
Journal of Robotics and Control (JRC)

Volume 3, Issue 1, January 2022

ISSN: 2715-5072 DOI: 10.18196/jrc.v3i1.12241 48

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

A Simulation-Based Study of Maze-

Solving-Robot Navigation for Educational

Purposes

Ismu Rijal Fahmi 1, Dwi Joko Suroso 2*
1,2 Dept. of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada, Yogyakarta,

Indonesia

Email: 1ismu.rijal.fahmi@mail.ugm.ac.id, 2dwi.jokosuroso@ugm.ac.id
*Corresponding Author

Abstract—The point of education in the early stage of

studying robotics is understanding its basic principles joyfully.

Therefore, this paper creates a simulation program of indoor

navigations using an open-source code in Python to make

navigation and control algorithms easier and more attractive to

understand and develop. We propose the maze-solving-robot

simulation as a teaching medium in class to help students

imagine and connect the robot theory to its actual movement.

The simulation code is built for free to learn, improve, and

extend in robotics courses or assignments. A maze-solving robot

study case is then done as an example of implementing

navigation algorithms. Five algorithms are compared, such as

Random Mouse, Wall Follower, Pledge, Tremaux, and Dead-

End Filling. Each algorithm is simulated a hundred times in

every type of the proposed mazes, namely mazes with dead ends,

loops only, and both dead ends and loops. The observed

indicators of the algorithms are the success rate of the robots

reaching the finish lines and the number of steps taken. The

simulation results show that each algorithm has different

characteristics that should be considered before being chosen.

The recommendation of when-to-use the algorithms is discussed

in this paper as an example of the output simulation analysis for
studying robotics.

Keywords—Robot simulation; Maze-solving robot; Random

mouse; Wall follower; Pledge; Tremaux; Dead-end filling

I. INTRODUCTION

Robots are all forms of machines that automatically

replace human effort, including those whose physic or

function does not always resemble humans [1]. Some

essential robot abilities are interacting with the surrounding

environment and moving, conforming with it. Therefore, the

robots must be equipped with navigation ability. Navigation

is the process of directing a robot to pass through a specific

environment [2]. The environment can be simple, like a

single track, or complicated, such as a maze [3].

When the robot interacts with the environment, it needs
to be equipped with an embedded algorithm in the source

code. The source code contains a series of actions or reactions

to an event, which can be simple logic, such as finite state

machines or a series of complex systems [4].

The robot navigation needs to know the surrounding,

which can be partial or a whole and has a series of control

systems equipped to support [5], [6]. Some advantage

automation for navigation can be used the wireless-based

sensor to communicate or using some advanced vision sensor

and algorithms [7], [8]. The author's previous work also

emphasized indoor localization for a small object, i.e., a
mobile robot based on the received signal from a wireless

device [9], [10], and comparisons of certain positioning

algorihm for distance or range-based [11]. We also

constructed the simple line-following robot to test our

algorithm for both stationary and moving robot tracking [12].

This paper discusses the maze-solving-robot algorithms

by simulation. Unlike previous standards in robotics

simulations, i.e., [13], [14], we are eager to explain the

algorithms in visualization to students with a straightforward

method. Especially students who are new to robotics can

absorb the material efficiently [15]. We aim that first, the
students might be interested and pay more attention to the

learning process. This paper is made to demonstrate how to

study and understand the robot's motion planning and

navigation with a simple and interactive maze-solving

simulation. Based on our concerns, a limited study shows

some algorithms applied using free and straightforward

software, i.e., Python [16]–[18]. With the free and open

software, the funding and difficulty barriers of learning

robotics at the first concern can be removed. As a learning

model using this program, maze-solving algorithms are

compared. With this study case, the characteristic of each
algorithm is identified when it interacts with various mazes.

This identification will help students implement a suitable

algorithm for the maze type.

