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Abstract— The detection of an object such as a human is very 

important for image understanding in the field of computer 

vision. Human detection in images can provide essential 

information for a wide variety of applications in intelligent 

systems. In this paper, human detection is carried out using deep 

learning that has developed rapidly and achieved extraordinary 

success in various object detection implementations. Recently, 

several embedded systems have emerged as powerful computing 

boards to provide high processing capabilities using the 

graphics processing unit (GPU). This paper aims to provide a 

comprehensive survey of the latest achievements in this field by 

using deep learning techniques in the embedded platforms. 

NVIDIA Jetson was chosen as a low power system designed to 

accelerate deep learning applications. This review highlights the 

performance of human detection models such as PedNet, 

multiped, SSD MobileNet V1, SSD MobileNet V2, and SSD 

inception V2 on edge computing. This survey provides an 

overview of these methods and compares their performance in 

accuracy and computation time for real-time applications. The 

experimental results show that the SSD MobileNet V2 model 

provides the highest accuracy with the fastest computation time 

compared to other models in our video datasets with several 

scenarios. 

Keywords— computer vision, convolutional neural network 

(CNN), deep learning, human detection, NVIDIA Jetson, object 

detection. 

I. INTRODUCTION 

In recent years there have been major developments in 

computer vision applications in object detection. This 

development is due to the increasing need for intelligence 

systems in robotics [1]-[2], surveillance [3], medical imaging 

[4], industry [5], and vehicle technology [6]. Human or 

pedestrian is one of the most essential objects to detect in the 

images for intelligent systems. Reliable human detection can 

be used for wide applications in video analysis such as people 

tracking [7], people counting [8], human-computer 

interaction [9], crowd detection [10], and human activity 

recognition [11]. However, human detection faces more 

challenges compared to traditional object detection because 

it has more complex environments, occluded objects, and 

variations in geometry and illumination. 

Several techniques that have been presented for human 

detection. Those techniques are available from traditional 

object detection to the most refined implementation of 

pedestrian detection. Early methods in pedestrian detection 

are mainly focused on feature representation, such as SIFT 

[12], SURF [13]-[14], shape contexts [15], and the integral 

channel features (ICF) detector [16], which requires 

registration of the object to be searched for features in the 

images. These methods provide unlabeled data that the 

algorithm tries to understand by extracting its features and 

patterns so that they can only be used for certain, known 

objects. Following extensive research into human detection, 

researchers came up with machine learning techniques. These 

methods allow the algorithm to learn on labeled datasets and 

provide analytical results to evaluate their accuracy in the 

training data. In the machine learning approach, the problem 

is divided into two steps: object detection (features 

extraction) and object recognition (classification), as shown 

in Fig. 1. The features extraction such as histogram of 

gradient (HOG) [17]-[18], Haar-like features [19]-[20], and 

local binary pattern (LBP) [21] are often used and suitable for 

representing objects in the images. Then, these features are 

trained to classify the detected objects. The Adaboost cascade 

classifier [22] and support vector machine (SVM) [23] are 

two widely used classifiers due to their large generalizability 

and less classification complexity. However, in traditional 

machine learning techniques, most of the features 

implemented need to be identified by domain experts to 

reduce data complexity and make patterns more visible for 

learning algorithms to function. This limitation makes 

machine learning less reliable in detecting objects in real 

applications that have many unexpected conditions. 

 

 

Fig. 1. Machine learning approach. 

In recent years, deep learning has become widely known 

for its breakthrough in computer vision. Deep learning can 

solve all tasks in one algorithm, as shown in Fig. 2, whereas 

machine learning needs to divide the algorithm into several 

parts for each task to be combined at the final stage. Deep 

learning can learn high-level features from the data 

incrementally, which can eliminate the need for domain 

expertise and core feature extraction. This is expected to 

overcoming the problem of detecting the object in the video, 

such as the various size of objects, changes in illumination, 

and real-time computation. The deep neural network (DNN) 

gain a significant breakthrough by introducing regions with 

convolutional neural network (CNN) features [24], applying 
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high-capacity CNN to the bottom-up region, and supervised 

pre-training for an additional task. CNN has the characteristic 

to understand rich and complex features without the need to 

design features manually [25]. Although CNN outperforms 

commonly known feature descriptors, i.e., SIFT, SURF, 

HOG, LBP, and Haar-like, it took major tradeoffs during its 

training time. Thus, the improved model of CNN has been 

suggested, including Faster R-CNN and YOLO [26]–[28]. 

