. The outcome of the simulation software 

adaption is based on a unified multi robot experiment applied to 

Kilobots. This paper proposes a simulation attitude, which reflects 

the outcomes of a real world experiment with Kilobots accurately. 

Keywords—Kilobot, physics engines, reality gap, simulation, 
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I. INTRODUCTION 

Increasing interaction quality of robots with their 
environment based on automatically adapting their behavior and 
skills is an emerging topic in the domain of robotics [1]. Over 
the last years, several researchers published numerous papers 
proposing various optimizations of robot behaviors considering 
different reactive learning frameworks and self-restricting 
adaption in the operating environment [2]. Simulation of robotic 
behavior does not only enable performing a considerable 
number of training cycles without endangering or adapting the 
required physical environment, it also creates the opportunity of 
an enhanced reinforcement learning process in order to improve 
the robots’ performance. A simulation is therefore helpful in 
order to transfer the learnings into reality. 

Despite all these relevant advantages, simulation have still 
the restriction of not being able to fully capture the real 
environment a robot is finally supposed to act in. For example, 
there are many real factors, such as collision of robots, mass or 
traction [3], which might have an influence on the simulated 
outcomes, but, still are not, or only insufficiently, considered by 
the simulation software. On the other hand, there is simulation 
software available with the capabilities to simulate real world 
environments in a more precise way. Nevertheless, such 
software requires a high amount of computational power, which 
leads to hours or even days of processing time for just a few 
seconds of simulation [3]. In the field of robotics, according to 
Jakobi, it is hard to model a simulation accurately and 
appropriately to the applied physical environment, which 

becomes even more difficult with increasing complexity and the 
number of included robots [4]. A lot of different features and 
environmental circumstances can influence the robots’ behavior 
in a real world scenario: sensor and communication behavior, 
noise, physical characteristics and hardware calibration.  

In the specific case of the Kilobots’ experiment according to 
Zhong et al. [5], the orbiting functionality, as example, was not 
noticeably performed by the robots in the real experiment as it 
was in the simulation. This Kilobot experiment (including 
simulation and real experiment) indicates a reality gap of swarm 
robotic behavior in the transmission of simulated training policy 
and real world test scenario. Christiano et al. refer to the reality 
gap when the main goal is accurate simulation [3]. However, in 
order to gain a relevant amount of training data for the robots, 
software simulations depict an attractive alternative to design 
and enhance algorithms evaluating different solution approaches 
[6]. 

II. RELATED WORK 

The reality gap in robotics simulation has been studied 
frequently in the literature and dates back at least to the 1990s 
[7]. In the following we discuss some approaches for analyzing 
and reducing the reality gap including a few selected application 
areas 

In [8] a concept of noise induction is used for modelling the 
reality gap and artificial evolution is used to develop recurrent 
dynamical network controllers for the simulated robot. The 
resulting controllers were used in a real robot leading to an 
almost identical robot behavior. In [9], [10], and [11] the gap 
between reality and simulation denoted as transferability is used 
an optimization criterion in a multiobjective optimization 
approach. The other considered objective is the control goal of 
the robot denoted as fitness. The problem is solved by a 
multiobjective evolutionary algorithm. In [12] an illusory sub-
system is incorporated in the robot control for adaptation and 
minimizing the differences of robot behavior evaluations in 
reality and in simulations without explicit calibration. Authors 
in [13] suggest an anticipation-enabled control architecture 
which builds a partial model of the simulated environment 
within robot control. In reality, then error estimation of the 
model is done which is then used for improving the control. 
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In [14] and [15] abstraction of the sensory inputs and motor 
actions (i.e. preprocessed sensory inputs) is successfully used 
for reducing the reality gap. In recent years the applications of 
machine learning approaches have been used successfully for 
reducing the reality gap. For instance, neural networks are used 
in [16] and [17]. 

In [18] a set of small obstacles is added to the simulated 
environment which is shown to lead to more robust robot 
movements when transferred to a real world robot, especially in 
difficult scenarios. In [19] the reality gap is considered in the 
context of an evolutionary robotics approach for robots used to 
control the growth and motion of natural plants. The reality gap 
in the context of robotics and virtual or mixed reality 
applications is discussed in [20] and [21]. 