It is also the case that novice programming can learn

faster by simple robotics, as proven in [19]. Simulating

robots is one of the good examples that learners can use in

two ways: first, study programming, and second, understand

the essential part of robotics. By studying the robotics

simulation to solve the maze, the learning process can be

scaled up to build a straightforward robot, i.e., line-following

robots. In education and robot learning, the sparks of interest

in the novice learner can significantly impact the subsequent
robotics learning. In the first stage, the simulation can also

reduce the risk of a bug or error in the robot before building

the real one [20].

 This paper considered five algorithms used commonly in

maze robot navigation. The algorithms are Random Mouse

Algorithm (RMA), Wall Follower Algorithm (WFA) [21],

http://journal.umy.ac.id/index.php/jrc
mailto:jrc@umy.ac.id

Journal of Robotics and Control (JRC) ISSN: 2715-5072 49

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

[22], Pledge Algorithm (PA), Tremaux Algorithm (TA), and

Dead-End Filling Algorithm (DEFA). Meanwhile, the mazes

are varied based on the finish point location and whether they

have dead ends, loops, or both. The maze type variation will

give insight into how a robot with a particular algorithm

interacts with obstruction in the maze. Another algorithm,

i.e., flood filling, is similar to our variation in the maze for
dead ends and loop [23], [24].

The paper is structured as follows. We introduce the paper

topic in the first part of the paper. In the second part, we

discussed the algorithms applied for maze-solving-robot

simulation. The next part discusses the maze structures and

variations. In the fourth part, we detail the simulation

scenario and the implemented algorithm flowcharts. The fifth

part discusses the simulation results, and lastly, we conclude

the finding in the conclusion section.

II. ALGORITHMS

This paper compares the performance of the algorithms of

RMA, WFA (Left and Right combined), PA (Left and Right
combined), TA, and DEFA that follow the basic concept of

Finite State Machine (FSM). A general example of FSM can

be represented by state(s) and transition(s). Fig. 1 shows an

instance of FSM with three states, namely 𝑆1, 𝑆2and 𝑆3 and

four transitions, specifically 𝑇1𝑎 , 𝑇1𝑏 , 𝑇2 and 𝑇3 [25]. The

graph nodes or circles represent the states, while the graph

edges or arrows represent the transitions. For example, if

there is a “start” trigger in S1, the robot state will shift from

S1 to S2 and S3. Those shifting processes are called transition
[25], [26].

FSM is a form of automata in robotics. It is powerful yet

relatively simpler to be applied than other automata types,

i.e., push down and turning machine. For robotics, FSM is

sufficient to help complete a repetitive task. In this regard,

FSM can help understand robot behavior as this paper’s

comparative study objective.

Fig. 1. FSM diagram example [25].

A. Random Mouse Algorithm (RMA)

RMA is an algorithm that moves robots without any
specific guides. With this algorithm, the robots will go in a

random direction whenever they meet an intersection.

Without intersections, the robots will follow the path and

never return unless they meet a dead end [4]. With its

characteristics, this algorithm is considered the most

unintelligent.

B. Wall Follower Algorithm (WFA)

WFA is an algorithm that moves robots using a wall as a

guide. There are two types of this algorithm: Left WFA and

Right WFA [3]. Like its name, the Left WFA makes the

robots follow the left wall, and the right one makes the robots

follow the right wall. With this algorithm, the robot may not

find a way out if the followed wall is not connected to others.

C. Pledge Algorithm (PA)

Pledge Algorithm (PA) is an improved algorithm of WFA

[27]. PA has two types as well, i.e., Left PA and Right PA.

PA makes the robots follow the wall like WFA, but PA has a

mechanism for the robots to exit a looping wall. It is possible

by counting a number representing the turns. Initially, the

value of this number is 0. This number will be added or

subtracted by 1 (one) if the robots make a turn. For example,

turning left is associated with subtraction, and turning right is

associated with addition. This correspondence may be

interchanged as long as it is consistent throughout the maze-

solving process. This rule will automatically return the
number to 0 when the robots face the original direction. When

it happens, PA tells the robots to exit the followed wall by

turning in the opposite direction at the next intersection. If the

robot passes a turn but not an intersection, the PA algorithm

then commands the to turn around and follow a wall across

the previous one.

