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Abstract—This paper studies the consensus problem of a lead-
erless, homogeneous, multi-agent reinforcement learning (MARL)
system using actor-critic algorithms with and without malicious
agents. The goal of each agent is to reach the consensus position
with the maximum cumulative reward. Although the reward
function converges in both scenarios, in the absence of the
malicious agent, the cumulative reward is higher than with the
malicious agent present. We consider here various immediate
reward functions. First, we study the immediate reward function
based on Manhattan distance. In addition to proposing three
different immediate reward functions based on Euclidean, n-
norm, and Chebyshev distances, we have rigorously shown which
method has a better performance based on a cumulative reward
for each agent and the entire team of agents. Finally, we present
a combination of various immediate reward functions that yields
a higher cumulative reward for each agent and the team of
agents. By increasing the agents’ cumulative reward using the
combined immediate reward function, we have demonstrated that
the cumulative team reward in the presence of a malicious agent
is comparable with the cumulative team reward in the absence of
the malicious agent. The claims have been proven theoretically,
and the simulation confirms theoretical findings.

Keywords—Multi-agent system; Malicious agent; Consensus con-
trol; Reinforcement learning; Immediate reward; Cumulative re-
ward.

I. INTRODUCTION

Applications of reinforcement learning (RL) algorithms have
increased over the years and led to tremendous advance-
ments in various fields of science and robotics [1], [2]. The
RL algorithms have been used to solve numerous sequential
decision-making problems and have encountered significant
hurdles when dealing with high-dimensional environments [3].
To partially overcome high-dimensional problems and perform
tasks that require policy control, deep reinforcement learning
(DRL) algorithms were generated by combining deep learning,
and RL algorithms [4], [5], [6]. In the combined algorithm,
deep learning enables RL to address those challenges [7].

One of the DRL applications is in the multi-agent systems
(MAS) control [8], [9]. The use of MAS stems from nature,
where multiple agents have higher efficiency and competitive-
ness when acting together in groups. Individual agents collabo-
rate and interact with the environment to achieve the best results
[3]. The consensus control is one of the fundamental problems
in MAS, where agents support a common decision or aim in

the best interest of the entire system. The agents participate
in a group decision-making process, called consensus decision-
making [10], [11], [12]. In consensus control, the goal is to
reach a global agreement on a value or state for all agents [12],
[13].

To reach consensus, we use the RL actor-critic method for
N homogeneous agents. An actor, as the policy structure,
decides to choose the best action based on its perception of
the environment [14]. A critic, as the value function structure,
indicates what is right in the long term and evaluates the
selected actions by the actor [14]. In this paper, the internal
structures of agents’ actors and critics are multi-layer neural
networks (NN).

A. Contributions

We studied the behavior of a leaderless, homogeneous multi-
agent reinforcement learning (MARL) system in reaching
consensus using a decentralized actor-critic method with and
without malicious agents. We defined and proposed various
immediate reward functions based on different distance metrics.
These immediate reward functions can be used to calculate
the cumulative reward for each agent and the MARL system.
This work examines whether changing the immediate reward
can improve the system’s overall performance even with the
destructive effects of a malicious agent. Suppose one of the dis-
tance metrics (e.g., Manhattan, Euclidean, n−norm, or Cheby-
shev distances) provides a smaller value between the current
position and the desired position compared with the existing
distance metrics. Consequently, the extracted immediate reward
from the discussed distance metric generates a higher return
cumulative reward for each agent and the MARL system as a
whole. Hence, the criterion for measuring the MARL system’s
behavior is based on various immediate reward functions. First,
we studied the immediate reward function based on Manhattan
distance proposed by [15].

The paper contributions are: (i) we proposed immediate
reward functions based on Euclidean, n-norm, and Chebyshev
distances; (ii) we provided an algorithm to combine various
immediate reward functions and use them based on the maxi-
mum returned value during each episode to enhance the agents’
cumulative reward with and without malicious agents within the
MARL system; (iii) we proved the superiority of Euclidean
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immediate reward function over Manhattan immediate reward
function; (iv) we have shown the superiority of Chebyshev im-
mediate reward function over the Euclidean immediate reward
function; and (v) we have shown that the combined immediate
reward function outperforms other immediate reward functions.

B. Related Research

Consensus control in MAS has been studied in various
situations, e.g. distributed optimal consensus algorithm [16],
distributed linear-quadratic regulator (LQR) consensus control
for heterogeneous MAS [17] or consensus control under de-
layed information [18], and has been extensively investigated
for different systems such as linear and nonlinear systems [19],
[20], [21], [22], [23], [24], [25], [26]. In recent years, the con-
sensus problem for MARL systems has also been researched,
e.g. an optimal bipartite consensus control framework designed
for MARL systems including model-free structure [27]. An
integrated, resilient, model-free, off-policy, distributed state-
feedback control protocol for leader-follower MARL system
with adversarial inputs to reach consensus on the leader’s state
is proposed in [28], where only the leader can communicate
with real information. The rest of the agents use a distributed
observer to estimate the leader’s state. The MARL system
without malicious agents is implemented in [29], and the sum
of the cumulative rewards is calculated and maximized. Inspired
by [28], [29], we study a position consensus and we propose
immediate reward functions that increase the cumulative reward
with the presence of malicious agents in a leaderless MARL
system. All agents of the on-policy system can communicate
with the environment and receive the related states.