III. PROBLEM DESCRIPTION 

The need to effectively analyze various outcomes of 
potential robot behavior has led researches to apply simulated 
robot experiments instead of conducting real world tests [6]. 
Having the advantage of lower costs and faster results than real 
world experiments, robot simulation software is available for 
different platforms or distributions, for example MATLAB or 
SD/FAST [22]. Based on the numerous availabilities of 
simulation tools, it appears inviting to assume that the gained 
results for robot behavior in simulators perform equally in the 
real world [6]. Although, simulated training data seem to 
replicate and optimize the main functionality of the robots in an 
appropriate manner, the simulation software fails to consider 
several adjustments based on the real environment the robot is 
operating in [3]. For example, Christiano et al. [3] list different 
factors, such as exact measuring or friction. Such differences 
regarding the performance of robots, detected between the 
simulation and the applied experiment, is regarded as reality gap 
[1].  

Zhong et al. refer to the reality gap in connection with a 
particular Kilobot experiment and its simulation applying noisy 
circumstances [5]. When several swarm robots are organizing 
themselves at the same time, the accuracy can be considerably 
decreased due to communication failures and collision issues 
between the robots. Considering the results with the Kilobot 
experiment and the comparison between simulation and real 
world experiment, shown in [5], several reality gap issues were 
identified. For example, the exploring tendencies of the Kilobots 
were more noticeable in the real implementation than in the 
simulations, conducted with the simulation framework V-REP. 
Another reality gap was hinted by the absent orbiting-a-fellow 
functionality. Although this function was running in the 
simulations, in the real implementation it was not noticeable, 
which lead to a reduced success rate of finding the target in the 
real experiment. An explanation for this might be that the real 
Kilobots are technically only able to process one infrared (IR) 
signal (the applied communication technology) at a time, while 
the simulation software does not use this limitation. Apparently, 
the arising time delay in communication between real Kilobots 
could not be considered in the simulations. In consequence, the 
simulations proposed that more Kilobots would reach the target 
than the real implementation revealed [5].  

The problem, discussed in this paper, is defined as follows: 
The reality gap (see Fig. 1) is an inevitable disturbance factor 
when producing training data for robots in simulators [1]. 
Consequently, there are several intentions to minimize the 
reality gap as much as possible. Building upon the performed 
experiment of Zhong et al. with the Kilobots, our paper 
evaluates alternative settings within the simulation software by 
recreating and reprocessing the exact same experiment and its 
attributes with different physics engines. The recorded outcomes 
of each simulator run will be evaluated and assessed similarly as 
in the experiments of Zhong et al. The goal therefore is to 
suggest a more suitable physics engine setting for multi robot 
experiments in V-REP with Kilobots in order to reflect the 
outcomes of the real world experiment more precisely. For this 
reason, the relating tests, analysis and assumptions of Zhong et 
al. are taken as basic concept for this paper. Therefore, the 
assessment of different simulated outcomes is based on the 
comparison of the documented outcomes with V-REP and the 
results of the real implementation of Zhong et al. Based on that, 
the reality gap severity of each physics engine is determined and 
discussed. Recommendations are given in the conclusions. 

 

 

 

      
     Simulated Kilobots in  
     Physics Engine 

Real Kilobots in Environment             Virtual Machine   

Fig. 1. The problem of the reality gap between real robot experiment and 
simulation of robots using physics engine. 

IV. SOLUTION METHOD 

The reality gap between simulated outcomes and the real 
world experiment depends on various factors: The simulation 
software, computational power, which includes memory and 
CPU cores as well as the ability of using multiple CPU cores 
[23], and physics engines used within the simulation software 
[24, 25]. Often, a distinction is made between open source and 
commercial [26], which relates to both software and physics 
engines. It should be noted that professional software is not 
necessarily commercial. Pitonakova [23] compared three 
different simulators V-REP, Gazebo and ARGoS in regards to 
built-in capabilities like available physics engines, scene editor 
and mesh manipulations, robot libraries and other models, 
programming methods, and user interfaces [25]. The analysis 
has shown that V-REP, even though it is very complex and 
resource-intensive, it is the most comprehensive simulation 
software compared to the others. In terms of features, Gazebo is 
closer to V-REP than ARGoS. For example, ARGoS has no 
Kilobot libraries compared to V-REP. 