D. Tremaux Algorithm (TA)

The basic rule of Tremaux Algorithm (TA) is that robots

cannot pass through a path more than twice. Therefore, TA

requires robots to record their paths in memory [28]. The

paths can be distinguished into three types [27]:

 Unmarked, meaning that a path is not explored yet.

 It was marked once, meaning that a path was passed

once.

 It was marked twice, meaning that a path was passed

twice.
If a path was marked twice, that path is considered wrong

and will not be visited anymore. This marking procedure

makes unnecessary multiple visits to the same path

eliminated. At the end of exploration, TA leaves a continuous

once-passed mark on a path connecting the starting and the

finish point [27].

E. Dead-End Filling Algorithm (DEFA)

Dead-End Filling Algorithm (DEFA) is an algorithm

requiring robots to know the maze before starting to explore.

It can be done by equipping the robots with scanners above

the maze that detect every dead end. If a dead-end is found,

the scanner will mark and track it to the nearest intersection

[29]. That path is then marked and will later not be visited by

the robots. An intersection can be marked not to be visited as

well if all the paths joining in the intersection lead to dead

ends. Nevertheless, DEFA may leave an intersection with

two or more unmarked paths, especially when the paths

contain loops. In that case, DEFA leaves the robots unguided
and makes them choose a path randomly.

III. MAZE

IV. The mazes used in this paper are in the size of 81×61
and distinguished into six categories. These categories are
generated based on the combination of the finish position and

Journal of Robotics and Control (JRC) ISSN: 2715-5072 50

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

whether the maze has dead ends, loops, or both. The first
finish position is located in the maze's bottom-right corner,
where the robots are said to reach finish when they exit the
maze. Meanwhile, the finish location of the second type is in
the center of the maze. The starting points for the blue-
colored robots are the same in all the mazes, as shown in Fig.
2 to Fig. 7.

A. Bottom-Right Corner (BRC) Exit

The maze exit position is located in the bottom-right

corner of each maze, as shown in Fig. 2 to Fig. 4.

Fig. 2. Maze with loops only and an exit way in the bottom-right corner

Fig. 3. Maze with dead ends only and an exit way in the bottom-right corner

Fig. 4. Maze with an exit way in the bottom-right corner and a mix of loops

and dead ends

B. Center Finish Point (CFP)

The algorithm needs to find the finish point in the center

of the maze, as shown in Fig. 5 to Fig. 7.

Fig. 5. Maze with loops only and a finish point in the center

Fig. 6. Maze with dead ends only and a finish point in the center

Fig. 7. Maze with a finish point in the center and a mix of loops and dead

ends

Journal of Robotics and Control (JRC) ISSN: 2715-5072 51

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

V. PROGRAM SIMULATION

This paper used Python with the library of graphics.py to

develop the simulation program. The way of the algorithms
work was translated to the flow charts shown in Fig. 8 - Fig.

12 and run a hundred times for each maze. The flowchart of

the right-wall following algorithm is the same as Fig. 9,

except the left wall is replaced by the right wall. Meanwhile,

the Right Pledge Algorithm has a similar flowchart, with the

word “left wall” is replaced with “right wall” and

“Number=Number+2” with “Number=Number-2”.

In every simulation, the program notes whether the robots

succeed in reaching the finish or not and the number of steps

taken. The success rate shown at the end of the simulations

represents the algorithm’s reliability, while the taken-step

numbers show how efficient the algorithm is.

Fig. 8. RMA flowchart

Fig. 9. Left WFA flowchart

VI. RESULTS AND DISCUSSIONS

The simulation results are shown in Fig. 13 and Fig. 14.
Fig. 13 and Fig. 14 show that RMA works for any maze, but
it takes a long time to solve. It always took the most steps to
solve the maze except slightly fewer than DEFA in the BRC
Loop maze. Besides, DEFA is lower in the BRC with loop
only because it runs as disorderedly as RMA since it cannot
detect and block any dead-end in that maze. Moreover, RMA
performed the worst in the CFP Loop because it took the
wrong intersection most of the time and went to the edge aisles
with relatively long distances. This simulation implied that
RMA is suitable for a simple maze-solving robot project
where speed is not essential.