In order to use RL techniques in MAS, the authors of
[30], [31], [32] have proposed actor-critic algorithms where
the actor part is utilized for training of decentralized policies
corresponding to each agent. Critic part is used for learning
centralized value function including all agents information. We
use the decentralized actor-critic method [29] and the multi-
agent actor-critic algorithm under adversarial attacks proposed
in [15]. The authors in [15] have shown that the algorithm
introduced in [29] for the consensus of MARL systems is not
robust to adversarial attacks. In this paper, we present results
in the presence of malicious agents by changing the immediate
reward function of the RL algorithm. We propose four different
distance-based immediate reward functions to select the best
one (based on the results) and study their effects on the MARL
system’s cumulative reward. Our analysis of distance-based
immediate reward functions shows that if a distance metric (e.g.,
Manhattan distance, Euclidean distance, n−norm distance, or
Chebyshev distance) provides a smaller value between the
current position and the desired position compared with the
existing distance metrics, then the defined immediate reward
function based on that distance metric will improve the MARL
system performance.

Though different immediate rewards have already been in-
troduced for various RL algorithms, studies of their effects
on the MARL systems, with and without a malicious agent,
are lacking. Defining the reward function according to the
overall system’s objective is preferred, as noted in [33], [34].
As the objective of the presented system is to reach a position
consensus, considering the distance between the current posi-
tion and desired position plays a significant role in achieving
the consensus. Therefore, the main advantage of the proposed
method is that the defined immediate reward functions are
formulated using various distance metrics, e.g., Manhattan,
Euclidean, n−norm, and Chebyshev distances, and their su-
periority over the Manhattan immediate reward function (as
already used in [15]) have been proven. The superiority of the
proposed immediate reward functions leads to higher average
cumulative rewards for each agent. In addition, there is a greater
average cumulative team reward for the entire MARL system.
The MARL system performance is improved by obtaining a
higher cumulative team reward, causing a higher percentage of
correct actions are executed over time to achieve consensus,
resulting in a position consensus with a lower error rate.

II. BACKGROUND

For decision-making, each agent applies the information
received from the environment. The finite Markov decision
process (MDP) is considered to represent the dynamics of the
environment for decision-making in choosing the best action.
An MDP for a MARL system can be defined by a 5-tuple
M =

〈
S,A, T,R, γ

〉
, where S = S1 × S2 × ... × SN is

a finite set and Cartesian product of environmental states,
A = A1 × A2 × ... × AN is a finite joint action set for all
agents so that Ai = a1× a2× ...× aK , i = 1, 2, ..., N , is a set
of actions of each agent, T : S × A × S′ → [0, 1], describes
the environment’s dynamics is the state-transition probability
function that agents starts in state S, takes action A, and ends in
state S

′
. Further, R : S×A×S′ → IRn is a reward function. For

ith agent Rit+1 = E
[
rit+1|st = s, ait = a

]
, where rit+1 indicates

the immediate reward, st shows the state, and ait is action at
time t. In an MDP for a MARL system, the cumulative reward
is expected to be maximized for all agents, as well as the team
of agents [35]. The trade-off between an immediate reward and
potential future reward is determined by the discount factor
γ ∈ [0, 1).

The MAS is considered as the graph G = (V, E), where V
is the set of all vertices (agents), and E ⊆ {(i, j)|i ∈ V, j ∈ V}
is the set of all edges (communication links between agents).
The agents i and j are neighbors if and only if (i, j) ∈ E .

III. METHOD

This paper investigates increasing the agents’ cumulative
reward for two scenarios: with and without malicious agents
in the MARL system.
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Fig. 1. Multi-agent actor-critic architecture with N agents. The green arrows
indicate transferring correct data between neighboring agents.

A. Without Malicious Agents

The goal of each agent is to reach the position consensus in
the environment with the maximum cumulative reward. The
considered environment in this paper is a grid world. We
consider a MAS with corresponding actor-critic architecture
[29]. An actor-critic architecture is assigned to each agent in
the MAS, where the neighboring agents communicate with each
other via the critic unit as illustrated in Fig. 1. Each agent is
trained to learn the local policy utilizing decentralized learning.

The set of independent local policies for N agents is de-
scribed as Policy = {π1, π2, ..., πN}. At time t = 0, all agents
are assigned the initial state s0. The actor unit of ith agent uses
the policy function πi(ai0|s0) to perform the action ai0 related
to the initial state s0. At time t+1, all agents receive state st+1,
as well as a local immediate reward rit+1 from the environment
according to the action ait they performed at time t. Each agent
keeps the immediate reward information rit+1; however, they
are permitted to estimate the immediate reward of the network.
Based on the reward rit+1 and state st+1, the critic unit of ith

agent examines whether the actor unit has taken the appropriate
action to improve the agent’s selection in the following steps.
For this purpose, at time t + 1, the critic unit estimates the
reward r̂it+1 and compares it with the environmental received
reward rit+1. The estimation of r̂it+1 is done using a four-layer
NN including input layer (environmental received states are fed
to this layer), two hidden dense layers, and a dense output layer
to return the estimated reward r̂it+1.

The comparison between the estimated reward r̂it+1 and the
environmental received reward rit+1 is carried out using the
temporal difference (TD) error. The higher value of the TD
error means the greater difference between the actual reward
rit+1 and expected reward r̂it+1. The TD error for the ith agent,
δit, is given by

δit = Rit+1 + γV it (st+1)− V it (st), (1)

where V it (st) is the critic value function at time t defined by

V it (st) = E

[ ∞∑
t=0

γtrit+1|st = s

]
. (2)

Using (1) and (2), the TD error method yields

V it+1(st) = V it (st) + αδit, (3)

where α is the learning rate. The TD error value of ith agent
is sent to the actor unit of the current agent to improve the
following action selection, as well as to the critic units of the
neighboring agents through the communication links using a
consensus protocol.