V-REP is a multifunctional application for different robot 
simulation scenarios. It does not only contain an implemented 
Kilobot model, but also several other robot models and 
optimization methods, for example the Hexapod model or the 
Delta Arm manipulator [27]. V-REP as a framework is a 
standard to simulate robotic behavior. However, the variety of 

gap 
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possible settings inside the software, considering the simulation 
performance, makes its correct use very complex. 

 

  

 

 

 

 

Fig. 2. Physics engines overview in V-REP [28] 

 

The motion of rigid bodies in the physical world is 
increasingly often modelled and simulated by using physics 
engines [25]. The simulation software V-REP supports four 
different physics engines: Bullet, ODE, Vortex and Newton (see 
Fig. 2). Each physics engine has predefined standard values for 
e.g. static or dynamic properties, material and shape. It is 
possible to adjust the default parameters (e.g. friction, restitution 
and damping [27]) in the simulation software (see Fig. 3).  

 

 

Fig. 3. Physics engines material properties [28] 

Default settings are documented and can be found on the 
producer's website. Simulations, performed with different 
physics engines or customized parameters, will lead to 
dissimilar results. Therefore, the adjustment of the parameters 
per simulation needs to be done carefully in order to simulate a 
real behavior correctly.  

A circumstance that has a major impact on such experiments 
is the collision behavior of two or more robots, which itself is a 
widely studied field [26]. The behavior of a collision in real 
world experiments is based on physical behavior of the objects, 
which is influenced by various factors such as their kinematics 
or the structure of their surfaces. In simulations, the collision 
behavior is based on algorithms [26]. As it is illustrated in the 
results by Zhong et al., none of the Kilobot searchers tipped over 
during the real world test runs as predicted in the simulation [5]. 
This is resulting in a huge reality gap, because a searching robot 
that has tipped over has no further chance to reach the target 
Kilobot. In order to reduce this reality gap, the parameters for 
the collision behavior can be adjusted in V-REP via the physics 
engines material properties (see Fig. 3). The question is, how? 

Zhong et al. compared one particular real world experiment 
against two V-REP simulations [5]. The only parameter, which 
differed between the two simulations, was the desired distance 
for reaching the target. In one simulation, the value was set to 4 
cm, and in the other simulation, the value was set to 6 cm. The 
value in the real world experiment was given with 6 cm. In order 
to compare the results from the experiments, the same value of 
6 cm was used as configuration for the experiments with the 
different physics engines. Thus, our simulations were carried out 
and documented analogous to the procedure of Zhong et al. [5].  

The simulation test runs were recorded using the integrated 
video recorder [30]. The properties can be adjusted in the 
simulation software, which are for example launching the 
recording at the next simulation start or define the location for 
the generated video files. 

The simulations have been performed on a virtualized 
computing environment running Acropolis Hypervisor (AHV) 
version 20170830.166. The used virtual machine on the 
hypervisor was a Windows 10 Enterprise edition with 8 GB 
Memory and 4 CPU cores with Intel Xeon E5 2.1 GHz 
processor.  

The simulations were carried out with V-REP PRO EDU 
V3.6.1 using the three physics engines Bullet, ODE and Newton. 
Simulation with the Vortex physics engine were not performed 
as the Vortex Studio Essentials software was no longer 
available. 

V. RESULTS 

Simulation I: Table I shows the test results from the 
simulation carried out with the physics engine Bullet 2.83 in 
regards to the number of searchers close to the target. 
Throughout the test runs, on average of 2.6 Kilobots of 10 
Kilobots in total reached the target within the simulation time. 
In test run three, none of the searcher reached the target. Four 
searchers, which represents the highest number of searchers, 
reached the target within all test runs. 
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In the simulation, regarding the time the searcher needed to 
reach the target for the first time, the time span is between 31 
and 41 seconds (see Fig. 4). The time span, a further searcher 
needed to reach the target is 32 and 46 seconds. In test run three, 
five and nine no further searcher reached the target.  

 Concerning collisions, an average of 2.8 Kilobots tipped 
over during the simulation. In the worst case, seven Kilobots 
tipped over in one test run.  