Fig. 13 shows that WFA is the least reliable algorithm
because it will not work when the start and finish points are
not connected with a continuous wall, such as CFP Mix and
Loops. On the other hand, the success rate of WFA in BRC
Mix is close to a quarter because there is a wall out of four that
can guide the robot to the finish point. Similarly, BRC Loop
has a success rate of 70% since three out of the four adjacent
walls in the starting point connect with the finishing hole.
However, once the WFA works, it can swiftly lead the robot,
as shown in Fig. 14, since the robot will not wander the maze,
similar to other algorithms.

Fig. 10. Left PA flowchart

As an improved version of WFA, PA has perfect success
rates in the BRC Mix and Loop mazes, better than WFA.
Nevertheless, it cannot improve the robot performances in the
CFP Mix and CFP Loop as it cannot guide the robot back to
the internal loop once the robot reaches the outer wall.
Regarding the required steps to reach the finish, Fig. 14
illustrates that PFA has similar numbers to WFA except for
the CFP Dead End. PA recognizes repetitive turns and exits

Journal of Robotics and Control (JRC) ISSN: 2715-5072 52

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

the followed wall that makes the robot go through a longer
path.

Fig. 13 shows that TA effectively solves any mazes as it
always has a 100% success rate. The results show that the
speed is not affected by the maze type, as illustrated in Fig.
14. The TA algorithm focuses on the paths instead of the
walls. As long as the mazes have the same size, the robot with
TA needs roughly the same steps to reach the finish.
Nevertheless, TA tends to explore the mazes more broadly
than WFA and PA because of the random turns it takes when
there is an intersection with more than one unpassed path.

Fig. 11. TA flowchart

According to Fig. 13, DEFA is a reliable algorithm in the
same way as RMA and TA. However, DEFA is efficient only
in the maze with dead ends. In other words, the more loops the
maze has, the more DEFA’s performance is like RMA’s as it
turns to a random direction when there is more than an
unblocked path in an intersection. That phenomenon is seen in
Fig. 14, where DEFA took the fewest steps in the CFP and
BRC Dead-End while it did the most in BRC Loop. To
compare our results to a recently published paper related to
maze-solving robot simulation, we have a more relatively high
number of data in terms of the number of steps, and we do not
consider the timing process like in [30].

The discussion above is an example of the simulation-
output-data analysis that can help teachers illustrate each
algorithm’s characteristics or students learn robotics by
themselves. As this program was developed using an open-
source and simple code, they may modify and develop it

according to their needs. In summary, the simulation results
are shown in Table I and Table II.

Fig. 12. DEFA flowchart

Fig. 13. Success rates of each algorithm in each maze

VII. CONCLUSION

This paper creates simulation-based indoor navigations

that can introduce robotics to students more easily and

enjoyably. A comparative study of several navigation
algorithms is then done using this program to know when the

algorithms should be applied. The study case clearly shows

that the algorithm should be chosen based on the type of maze

explored. RMA will work in any mazes, but speed does not

matter, and simplicity is highly considered. WFA will guide

the robots rapidly to the finish if a continuous wall connects

the start to the finish point. PA will be suitable if speed is

essential, but the robots will encounter separated walls to

reach the edge of the maze. TA is a good choice for the robots

that will perform in various mazes with moderate speed,

especially for mazes with many loops. Moreover, TA is a safe

Journal of Robotics and Control (JRC) ISSN: 2715-5072 53

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

choice when the characteristic of the maze cannot be

identified well before being explored as it is barely affected

by the maze type. Lastly, DEFA is a good option if the mazes

consist primarily of dead ends.