In the utilized algorithm, the consensus step is as follows:{
λit+1 ←

∑
j∈N wt(i, j) · λ̃

j
t ,

vit+1 ←
∑
j∈N wt(i, j) · ṽ

j
t ,

(4)

where λ and λ̃ are the actual and estimated multi-agent reward
function parameters, respectively. Furthermore, v and ṽ are
the actual and estimated multi-agent value function parameters,
respectively. According to [15], and [29] the initialization of
the parameters is performed for λ, λ̃, v, and ṽ at time t = 0 for
all N agents. The discussed parameters should be updated and
added to the list of previous values at t + 1. Moreover, vi of
each agent describes the network value function approximation
V it (st; v

i
t). Hence,

λ̃it ← λit + αv,t
(
rit+1 − r̂t+1

(
λit
))
∇λr̂t+1

(
λit
)

(5)

ṽit ← vit + αv,tδ
i
t∇vV it

(
st; v

i
t

)
. (6)

Besides, N is the set of neighbors of ith agent, and Wt =
[wt(i, j)]N×N is Metropolis weight matrix specified by

Wt =


1

1 + max{dt(i), dt(j)}
if (i, j) ∈ E ,

1−
∑

(i,k)∈E

Wt(i, k) if i = j,

0 otherwise,

(7)

with dt(i) and dt(j) being the degree of agents i and j,
respectively. Therefore, the weight on the message transferred
form agent i to agent j at time t is wt(i, j). The consensus
step (4) must be done by all N agents in the MARL system
to reach the position consensus. Updating the reward function
parameter λi and value function parameter vi enables the ith

agent to update its policy function πi(a
i
t|st). Note that the

structure of weight matrix Wt depends on the communication
graph topology [29].

B. With Malicious Agents

One of the problems that can occur with any MAS is an
incompatibility of one or more agents with the other agents.
These types of agents, termed malicious agents, may be in-
ternally disturbed and can have a negative effect on MAS
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Fig. 2. Multi-agent actor-critic architecture with N agents. The green arrows
indicate transferring correct data between neighboring agents, and the red arrow
represents transmitting inaccurate data from malicious agent to neighboring
agents.

performance. In this paper, the malicious agent does not apply
the consensus updates and skips the consensus step of (4),
which results in an unbalanced consensus throughout the entire
MAS [15]. An actor-critic MARL system with a malicious
agent is illustrated in Fig. 2. At the time t, the malicious
agent receives correct data from the critic units of neighboring
agents, including TD error. However, the malicious agent sends
inaccurate information to neighboring agents’ critic units via
communication links or performs adverse actions, causing this
agent to maximize its cumulative reward. Simultaneously, the
cumulative rewards of neighboring agents are reduced due to
improper information they receive from the malicious agent.
MAS’s cumulative team reward is reduced compared to the
situation where there is no malicious agent in the system [15].
In the following, the immediate reward function and its effect
on the system performance are analyzed.

C. Reward Functions

Choosing an appropriate reward function is a significant
challenge in RL algorithms. There is no specific rule to select
or define an immediate reward function. In general, one should
select the immediate reward function based on the RL system’s
application. We consider five various immediate reward func-
tions, based on multiple distance metrics, to reach the position
consensus. For all the following distance metrics and immediate
reward functions, (x, y) and (xdes, ydes) are the current position
and the desired position, respectively. Moreover, (xi, yi) and
(xides, y

i
des) are the current position and the desired position of

the ith agent, sequentially.
1) Manhattan Immediate Reward: Each agent’s immediate

reward in 2D space is determined based on the Manhattan
distance: Md = |x−xdes|+|y−ydes|. The Manhattan immediate
reward function for ith agent is given by [15]:

Mrit+1 = −
∣∣xi − xides∣∣− ∣∣yi − yides∣∣ . (8)

2) Euclidean Immediate Reward: Based on the Euclidean
distance Ed, we define the Euclidean immediate reward func-
tion for the ith agent in 2D space

Erit+1 = −
(∣∣xi − xides∣∣2 +

∣∣yi − yides∣∣2)1/2 . (9)

3) n-norm Immediate Reward: Using the n-norm metric
Nd = (|x − xdes|n + |y − ydes|n)1/n, the immediate reward
function for the ith agent in 2D space is given by

Nrit+1 = −
(∣∣xi − xides∣∣n +

∣∣yi − yides∣∣n)1/n , (10)

where n ≥ 3.
4) Chebyshev Immediate Reward: Utilizing the Chebyshev

distance metric Čd = max(|x−xdes|, |y−ydes|), the Chebyshev
immediate reward function for ith agent in 2D space is given
by

Črit+1 = max
(
−
∣∣xi − xides∣∣ ,− ∣∣yi − yides∣∣) . (11)

5) Combined Immediate Reward: Based on the immediate
reward functions (8)-(11), the combined immediate reward
function for ith agent in 2D space is given by

Crit+1 = max
(
Mrit+1, Er

i
t+1, Nr

i
t+1, Čr

i
t+1

)
. (12)

Equation (12), in each episode and for all agents, calculates the
various immediate rewards of (8)-(11) and selects the maximum
reward based on the returned values. This method uses other
immediate reward functions to get the largest cumulative reward
during each episode.

Theorem 1. Let Mrit+1 and Erit+1 be Manhattan and Eu-
clidean immediate reward functions for ith agent in 2D space,
then the Euclidean cumulative team reward is greater than or
equal to the Manhattan cumulative team reward for N agents
in 2D space.

Proof. For ith agent in 2D space, |∆x| = |xi − xides|, and
|∆y| = |yi − yides|. According to |∆x|2 + |∆y|2 ≤ (|∆x| +
|∆y|)2 and by considering the positive roots of both sides of
inequality, the following is valid

−
∣∣xi − xides∣∣− ∣∣yi − yides∣∣ ≤
−
(∣∣xi − xides∣∣2 +

∣∣yi − yides∣∣2)1/2 . (13)

From (13), it is concluded that the Manhattan immediate reward
is less than or equal to the Euclidean immediate reward.
Therefore, from Mrit+1 ≤ Erit+1 it is obvious that

E
[
Mrit+1|st = s, ait = a

]
≤ E

[
Erit+1|st = s, ait = a

]
(14)

MRit+1 ≤ ERit+1, (15)

where MRit+1 and ERit+1 are Manhattan and Euclidean cu-
mulative rewards for ith agent in 2D space, respectively. Using
(15) we have

1

N

N∑
i=1

MRit+1 ≤
1

N

N∑
i=1

ERit+1. (16)
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Hence, the Euclidean cumulative team reward is greater than or
equal to the Manhattan cumulative team reward for N agents
in 2D space.