Fig. 5, which represents the pictures taken at the end of the 
test runs, shows a similar situation for all test runs. Right at 
simulation start, some of the searchers did not move towards the 
target. This caused some of the searchers to stay quite far away 
from the target after the end of the test runs. 

After 15 to 20 seconds on average, the first searcher detected 
another searcher, which was indicated by the white color. An 
exception is the first test run, where it took 30 seconds to let the 
first two Kilobots detect each other. 

Simulation II: Table II shows the test results from the 
simulation carried out with the physics engine ODE in regards 
to the number of searchers close to the target. On average 2.3 
Kilobots reached the target within the simulation time. In all test 
runs, a minimum of one Kilobot reached the target. In test run 
five, six and ten, only one searcher reached the target, which 
represents the lowest number of searchers reached the target. 
Four searchers reached the target in test run two and nine, which 
represents the highest number of searchers reached the target. 

With respect to the time the searcher needed to reach the 
target for the first time, the time span is between 32 and 45 
seconds (see Fig. 6). The time span, a further searcher needed to 
reach the target is 35 and 53 seconds. In three out of the ten test 
runs no further searcher reached the target.  

 

 

 

TABLE I.  NUMBER OF SEARCHERS CLOSE TO THE TARGET IN 

SIMULATION (BULLET 2.83) 

Test 

run 

Number of searchers close to the target 

Green: 

target 

found 

Yellow: 

approach

-ing 

target 

White: 

Other 

searchers 

detected, 

still 

searching 

Cyan: 

No 

message 

received, 

keep 

searching 

Total 

1 3    3 

2 3   2 5 

3     0 

4 2 1  1 4 

5 1  2  3 

6 3 1  2 6 

7 3   1 4 

8 3  2  5 

9 1  1 1 3 

10 4   1 5 

Avera

ge 
2,6    3,8 

Media

n 
3    4 

 

 

Fig. 4. Time needed to find the target and to reach it in simulation (Bullet 2.83) 

 

     

     

Fig. 5. Simulation results with Bullet 2.83 
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TABLE II.  NUMBER OF SEARCHERS CLOSE TO THE TARGET IN 

SIMULATION (ODE) 

Test 

run 

Number of searchers close to the target 

Green: 

target 

found 

Yellow: 

approach

-ing 

target 

White: 

Other 

searchers 

detected, 

still 

searching 

Cyan: 

No 

message 

received, 

keep 

searching 

Total 

1 2   1 3 

2 4    4 

3 2   1 3 

4 3  1  4 

5 1   1 2 

6 1  1  2 

7 2   1 3 

8 3    3 

9 4   1 5 

10 1  1 1 3 

Avera

ge 
2,3    3,2 

Media

n 
2    3 

 

Concerning collisions, an average of 3.1 Kilobots tipped 
over during the simulation. In one particular test run, even the 
target Kilobot tipped over due collision. 

Fig. 7, which represents the pictures taken at the end of the 
test runs, shows a similar situation for all test runs. Right at 
simulation start, some of the searchers did not move towards the 
target. This caused some of the searchers to stay quite far away 
from the target after the end of the test runs. 

After 15 to 29 seconds on average, the first searcher detected 
another searcher, which was indicated by the white color.  

Simulation III: As shown in Fig. 8, in the simulation, none 
of the searchers reached the target in the test runs using the 
Newton physics engine. 

 

 

 

 

Fig. 6. Time needed to find the target and to reach it in Simulation (ODE) 

Except in the first test run, at least one searcher has 
approached the target, however spending more than 60 seconds 
as upper limit, (see Fig. 8).. As indicated by the red Kilobots, 
some of the searchers came very close to another one in every 
of test runs. However, the simulation predicted that none of the 
searchers tipped over due to collision. 

At simulation start, the searchers walked towards the target in 
all test runs. During the simulation, some of the searchers have 
changed the direction and moved away from the target (see Fig. 
9). 

Simulation IV: As an outlook, V-REP provides the Vortex 
physics engine, too. However, no simulations could be carried 
out, because the license was not available to us during our 
experiment. 