Fig. 14. The number of taken steps of each algorithm in each maze

TABLE I. RESULTS FOR BOTTOM-RIGHT CORNER EXIT

Maze Parameter RMA WFA PA TA DEFA

Loop

No. of taken

steps
1284.6 241.8 367.2 712.02 1388.3

No. of

passed

intersections

49.61 5.50 11.44 25.12 54.01

Success rate 100% 32% 100% 100% 100%

Mix

No. of taken

steps
1727.4 504.9 542.8 626.3 918.5

No. of

passed

intersections

55.42 13.76 15.50 18.55 35.12

Success rate 100% 70% 100% 100% 100%

Dead-

End

No. of taken

steps
1870.7 730.1 867.6 733.1 153

No. of

passed

intersections

50.55 20.52 23.92 18.37 5

Success rate 100% 100% 100% 100% 100%

TABLE II. RESULTS FOR CENTER FINISH POINT

Maze Parameter RMA WFA PA TA DEFA

Loop

No. of taken

steps
1626 - - 710 1460.8

No. of passed

intersections
47.31 - - 22.11 42.76

Success rate 100% 0% 0% 100% 100%

Mix

No. of taken

steps
2035.7 - - 711.9 960.4

No. of passed

intersections
52.72 - - 19.93 37.14

Success rate 100% 0% 0% 100% 100%

Dead-

End

No. of taken

steps
2758.7 729.7 1296.8 773.5 130

No. of passed

intersections
65.81 19.59 34.73 18.98 6.00

Success rate 100% 100% 100% 100% 100%

REFERENCES

[1] J. C. Giger, N. Piçarra, P. Alves-Oliveira, R. Oliveira, and P. Arriaga,

“Humanization of robots: Is it really such a good idea?,” Human
Behavior and Emerging Technologies, vol. 1, no. 2. pp. 111–123, 2019.

[2] F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study

for robot navigation techniques,” Cogent Engineering, vol. 6, no. 1.

2019.

[3] A. M. J. Sadik, M. A. Dhali, H. M. A. B. Farid, T. U. Rashid, and A.

Syeed, “A comprehensive and comparative study of maze-solving

techniques by implementing graph theory,” Proc. - Int. Conf. Artif.

Intell. Comput. Intell. AICI 2010, vol. 1, no. November, pp. 52–56,
2010.

[4] A. Halma, E. Bovenkamp, and J. van Oorschot, “RoboMind
Challenges Maze Solving,” RoboMind Academy, 2012. .

[5] Si. F. R. Alves, J. M. Rosario, Hu. F. Filho, L. K. . RIncon, and R. A. .

Yamasaki, “Conceptual Bases of Robot Navigation Modeling, Control

and Applications,” Adv. Robot Navig., vol. 1, no. June, pp. 3–28, 2011.

[6] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots:

Concepts, methods, theoretical framework, and applications,” Int. J.
Adv. Robot. Syst., vol. 16, no. 2, pp. 1–22, 2019.

[7] J. Biswas and M. Veloso, “WiFi localization and navigation for

autonomous indoor mobile robots,” Proc. - IEEE Int. Conf. Robot.

Autom., pp. 4379–4384, 2010.

[8] F. Fraundorfer et al., “Vision-based autonomous mapping and

exploration using a quadrotor MAV,” IEEE Int. Conf. Intell. Robot.
Syst., pp. 4557–4564, 2012.

[9] D. J. Suroso, P. Cherntanomwong, P. Sooraksa, and J. Takada,

“Location fingerprint technique using Fuzzy C-Means clustering

algorithm for indoor localization,” in TENCON 2011 - 2011 IEEE
Region 10 Conference, 2011, pp. 88–92.

[10] D. J. Suroso, M. Arifin, and P. Cherntanomwong, “Distance-based

Indoor Localization using Empirical Path Loss Model and RSSI in

Wireless Sensor Networks,” J. Robot. Control, vol. 1, no. 6, pp. 199–

207, 2020.

[11] F. Y. M. Adiyatma, A. E. Kurniawan, D. J. Suroso, and P.