Remark. Since Manhattan and Euclidean distances are called
1-norm and 2-norm distances, respectively, then the proof of
Theorem 1 can be expanded to show that the n-norm cumulative
team reward (n ≥ 3) is greater than or equal to the Euclidean
cumulative team reward for N agents in 2D space.

Theorem 2. Let Erit+1 and Črit+1 be Euclidean and Cheby-
shev immediate reward functions for ith agent in 2D space,
then the Chebyshev cumulative team reward is greater than or
equal to the Euclidean cumulative team reward for N agents
in 2D space.

Proof. Based on triangle inequality, the product of Chebyshev
distance is always less than or equal to the outcome of Eu-
clidean distance (Čd ≤ Ed). Hence, the following is valid

−
(
|∆x|2 + |∆y|2

)1/2 ≤ −max (|∆x|, |∆y|) . (17)

We know that

−max (|∆x|, |∆y|) ≤ max (−|∆x|,−|∆y|) . (18)

Using (17) and (18) yields

−
(∣∣xi − xides∣∣2 +

∣∣yi − yides∣∣2)1/2 ≤
max

(
−
∣∣xi − xides∣∣ ,− ∣∣yi − yides∣∣) . (19)

From (19), it is derived that Erit+1 ≤ Črit+1. Afterward,

E
[
Erit+1|st = s, ait = a

]
≤ E

[
Črit+1|st = s, ait = a

]
(20)

ERit+1 ≤ ČRit+1, (21)

where ČRit+1 is the Chebyshev cumulative reward for ith agent
in 2D space. Using (21) we have

1

N

N∑
i=1

ERit+1 ≤
1

N

N∑
i=1

ČRit+1. (22)

Therefore, the Chebyshev cumulative team reward is greater
than or equal to the Euclidean cumulative team reward for N
agents in 2D space.

Theorem 3. Let Mrit+1, Erit+1, Nrit+1, Črit+1, and Crit+1

be Manhattan, Euclidean, n-norm, Chebyshev, and combined
immediate reward functions for ith agent in 2D space, respec-
tively. Then, the combined cumulative team reward for N agents
is greater than or equal to the maximum of the Manhattan,
Euclidean, n-norm, and Chebyshev cumulative team rewards
for the same N agents in 2D space during each episode.

Proof. From (12) it follows

E
[
Crit+1|st = s, ait = a

]
≥

E
[
Mrit+1, Er

i
t+1, Nr

i
t+1, Čr

i
t+1|st = s, ait = a

]
.

(23)

Given that Mrit+1, Erit+1, Nrit+1, and Črit+1 are independent
functions, also by taking the maximum function from both sides
of inequality, one has

E
[
Crit+1|st = s, ait = a

]
≥

max
(
E
[
Mrit+1|st = s, ait = a

]
,E
[
Erit+1|st = s, ait = a

]
,

E
[
Nrit+1|st = s, ait = a

]
,E
[
Črit+1|st = s, ait = a

] )
.

(24)

As a consequence, we have

CRit+1 ≥ max
(
MRit+1, ER

i
t+1, NR

i
t+1, ČR

i
t+1

)
, (25)

where NRit+1 and CRit+1 are n-norm and combined cumu-
lative rewards, respectively. From (25), it follows that the
combined cumulative reward for ith agent is greater than or
equal to the maximum of Manhattan, Euclidean, n-norm, and
Chebyshev cumulative rewards for the same agent in 2D space
during each episode. Therefore,

1

N

N∑
i=1

CRit+1 ≥

N∑
i=1

max

(
1

N
MRit+1,

1

N
ERit+1,

1

N
NRit+1,

1

N
ČRit+1

)
.

(26)

We know that
N∑
i=1

max

(
1

N
MRit+1,

1

N
ERit+1,

1

N
NRit+1,

1

N
ČRit+1

)
≥

max

N∑
i=1

(
1

N
MRit+1,

1

N
ERit+1,

1

N
NRit+1,

1

N
ČRit+1

)
.

(27)

Using (26) and (27) yields

1

N

N∑
i=1

CRit+1 ≥

max

(
1

N

N∑
i=1

MRit+1,
1

N

N∑
i=1

ERit+1,

1

N

N∑
i=1

NRit+1,
1

N

N∑
i=1

ČRit+1

)
.

(28)

Hence, at time t, the combined cumulative team reward for N
agents is greater than or equal to the maximum of the Man-
hattan, Euclidean, n-norm, and Chebyshev cumulative team
rewards for the same N agents in 2D space during each
episode.

Theorem 4. Let Mrit+1, Erit+1, Nrit+1, Črit+1, and Crit+1

be Manhattan, Euclidean, n-norm, Chebyshev, and combined
immediate reward functions for ith agent in 2D space, respec-
tively. Then, the combined critic value for ith agent is greater
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than or equal to the maximum of Manhattan, Euclidean, n-
norm, and Chebyshev critic values for the same agent in 2D
space during each episode.

Proof. Since γ ∈ [0, 1) and t ∈ [0,∞), it is concluded that
γt ∈ [0, 1]. Therefore, from (12) we have

∞∑
t=0

γtCrit+1 =

∞∑
t=0

max
(
γtMrit+1, γ

tErit+1, γ
tNrit+1, γ

tČrit+1

)
.