Faster R-CNN is achieved by optimizing the classification 

along with the bounding box, adding additional subnetworks 

to generate regions, and fixed grid regression. This model 

eliminates selective search algorithms that allow the network 

to learn the proposed regions. Unlike region-based 

algorithms, YOLO detects objects by predicting their 

location and class probability using a single convolutional 

network. However, YOLO has limitations in detecting small 

objects in the image due to the spatial constraints of the 

algorithm. Besides, Faster R-CNN and YOLO provide high-

accuracy object detection with real-time performance on a 

PC, whereas embedded platforms have limited capabilities to 

run these models due to the large memory resource 

requirements.  

  

 

Fig. 2. Deep learning approach. 

 

A study in [9] mentioned that the ideal object detection 

algorithm is one that can meet high accuracy and efficiency. 

Although the problem of object detection seems 

straightforward, the aspects of accuracy and computation 

time need to be considered, which makes it a challenge for 

applications in real environments. First, the variability of 

objects belonging to the same class is one of the biggest 

difficulties, such as changes in perspective, partial occlusion, 

unexpected noise, and changes in illumination. These factors 

and several other things that may occur in the field can cause 

the algorithm to lose information. Second, the issues of time 

efficiency, memory management, and storage are required to 

train this detector. Authors in [29] discuss the performance of 

deep learning techniques for object detection on embedded 

platforms. To achieve high detection accuracy, an object 

detection algorithm must be able to cope with intra-class 

variations, environmental conditions, and image 

disturbances. Furthermore, to achieve high efficiency on an 

embedded platform, an algorithm must be able to be used on 

low-end mobile devices that have limited memory, limited 

speed, and low computing capabilities. 

In this paper, we evaluate and compare human detection 

models on cost-effective embedded platforms such as the 

NVIDIA Jetson TX2 and Nano. The deep learning models 

use general-purpose datasets, i.e., PASCAL VOC, COCO, 

and ILSVRC, for training and evaluation. The research 

investigates the ability of the NVIDIA Jetson to run models 

such as PedNet, multiped, SSD MobileNet V1, SSD 

MobileNet V2, and SSD inception V2. As processing speed 

is a key factor in embedded systems, this study also 

conducted comprehensive comparisons among those deep 

learning techniques to find the most efficient model. The 

main contributions of this study can be summarized as 

follows: integration and optimization of people detection 

algorithms in real applications into embedded platforms, end-

to-end comparisons between existing people detection 

models in terms of accuracy and performance, and datasets 

that can be used to detect and track people in the building. 

The remainder of the paper is organized as follows. 

Section II explains the embedded system platform and human 

detection models. Section III describes and discusses the 

experimental results. Then, Section IV draws the 

conclusions. 

II. HUMAN DETECTION MODELS  

A. Embedded Platform Benchmark 

To realize object detection using artificial intelligence 

(AI) in real applications on the embedded platform, several 

conditions are needed, e.g., high accuracy, fast computation 

time, small model size, and efficient energy consumption. 

Furthermore, the development of a computer vision 

algorithm is not only based on the techniques, but also on 

advanced parallel computing architectures that enable 

algorithms to run efficiently [30]. As a result, the hardware 

industry has begun to focus on embedded platforms which 

can provide high-precision performance at low latency.  

In this paper, we compare several models for human 

detetcion using two integrated hardware accelerators 

emerging from NVIDIA: Jetson TX2 (Fig. 3(a)) and Nano 

(Fig. 3(b)). Jetson TX2 is an embedded platform that can run 

computer vision applications with fast and small power 

consumption (7.5W - 15W). Thus, it provides a solution for 

implementing software for object detection using AI in real-

time. Jetson Nano has a smaller size with slower performance 

but uses less power (5W – 10W) and lower cost than TX2. 

These small and powerful devices make it possible to execute 

computer vision algorithms efficiently in parallel. 

 

      

(a)   (b) 

Fig. 3. NVIDIA Jetson board. (a) TX2. (b) Nano. 

The graphics processing unit (GPU) allows embedded 

hardware to optimally execute specialized tasks in AI. GPU 

is an accelerator with a focus on graphics processing which 

began to grow as the entertainment industry advances, 

including the audio and video processing and gaming 
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industries. GPUs excel at matrix and vector operations used 

on neural networks. The GPU in NVIDIA Jetson consists of 

multiple processing cores, e.g., 128-core Maxwell 921MHz 

on Nano and 25-core Pascal 1.3GHz on TX2. Besides, 

modern GPUs rely not only on powerful graphics engines but 

also on parallel processors with high memory bandwidth for 

computationally demanding algorithms [31]. The GPU uses 

Compute Unified Device Architecture (CUDA) [32] for its 

parallel computing platform. NVIDIA developed the CUDA 

Deep Neural Network Library (cuDNN) [33] as a GPU-

accelerated library that can be used to improve system 

performance, particularly for deep learning implementations 

such as forward and backward convolution, pooling, 

normalization, and activation layers. 