Cherntanomwong, “Performance Comparison of Several Range- based

Techniques for Indoor Localization Based on Received Signal Strength

Indicator,” vol. 7, no. 1, pp. 40–53, 2021.

[12] P. Cherntanomwong and D. J. Suroso, “Indoor localization system

using wireless sensor networks for stationary and moving target,” 2011

8th Int. Conf. Information, Commun. Signal Process., no. 1, pp. 1–5,
2011.

[13] O. Michel, “WebotsTM: Professional Mobile Robot Simulation,” vol.

1, no. 1, pp. 39–42, 2004.

[14] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and

scalable robot simulation framework,” IEEE Int. Conf. Intell. Robot.
Syst., pp. 1321–1326, 2013.

[15] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of

physics simulators for robotic applications,” IEEE Access, vol. 9, no. i,
pp. 51416–51431, 2021.

[16] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:

A structure for efficient numerical computation,” Comput. Sci. Eng.,
vol. 13, no. 2, pp. 22–30, 2011.

[17] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci.
Eng., vol. 9, no. 3, pp. 99–104, 2007.

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[19] L. Major, T. Kyriacou, and O. P. Brereton, “Systematic literature

review: Teaching novices programming using robots,” IET Semin.

Dig., vol. 2011, no. 1, pp. 21–30, 2011.

[20] T. Sotiropoulos, H. Waeselynck, J. Guiochet, and F. Ingrand, “Can

robot navigation bugs be found in simulation? An exploratory study,”

Proc. - 2017 IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS 2017,

pp. 150–159, 2017.

[21] J. R. B. del Rosario et al., “Modelling and characterization of a maze-

solving mobile robot using wall follower algorithm,” Appl. Mech.
Mater., vol. 446–447, no. November 2013, pp. 1245–1249, 2014.

[22] A. Zarkasi, H. Ubaya, C. Deri Amanda, and R. Firsandaya,

“Implementation of ram based neural networks on maze mapping

Journal of Robotics and Control (JRC) ISSN: 2715-5072 54

Ismu Rijal Fahmi, A Simulation-based Study of Maze-Solving-Robot Navigation for Educational Purposes

algorithms for wall follower robot,” J. Phys. Conf. Ser., vol. 1196, no.
1, 2019.

[23] I. Elshamarka and A. Bakar Sayuti Saman, “Design and

Implementation of a Robot for Maze-Solving using Flood-Fill
Algorithm,” Int. J. Comput. Appl., vol. 56, no. 5, pp. 8–13, 2012.

[24] S. Tjiharjadi, M. C. Wijaya, and E. Setiawan, “Optimization maze

robot using A* and flood fill algorithm,” Int. J. Mech. Eng. Robot. Res.,
vol. 6, no. 5, pp. 366–372, 2017.

[25] R. Balogh and D. Obdržálek, “Using Finite State Machines in

Introductory Robotics,” Adv. Intell. Syst. Comput., vol. 829, no. April,
pp. 85–91, 2019.

[26] R. Hussain, T. Zielinska, and R. Hexel, “Finite state automaton based

control system for walking machines,” Int. J. Adv. Robot. Syst., vol. 16,
no. 3, pp. 1–14, 2019.

[27] Ł. Bienias, K. Szczepański, and P. Duch, “Maze Exploration

Algorithm for Small Mobile Platforms,” Image Process. Commun.,

vol. 21, no. 3, pp. 15–26, 2017.

[28] L. K. Li, “Implementation of the Trémaux Maze Solving Algorithm to

an Omnidirectional Mobile Robot,” in International Conference on
Electronics, Information and Communication, 2018, pp. 1–3.

[29] Y. F. Hendrawan, “Comparison of Hand Follower and Dead-End Filler

Algorithm in Solving Perfect Mazes,” J. Phys. Conf. Ser., vol. 1569, p.

022059, 2020.

[30] J. Y. Hii, J. Lee, and Y. Chuah, “Optimization and Simulation of A

Navigation Robot in Mazes,” Int. J. Eng. Res. Technol., vol. 10, no. 05,
pp. 222–227, 2021.