(29)

We know that
∞∑
t=0

max
(
γtMrit+1, γ

tErit+1, γ
tNrit+1, γ

tČrit+1

)
≥

max

∞∑
t=0

(
γtMrit+1, γ

tErit+1, γ
tNrit+1, γ

tČrit+1

)
.

(30)

After simplifying, using (29) and (30) yields
∞∑
t=0

γtCrit+1 ≥

∞∑
t=0

(
γtMrit+1, γ

tErit+1, γ
tNrit+1, γ

tČrit+1

)
.

(31)

By taking expectation with respect to the state from both sides
of inequality, the following is achieved

E

[ ∞∑
t=0

γtCrit+1|st = s

]
≥

E

[( ∞∑
t=0

γtMrit+1,

∞∑
t=0

γtErit+1,

∞∑
t=0

γtNrit+1,

∞∑
t=0

γtČrit+1

)∣∣∣st = s

]
.

(32)

Since
∑∞
t=0 γ

tMrit+1,
∑∞
t=0 γ

tErit+1,
∑∞
t=0 γ

tNrit+1, and∑∞
t=0 γ

tČrit+1 are statistically independent, after simplifying
and taking the maximum function from both sides of (32), the
following is obtained

E

[ ∞∑
t=0

γtCrit+1|st = s

]
≥

max

(
E

[ ∞∑
t=0

γtMrit+1|st = s

]
,E

[ ∞∑
t=0

γtErit+1|st = s

]
,

E

[ ∞∑
t=0

γtNrit+1|st = s

]
,E

[ ∞∑
t=0

γtČrit+1|st = s

])
.

(33)

Therefore,

CV it (st) ≥ max
(
MV it (st), EV

i
t (st), NV

i
t (st), ČV

i
t (st)

)
,

(34)

where MV it (st), EV it (st), NV it (st), ČV it (st), and CV it (st)
are Manhattan, Euclidean, n-norm, Chebyshev, and combined
critic value functions. Therefore, the combined critic value for
ith agent is greater than or equal to the maximum of Manhattan,
Euclidean, n-norm, and Chebyshev critic values for the same
agent in 2D space during each episode.

IV. RESULTS AND DISCUSSION

This section demonstrates results for consensus control of
MAS with and without malicious agents, using the RL decen-
tralized actor-decentralized critic method. To reach the position
consensus, a fully connected graph G is considered, which is
illustrated in Fig. 4. Each actor’s internal structure consists of
a fully-connected NN architecture for training, including three
dense layers with Adam optimizer and categorical cross-entropy
loss function. The first and second layers’ activation functions
are rectified linear unit (ReLU) functions, and the third layer
has the softmax activation function.

Similar to the actor, each agent’s critic has a three-layer,
fully-connected NN structure, including the ReLU activation
functions for the first two layers, utilizing Adam optimizer and
mean squared error (MSE) loss function. The NN structure for
training the reward function is similar to the architecture used
for training all agents critic. This section’s results are derived
from MAT-files, obtained by training the NN above for each
agent. Each MAT-file is a cell of 200 structures (number of
episodes to train); each structure contains state, action, reward,
and predicted reward for five agents in 1000 time-steps. In this
paper, evaluating the performance of the utilized RL algorithm
is done by considering how much reward each agent and a team
of agents receive while acting, and then showing the cumulative
reward as a function of the episodes and number of steps.

First, reaching the position consensus on the X-axis is shown
in the 1000 time-steps for five agents, using the Manhattan
immediate reward function. Then, the average reward during
200 episodes is displayed using five immediate reward func-
tions. Afterward, each agent’s average cumulative reward and
the average cumulative team reward using different immediate
reward functions during 200 episodes with and without a
malicious agent are compared. Note that action space consists
of five distinctive actions, including waiting and also move to
the right, left, up, and down. The actor and critic learning rates
are α = 0.001 and α = 0.01, respectively, and the discount
factor is γ = 0.95.

We have used and extended a part of the code provided in
[36] for a part of our implementation. Moreover, the algorithm’s
execution is done using a system with 3.60 GHz Intel Core
i7 − 7700 processor, 16 GB installed RAM, 64−bit operating
system, and x64−based processor.

A. Reaching Consensus

The position consensus of five agents on the X-axis with and
without a malicious agent is illustrated in Fig. 3 at episodes 50,
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(a) Position consensus of N = 5 agents on X-axis without malicious agents
at episodes 50, 100, 150, 200.

(b) Position consensus of N = 5 agents on X-axis with a malicious agent at
episodes 50, 100, 150, 200.

Fig. 3. The MARL system’s performance in reaching the consensus without and with a malicious agent during 200 episodes.

(a) Topology of a fully
connected graph G
without a malicious
agent.

(b) Topology of a
fully connected graph
G with a malicious
agent.

Fig. 4. A fully connected graph G is considered as the MARL system, including
N = 5 nodes. The malicious agent (red circle) refuses to update the parameters
in the consensus step.

100, 150, and 200. This consensus is demonstrated during 1000
time-steps using Manhattan immediate reward function. The
initial position for ith agent is randomly selected. The desired
position for ith agent is xides = 35. As shown in Fig. 3, the
position convergence of the MARL system in the absence of
a malicious agent is superior to the position convergence with
a malicious agent’s presence during 200 episodes. According
to Fig. 3(a), the agents’ convergence behavior is observed in
the episode 50; however, according to Fig. 3(b), this behavior
has not appeared during 200 episodes. The cumulative team
reward of the system without malicious agents is greater than
the system’s cumulative team reward with a malicious agent
(Fig. 5). Accordingly, the MARL system’s performance in
reaching the consensus without a malicious agent is superior
to the network performance with a malicious agent during
200 episodes. Therefore, to improve the network performance
in Fig. 3(b), the system’s cumulative team reward with the
malicious agent should increase, which we will examine in the
following.