B. Convolutional Neural Network 

CNN was introduced as a self-organizing neural network 

model in [34] and developed as gradient-based learning in 

[35]. The learning model in CNN can be used to train and test 

computer vision tasks. The CNN neural network consists of 

the convolutional layers, the non-linearity layers, and the 

pooling layers. A convolution layer with filters scans the 

image and creates a feature map predicting which class each 

feature belongs to. Rectified Linear Unit (ReLU) is used in a 

non-linearity layer that creates a robust neuron response to 

data corruption. This will not result in a large negative value 

in the feature map output despite a lot of corruption in the 

image. The pooling layer uses a max-pooling to reduce the 

resolution of the feature map and preserve the most important 

information. Then, the fully connected layer and softmax 

functions are applied to classify objects with probabilistic 

values between 0 and 1. Fig. 4 shows a typical CNN 

architecture.  

In the fully connected layer, the output matrix in the 

previous layer is flattened into a vector for the input at the 

next stage. Inputs on feature analysis are combined to get the 

weights to predict the correct label and create a model. 

Furthermore, an activation function such as softmax is used 

to classify the output as a person. 

Convolutional operations can find the correct direction 

for space reduction, whereas the pooling and non-linearity 

operations can deduce space in that direction. CNN is 

particularly suited for accurate modeling of objects because 

images consist of small details or features. Besides, CNN 

could create a mechanism to analyze each feature separately 

that informs conclusions about an image. 

CNN has been the main architecture for deep learning 

platform since the popularization of deep convolutional 

neural networks on ImageNet [36]. To achieve higher 

detection accuracy, a deeper and more complex network is 

required. However, modeling like this requires more memory 

capacity and computation time in real-world applications, 

and it is necessary to detect and recognize objects promptly 

on time on limited computing platforms. 

On the Jetson board, TensorRT can be used for high-

performance inference on NVIDIA GPUs. The TensorRT is 

specially designed to quickly and efficiently run a trained 

CNN network of GPUs. TensorRT optimizes the CNN 

network by combining layers and optimizing the selected 

kernel to increase latency, throughput, power efficiency, and 

memory consumption [37]. In deep learning applications, 

TensorRT will optimize the network to run with lower 

precision, which will further improve performance and 

reduce memory requirements.  

In this paper, CNN-based models such as PedNet, 

multiped, SSD MobileNet V1, SSD MobileNet V2, and SSD 

inception V2 are used for real-time human detection on 

embedded platforms.  

C. PedNet and Multiped 

The PedNet model is specifically designed for pedestrian 

detection and the multiped model is designed for pedestrian 

and luggage detection [38]. PedNet using the convolution 

filter of size 3×3 and a max-pooling window size of 2×2 

throughout the network. ReLU is used as an activation 

function with batch normalization after every convolution 

layer. The backbone of the PedNet consists of an encoder–

decoder network for down sampling and up sampling the 

feature maps, respectively. The input to the network is a set 

of three frames and the output is a binary mask of the 

segmented regions in the middle frame. Irrespective of 

classical deep models where the convolution layers are 

followed by a fully connected layer for classification, PedNet 

is a Fully Convolutional Network (FCN) as shown in Fig. 5. 

 

Fig. 5. PedNet architecture [37]. 

 

Fig. 4. Architecture of CNN. 
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D. SSD MobileNet 

 The MobileNet model replaces the standard convolution 

with depthwise separable convolution, which reduces the 

complexity and model size [39]. Fig. 6 shows the MobileNet 

V1 convolutional blocks. The depthwise separable 

convolution divides the kernel into two: input filtering using 

a depthwise convolution layer and input combining using a 

1×1 convolution or pointwise layer. The 3×3 convolution is 

followed by a batch norm and ReLU6 non-linearity that use 

low-precision computing. Then, the pointwise layer is 

followed by a batch norm and ReLU6 after each 

convolutional layer. ReLU6 is more robust than regular 

ReLU and prevents the activations from getting too big.  

 

 

Fig. 6. MobileNet V1 convolutional blocks. 

 

The MobileNet V1 architecture is consists of a regular 

3×3 convolution at the first layer without pooling layer 

between depthwise separable blocks. The first layer serves to 

expand the number of channels in the data before entering the 

depthwise convolution. Therefore, this layer and the 

corresponding pointwise layer increase the number of output 

channels. The strides of 2 are used on the depthwise layer to 

reduce the spatial dimensions of the data. In the end, there is 

a global average pooling layer and a fully-connected 

classification layer followed by a softmax.       