 

 

 

 

 

     

     

Fig. 7. Simulation results with ODE 
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Fig. 8. Time needed to find the target and to reach it in simulation (Newton) 

VI. DISCUSSION AND ANALYSIS 

As the experiments with the different physics engines have 
shown, there are potentially better choices than the applied 
standard physics engine Bullet 2.78 in the documented 
experiments by Zhong et al. The repeated experiments indicated 
that the ODE physics engine provided the most reliable results 
according to the real implementation with Kilobots. As 
considerable reasons for this suggestion is, on one hand, the 
average number of successful (shown in green color) searching 
Kilobots with ODE of 2.3. In comparison with the average value 
in the real implementation with 2.2, ODE reports the closest 
result among all tested physics engines towards the real 
experiment. Furthermore, as the video evaluation in the test runs 
with ODE revealed, the Kilobot searchers tend to move more 
randomly in the test field. This led to a higher distance between 
the searcher bots and the target bot at the end of every test run. 
This was also observed by Zhong et al. by performing the real 
implementation. In comparison to the other physics engines, 
using ODE, the searching Kilobots had a certain tendency to 
head directly toward the target Kilobot. This might be an 
explanation for the higher average number of Kilobots, which 
have found the target.  

During the different simulation runs, it became noticeable 
that some physics engines predicted Kilobots falling over after 
a collision with a fellow searching bot. For example, Bullet 2.83 
and ODE simulated such a behavior. Newton, in fact simulated 

collisions between searching Kilobots, but never a fell over of a 
robot. Unfortunately, there were no specific cases documented 
for the real experiment to draw a conclusion out of it. A more 
elaborated test scenario in this direction would therefore provide 
further insights, as well as a larger number of test runs with the 
different physics engines could discover specific tendencies. 
Additionally, the experiments with Newton indicated that none 
of the searching robots really reached the target. As there are no 
test results in the real implementation confirming this outcome, 
the reason for the results of the tests with the Newton physics 
engine should be examined in further research.  

 

 

 

VII. CONCLUSION AND OUTLOOK 

The tested three different physics engines Bullet, ODE and 
Newton in V-REP provide a broad range of attributes to simulate 
the behavior of Kilobots. As Fig. 3 shows, the physics engines 
partly use similar types of attributes. For, example both Bullet 
versions and ODE contain attributes called friction, linear 
damping and angular damping. However, other attributes are 
dissimilar between different physics engines, for example soft 
ERP or soft CFM in the ODE physics engine. 

Another interesting observation is the same physics engine 
in different versions, such as the two mentioned Bullet versions, 
can have almost similar attributes, but the simulated outcomes 
appear very different. The Bullet 2.78 simulation, conducted by 
Zhong et al., has average number 4.6 Kilobots that have found 
the target. In comparison, the Bullet 2.83 experiment of this 
paper has an average number of 2.6 Kilobots that found the 
target using the same parameters. The reason for these different 
results is hidden in the physics models implemented in the 
software and stays unclear. One explanation for this issue is 
probably that the software provides continuous improvements of 
the included models without sufficiently informing the users 
about respective changes. As consequence, even a comparison 
of simulations using the same physics engine in different 
versions might lead to different results. However, the outcomes 
of Bullet 2.83 are the second closest outcomes compared to the 
real experiment after ODE results. 

     

     

Fig. 9. Results of simulation with Newton 
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As a further aspect, the ODE physics engines comprises, 
together with the Newton physics engine, the lowest number of 
attributes and none of them are similar among both physics 
engines. In the context of the ODE physics engine, it might be 
interesting to learn, which specific attributes or combination of 
attributes are capable to create the similar results as in the real 
implementation. 

Overall, the results show that the physics engines are 
difficult to compare, because they comprise many different 
parameters, which are difficult to adjust to the real experiment. 
Particularly, the correct simulation of collisions of Kilobots is 
difficult to compute: a small change in the initial conditions 
might result in a very different number of fallen robots or robots 
reaching the target.    

The different physics engines experiments were conducted 
on a virtualized Windows 10 client on Acropolis Hypervisor, 
which is Linux-based. A further research, relying on the 
elaborated results, might be to check if the simulation software 
runs platform-independent. Repeating tests on different 
computing platform using the same physics engines in the same 
versions might if the CPU or other hardware specifications have 
an influence in the results.  
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