B. Increasing the Cumulative Reward

When no malicious agents exist in the MARL system, the
agents’ goal is to maximize the sum of all cumulative rewards.
Fig. 5(a) shows the reward vs. episodes diagram of five agents
without malicious agents. The cumulative reward of all agents
reaches the maximum value during 200 episodes. As Fig. 5(a)
shows, all agents have learned the optimal policy almost equally
and have maximized their cumulative reward. We examine the
agents’ reaction of a MARL system if a malicious agent is
detected within the system.

An agent is considered as a malicious agent when it seeks
to maximize its own cumulative reward only. The reward vs.
episodes diagram of five agents with the malicious agent’s
presence is illustrated in Fig. 5(b) during 200 episodes. Indeed,
Agent#1 is the malicious agent, and its cumulative reward
is maximized. The other four agents are not able to maximize
their cumulative reward as much as they did in the previous step
and cannot learn the optimal policy precisely. However, they
enhanced their cumulative reward. Thus, as shown in Fig. 5(c),
the cumulative team reward of the MARL system converges
without the presence of a malicious agent and is superior to the
cumulative team reward of the MARL system with the presence
of a malicious agent. The malicious agent has caused the
cumulative team reward to converge to −2291.05. All diagrams
of Fig. 5 are obtained using the Manhattan immediate reward
function defined in (8).

C. Modifying the Immediate Reward Function

The experiment is repeated with the same conditions but
using the proposed Euclidean, n-norm (n = 5), Chebyshev,
and combined immediate reward functions, (9)-(12).

As shown in Fig. 6(a) and Fig. 6(b), the cumulative reward in
both cases, without and with a malicious agent, have converged
using the Euclidean immediate reward function in (9). The
outcomes of using (9) is superior to the results of (8) because,
as illustrated in Fig. 6(c), the MARL system’s cumulative team

Neshat Elhami Fard, Consensus of Multi-agent Reinforcement Learning Systems: The Effect of Immediate Rewards



Journal of Robotics and Control (JRC) ISSN: 2715-5072 122

(a) Average reward without malicious
agents.

(b) Average reward with a malicious agent. (c) Cumulative team reward with and without
a malicious agent.

Fig. 5. Reward convergence using the Manhattan immediate reward function during 200 episodes for N = 5 agents [15].

(a) Average reward without malicious
agents.

(b) Average reward with a malicious agent. (c) Cumulative team reward with and
without a malicious agent.

Fig. 6. Reward convergence using the Euclidean immediate reward function during 200 episodes for N = 5 agents.

(a) Average reward without malicious
agents.

(b) Average reward with a malicious agent. (c) Cumulative team reward with and
without a malicious agent.

Fig. 7. Reward convergence using the 5-norm immediate reward function during 200 episodes for N = 5 agents.

(a) Average reward without malicious
agents.

(b) Average reward with a malicious agent. (c) Cumulative team reward with and
without a malicious agent.

Fig. 8. Reward convergence using the Chebyshev immediate reward function during 200 episodes for N = 5 agents.
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(a) Average reward without malicious
agents.

(b) Average reward with a malicious agent. (c) Cumulative team reward with and
without a malicious agent.

Fig. 9. Reward convergence using the combined immediate reward including Manhattan, Euclidean, 5-norm, and Chebyshev immediate reward functions during
200 episodes for N = 5 agents.

reward with a malicious agent is larger than demonstrated re-
sults in Fig. 5(c). The cumulative team reward with a malicious
agent has converged to −1468.74 using (9). Hence, as shown in
Fig. 5 and Fig. 6, the use of (9) yields better results compared
to (8).

We repeated the experiment using (10) where n = 5 (5-
norm immediate reward function). As demonstrated in Fig. 7,
compared to the Fig. 5 and Fig. 6 the average received reward
enhances for each agent and system by increasing n in the n-
norm immediate reward function. For instance, the cumulative
team reward with a malicious agent has converged to −1045.88
using (10), where n = 5.

As shown in Fig. 8(a) and Fig. 8(b), the cumulative reward,
without and with a malicious agent, have converged by applying
the Chebyshev immediate reward function in (11). The results
of using (11) are superior to (8)-(10), because, as illustrated in
Fig. 8(c), the MARL system’s cumulative team reward with a
malicious agent is larger than demonstrated results in Figs. 5(c)-
7(c). The cumulative team reward has converged to −369.11
using (11). Consequently, as displayed in Figs. 5-8, the use
of (11) has yielded more reliable results compared to (8)-(10).
Using (11), the average received reward is higher for each agent
and MARL system.

The outcomes of using (12) are superior to the results of
(8)-(11), because, as shown in Fig. 9(c), the MARL system’s
cumulative team reward in the presence of a malicious agent is
larger than illustrated results in Figs. 5(c)-8(c). The cumulative
team reward has converged to −244.78 using (12). Hence, as
demonstrated in Fig. 9, the use of (12) has produced superior
results compared to previously introduced immediate reward
functions. Moreover, the average received reward is higher
for each agent and system. The comparison of each agent’s
average cumulative reward as well as the average cumulative
team reward using different immediate reward functions during
200 episodes without and with a malicious agent are indicated
in Tables I and II, respectively. As highlighted in these tables,
the combined reward performed superior than the other rewards

TABLE I
COMPARISON OF EACH AGENT’S AVERAGE CUMULATIVE REWARD AS WELL

AS THE AVERAGE CUMULATIVE TEAM REWARD USING DIFFERENT
IMMEDIATE REWARD FUNCTIONS DURING 200 EPISODES WITHOUT A

MALICIOUS AGENT

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −1566.21 −2011.39 −2093.50 −1209.28 −1490.39 −1641.68
Euclidean Reward −756.45 −939.41 −961.17 −640.07 −992.70 −849.07
5-norm Reward −576.56 −703.18 −720.72 −491.55 −655.37 −622.58
Chebyshev Reward −330.13 −423.84 −430.31 −250.89 −300.96 −335.76