Fig. 7 shows the MobileNet V2 convolutional blocks with 

the residual connection that make it different from MobileNet 

V1. In the first layer, the 1×1 convolution aims to expand the 

number of channels in the data. The expansion layer aims to 

make the output have more channels than the input. Then, the 

lightweight depthwise convolutions are used to filter features 

as sources of ReLU6  non-linearity. In the third layer, the 1×1 

convolution layer has an opposite function of MobileNet V1. 

This layer projects data with a high number of dimensions 

into a tensor with a lower number of dimensions also called 

the bottleneck layer. As an improvisation of MobileNet V1, 

the MobileNet V2 architecture consists of a regular 1×1 

convolution, a global average pooling layer, and a 

classification layer. 

 

 

Fig. 7. MobileNet V2 convolutional blocks. 

 

MobileNet is an architecture for classification or feature 

extractor purposes, and a single shot multi-box detector 

(SSD) is an architecture that produces the bounding box 

localizations for detection purposes. The SSD [40] approach 

is based on a feed-forward convolutional network that uses 

only one shot to produces a fixed-size bounding box and 

detect a class of objects in the image. Convolutional feature 

layers are used to detected multiple scales of various sizes. In 

addition, multiple feature maps are used to improve the 

accuracy of each object class prediction.  

E. SSD Inception V2 

SSD inception [41]-[42] were proposed to improve SSD 

classification accuracy and reduce computational complexity 

without affecting detection speed. The number of the input 

channel is limited by adding a 1×1 convolution layer in the 

inception module to reduce the computation cost of deep 

neural networks. 

SSD inception V2 [43] reduces representational 

bottleneck and uses the smart factorization method. The 5×5 

convolution is factorized into two 3×3 convolution layers to 

make the computational times faster. Then, the n×n filter size 

convolution is factorized into 1×n and n×1 convolution 

combination to reduce computational cost. The filter bank in 

the module is widened to avoid reductions in excessive 

dimensions that lead to bottlenecks and loss of information. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, video shooting was carried out in a building 

using an RGB camera with a resolution of 1280×720. For 

real-time purposes, image resolution is resized into a 

resolution of 320×240. There are four types of datasets used 

with each scenario, as shown in Fig. 8. Each video can be 

described as follows: 
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- Video-1: This dataset consists of people entering and 

leaving the door simultaneously in an irregular 

position and at a close distance to each other. In one 

frame there are about 1-2 people.  

- Video-2: It has the same scenario as video-1, but in 

one frame there are 1-4 people with different 

movement speeds, some people walk slowly, and 

others walk faster. 

- Video-3: This dataset has darker lighting in a larger 

room than video-1 and video-2. 

- Video-4: It has the same scenario as video-3, but has 

more people in one frame with different movement 

speeds, and some people are covered up. 

Video-1 and video-2 were taken about 2m from the 

camera, and some objects only show the upper half of the 

body. Video-3 and video-4 were taken with a distance of 

more than 2m from the camera, and the object often shows 

the full human body. 

 

    

(a) 

    

(b) 

    

(c) 

    

(d) 

Fig. 8. Datasets. (a) Video-1. (b) Video-2. (c) Video-3. (d) Video-4. 

 

   

  
(a) 

   

  
 (b) 

     

  
 (c) 

   

  
 (d) 

   

  
 (e) 

Fig. 9. Human detection results on 4 datasets (Upper: Video-1 and video-2. 
Lower: Video-3 and video-4). (a) Pednet. (b) Multiped. (c) SSD MobileNet 

V1. (d) SSD MobileNet V2. (e) SSD Inception V2. 

 
TABLE I.  PERFORMANCE METRICS COMPARISON 

Model 
Accuracy Results 

PR Recall F1-measure 

PedNet 0.55 1 0.71 

Multiped 0.62 1 0.76 

SSD MobileNet V1 0.91 0.99 0.94 

SSD MobileNet V2 0.94 0.99 0.98 

SSD Inception V2 0.89 0.98 0.93 
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The performance metrics comparison of the five models 

is summarized in Table I. Precision rate (PR), recall, and F1-

measure can be computed as follows 

TP
PR

TP FP



 (1) 

Recall
TP

TP FN



 (2) 

Recall
F1-measure 2

Recall

PR

PR


 


 (3) 

where TP is true positive, FP is false positive, and FN is false 

negative. TP is the bounding box on the image that detects 

people correctly. FP is the location of the bounding box that 

detects a background or other object as a person. FN is a 

person in the image but is not detected. In Table I, True 

Negative (TN) is not used as a performance metric, because 

TN describes an empty box as a non-object. In this situation, 

there may be many empty boxes which will be detected as TN 

which are not necessary to determine the accuracy of the 

models, where the detected background as a person is 

categorized as FP. 

Table I shows that both pednet and multiped have more 

FP than the other models, but have almost no FN. Thus, the 

recall value for both pednet and multiped is 1. Our results 

show that both pednet and multiped are not good for human 

detection in our scenario, where pednet has the lowest F1-

measure of 0.71. For other models such as SSD MobileNet 

V1, SSD MobileNet V2, and SSD inception V2, the results 

have almost the same accuracy. The SSD MobileNet V2 

achieves the highest F1-measure of 0.98, where SSD 

MobileNet V1 and SSD inception V2 are not good enough to 

detect when people are moving rather fast. In video-3 and 

video-4 the lighting is darker than video-1 and video-2, the 

detection result using SSD inception V2 is not better than 

SSD MobileNet V1 and SSD MobileNet V2. This situation 

causes SSD inception V2 to has lower PR and recall 

compared to SSD MobileNet V1 and V2.  

In [44], pednet and multiped have the best accuracy for 

their datasets, such as pedestrian with the small object sizes 

in the images with a resolution of 1280×720. In this case, 

pednet and multiped models and the training data are very 

suitable. In our results, pednet has better accuracy for video-

3 and video-4 that have more people from afar than video-1 

and video-2, so the human body shape can be seen more 

clearly. In our case, the objects in the images were taken with 

a camera angle of about 30 to 60 degrees that sometimes 

causes the shape of the human is not very clear. In our 

datasets, because of the camera angle, the distance between 

the object and the camera, and the movement of the object, 

sometimes objects only appear upper half of the human body 

that is covered up due to crowd.  

In Fig. 9, the bounding box in red shows the results of 

human detection on 4 datasets.  Pednet and multiped cannot 

detect humans on video-1 and video-2 where the human body 

shape was unclear and slightly blur, as shown in Fig. 9(a) and 

(b). SSD MobileNet V1 cannot detect humans in the image 

that are slightly blurred and far from the camera, as shown in 

Fig. 9(c). SSD MobileNet V2 can detect almost all humans in 

the image with several conditions and positions that cannot 

be detected with other models, as shown in Fig. 9(d). SSD 

inception V2 cannot detect humans in darker illuminated 

images, as shown in Fig. 9(e). 
 

TABLE II.  COMPUTATION TIME COMPARISON IN FPS 

Model 
NVIDIA Jetson Board 

Nano TX2 

PedNet 10.21 15.46 

Multiped 11.05 16.83 

SSD MobileNet V1 16.35 24.79 

SSD MobileNet V2 17.32 26.04 

SSD Inception V2 13.37 20.43 

 

Table II summarizes the comparison of the average 

computation time in each model. In [44], pednet has the 

fastest computation time compared to other models. This 

indicates that pednet is more suitable for small objects in the 

image, such as pedestrians on the road. In our results, SSD 

MobileNet V2 has the fastest computation time on NVIDIA 

Jetson Nano and TX2. A comparison between the two boards 

shows that the Nano has about 0.65 times the computation 

time performance of the TX2. The performance of the SSD 

MobileNet V2 on the Nano is fast enough to be used in the 

real-time application at 17.32 FPS. 

In SSD MobileNet V2, pointwise convolutions that make 

the number of channels smaller and residual bottleneck block 

reduce the amount of data on the network, making detection 

times faster than other models. The SSD MobileNet V2 is 

suitable to be used as a human detection model on our dataset, 

which has a good result with blur object due to motion, darker 

lighting, and half covered objects. High accuracy and fast 

computation time in human detection using SSD MobileNet 

V2 are very suitable for applications on embedded platforms. 

IV. CONCLUSIONS 

This paper has presented human detection testing in the 

building using NVIDIA Jetson TX2 and Nano. The 

experimental results show that the Jetson boards have a good 

performance for implementing computer vision using deep 

learning. In addition, the Jetson boards also provide an 

acceleration library that can be used to improve the 

processing performance of object modeling in deep neural 

networks. Thus, its development allows the implementation 

of complex models to create a variety of computer vision 

applications. SSD MobileNet V2 is a model that can detect 

humans on our datasets more accurately and faster than other 

models in the jetson inference, such as PedNet, multiped, 

SSD MobileNet V1, and SSD inception V2. Fast computation 

time on implementation using SSD MobileNet V2 makes it 

possible to design online applications with real-time 

performance on the embedded systems. The results of this 

analysis are expected to be used as a reference in selecting a 

model for human detection applications. 
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