Combined Reward −176.21 −231.49 −238.25 −135.51 −174.27 −185.91

TABLE II
COMPARISON OF EACH AGENT’S AVERAGE CUMULATIVE REWARD AS WELL

AS THE AVERAGE CUMULATIVE TEAM REWARD USING DIFFERENT
IMMEDIATE REWARD FUNCTIONS DURING 200 EPISODES IN THE PRESENCE

OF A MALICIOUS AGENT

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −273.01 −2781.51 −3454.21 −2638.68 −2403.99 −2291.05
Euclidean Reward −164.16 −1606.92 −2047.06 −1349.11 −2190.22 −1468.74
5-norm Reward −143.52 −1351.53 −1258.49 −1179.52 −1305.38 −1045.88
Chebyshev Reward −44.15 −143.68 −1062.88 −465.00 −173.53 −369.11

Combined Reward −21.84 −87.28 −686.82 −338.84 −109.43 −244.78

for each agent and team of agents.

D. The Immediate Rewards’ Comparison After Normalization

To have a valid comparison between the used and proposed
immediate reward functions, we normalize the accumulated
reward values into a range of [−1, 0] for each agent using

Rinormalized =
Ri −Rimin

Rimax −Rimin
− 1, (35)

where Ri is the cumulative reward vector for ith agent.
Therefore, at this stage, the analysis is performed based on
normalized data. Regarding Tables III and IV, as well as,
Figs. 10-14 after normalization, still the combined reward
performed superior to the other rewards for each agent and
team of agents (with and without malicious agents). It is worth
mentioning that the data of Tables III and IV are rounded to
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TABLE III
COMPARISON OF EACH AGENT’S AVERAGE CUMULATIVE REWARD AS WELL

AS THE AVERAGE CUMULATIVE TEAM REWARD AFTER NORMALIZATION
USING DIFFERENT IMMEDIATE REWARD FUNCTIONS DURING 200 EPISODES

WITHOUT A MALICIOUS AGENT

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −0.0496 −0.0524 −0.0523 −0.0486 −0.0546 −0.0515
Euclidean Reward −0.0489 −0.0522 −0.0521 −0.0475 −0.0545 −0.0510
5-norm Reward −0.0449 −0.0498 −0.0500 −0.0431 −0.0518 −0.0479
Chebyshev Reward −0.0396 −0.0452 −0.0455 −0.0371 −0.0447 −0.0424

Combined Reward −0.0381 −0.0427 −0.0431 −0.0364 −0.0444 −0.0409

TABLE IV
COMPARISON OF EACH AGENT’S AVERAGE CUMULATIVE REWARD AS WELL

AS THE AVERAGE CUMULATIVE TEAM REWARD AFTER NORMALIZATION
USING DIFFERENT IMMEDIATE REWARD FUNCTIONS DURING 200 EPISODES

IN THE PRESENCE OF A MALICIOUS AGENT

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −0.0372 −0.0702 −0.0701 −0.0698 −0.0704 −0.0635
Euclidean Reward −0.0334 −0.0688 −0.0702 −0.0686 −0.0702 −0.0623
5-norm Reward −0.0249 −0.0659 −0.0702 −0.0645 −0.0697 −0.0590
Chebyshev Reward −0.0153 −0.0366 −0.0686 −0.0561 −0.0406 −0.0435

Combined Reward −0.0152 −0.0348 −0.0681 −0.0513 −0.0387 −0.0417

four decimal places. Furthermore, Fig. 15 depicts the values
of Tables III and IV in two different charts. The performance
of the malicious agent (Agent#1) in increasing its cumulative
reward and decreasing the cumulative reward of the other agents
is well illustrated in Fig. 15(b). In addition, Fig. 15(b) shows
how changing the type of immediate reward function can reduce
the negative effect of the malicious agent.

E. Reward Algorithm’s Complexity and Execution Time

The comparison of the algorithm execution time of using
different immediate reward functions during 200 episodes is
presented in Table V. Lower algorithm execution time and
higher cumulative team reward are crucial factors in determin-
ing the type of the immediate reward function for the MARL
system. By comparing the results of using Mrit+1 provided by
[15], and the outcomes of using the proposed immediate reward
functions (Erit+1, Nrit+1, Črit+1, and Crit+1) the following
results are obtained. To calculate the percentage increase of
team reward %increase = 100× (final team reward - initial team reward)

|initial team reward|
is used, where initial team reward is the Manhattan team reward.
In addition, the Euclidean, 5-norm, Chebyshev, and combined
team rewards are considered as the final team reward, each time.

1) Before Normalization: By comparing the results of using
Manhattan and Euclidean immediate rewards, it is concluded
that after using the Euclidean immediate reward, the +48.28%
and +35.89%, increase in the assertiveness of team reward
without and with a malicious agent, respectively. The algo-
rithm execution time using the Euclidean immediate reward
function is +1.76 times that of the Manhattan immediate
reward function. Moreover, by comparing the outcomes of
using Manhattan and 5-norm immediate rewards, it is realized

that after using the 5-norm immediate reward, the +62.08%
and +54.35%, increase in the assertiveness of team reward
without and with a malicious agent, respectively. The algorithm
execution time using the 5-norm immediate reward function is
+1.28 times that of the Manhattan immediate reward function.
Furthermore, by comparing the outcomes of using Manhattan
and Chebyshev immediate rewards, it is achieved that after
using the Chebyshev immediate reward, the +79.55% and
+83.89%, increase in the assertiveness of team reward without
and with a malicious agent, respectively. The algorithm execu-
tion time using the Chebyshev immediate reward function is
+1.08 times that of the Manhattan immediate reward function.
Besides, by comparing the results of using Manhattan and
combined immediate rewards, it is concluded that after using
the combined immediate reward, the +88.68% and +89.32%,
increase in the assertiveness of team reward without and with
a malicious agent, respectively. The algorithm execution time
using the combined immediate reward function is +3.14 times
that of the Manhattan immediate reward function.

2) After Normalization: By comparing the results of using
Manhattan and Euclidean immediate rewards, it is concluded
that after using the Euclidean immediate reward, the +0.97%
and +1.89%, increase in the assertiveness of team reward
without and with a malicious agent, respectively. The algo-
rithm execution time using the Euclidean immediate reward
function is +1.75 times that of the Manhattan immediate
reward function. Moreover, by comparing the outcomes of
using Manhattan and 5-norm immediate rewards, it is realized
that after using the 5-norm immediate reward, the +6.99%
and +7.09%, increase in the assertiveness of team reward
without and with a malicious agent, respectively. The algorithm
execution time using the 5-norm immediate reward function is
+1.29 times that of the Manhattan immediate reward function.
Furthermore, by comparing the outcomes of using Manhattan
and Chebyshev immediate rewards, it is noted that after using
the Chebyshev immediate reward, the +17.67% and +31.50%,
increase in the assertiveness of team reward without and with
a malicious agent, respectively. The algorithm execution time
using the Chebyshev immediate reward function is +1.08 times
that of the Manhattan immediate reward function. Besides, by
comparing the results of using Manhattan and combined im-
mediate rewards, it is concluded that after using the combined
immediate reward, the +20.58% and +34.33%, increase in the
assertiveness of team reward without and with a malicious
agent, respectively. The algorithm execution time using the
combined immediate reward function is +2.95 times that of
the Manhattan immediate reward function.

Table V lists the time complexity of various types of im-
mediate reward algorithms. The time complexity of Manhattan,
Euclidean, 5-norm, and Chebyshev immediate reward functions
with n point pairs are O(n), and they take linear time. More-
over, the time complexity of the combined immediate reward
algorithm is O(n) as well.

Neshat Elhami Fard, Consensus of Multi-agent Reinforcement Learning Systems: The Effect of Immediate Rewards



Journal of Robotics and Control (JRC) ISSN: 2715-5072 125

(a) Normalized average reward without
malicious agents.

(b) Normalized average reward with a ma-
licious agent.

(c) Normalized cumulative team reward
with and without a malicious agent.

Fig. 10. Normalized reward convergence using the Manhattan immediate reward function during 200 episodes for N = 5 agents.

(a) Normalized average reward without
malicious agents.

(b) Normalized average reward with a ma-
licious agent.

(c) Normalized cumulative team reward
with and without a malicious agent.

Fig. 11. Normalized reward convergence using the Euclidean immediate reward function during 200 episodes for N = 5 agents.

(a) Normalized average reward without
malicious agents.

(b) Normalized average reward with a ma-
licious agent.

(c) Normalized cumulative team reward
with and without a malicious agent.

Fig. 12. Normalized reward convergence using the 5-norm immediate reward function during 200 episodes for N = 5 agents.

(a) Normalized average reward without
malicious agents.

(b) Normalized average reward with a ma-
licious agent.

(c) Normalized cumulative team reward
with and without a malicious agent.

Fig. 13. Normalized reward convergence using the Chebyshev immediate reward function during 200 episodes for N = 5 agents.
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(a) Normalized average reward without
malicious agents.

(b) Normalized average reward with a ma-
licious agent.

(c) Normalized cumulative team reward
with and without a malicious agent.

Fig. 14. Normalized reward convergence using the combined immediate reward including Manhattan, Euclidean, 5-norm, and Chebyshev immediate reward
functions during 200 episodes for N = 5 agents.

(a) Normalized average cumulative reward without malicious agents. (b) Normalized average cumulative reward with a malicious agent
(Agent#1).

Fig. 15. Normalized average cumulative reward for each agent and a team of agents, including N = 5 agents, using various immediate reward functions during
200 episodes.

Nevertheless, this time difference would not mean that the
proposed immediate rewards are better or worse. Still, with
longer episodes having more time-steps, this execution time
difference may be significant. Note that the data of Table V are
rounded to two decimal places.

V. CONCLUSIONS

We studied the consensus problem of a leaderless, homo-
geneous MARL system using the actor-critic algorithms in
the absence and presence of malicious agents. Each agent’s
principal goal is to reach the position consensus with the
maximum cumulative reward. We presented the immediate
reward function based on Manhattan distance. Then, we pro-
posed three other immediate reward functions based on various
distance metrics to improve the MARL system’s performance.
We combined various immediate reward functions and used
each of them based on the maximum returned value during
each episode to enhance agents’ cumulative reward in the

TABLE V
COMPARING THE RESULTS OF ALGORITHM’S COMPLEXITY AND

EXECUTION TIME USING DIFFERENT IMMEDIATE REWARD FUNCTIONS.

Manhattan Euclidean 5-norm Chebyshev Combined
Reward Reward Reward Reward Reward

Algorithm
Execution 31.41

±0.02
55.27
±0.03

40.07
±0.42

33.98
±0.20

98.67
±0.45

Time(seconds)

Algorithm
Execution 31.23

±0.13
54.57
±0.04

40.18
±0.01

33.72
±0.09

92.22
±0.19

Time(seconds)
(Normalized)

Algorithm
Time O(n) O(n) O(n) O(n) O(n)
Complexity

presence of malicious agents within the MARL system. Finally,
we compared different immediate reward functions within the
MARL system and we found that the type of immediate reward
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function plays a significant role in efficiency of each agent in
the network in reaching the consensus and obtaining further
cumulative team reward.

Future work will include improved immediate reward func-
tions such that the malicious agent’s cumulative reward is
reduced. In contrast, the cumulative team reward increases
simultaneously. Moreover, we will study the heterogeneous
MARL system in the team organization using the proposed
immediate reward functions.
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