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Abstract—The problem of mutual collisions of manipulators 

of a dual-arm multi-link robot (so-called self-collisions) arises 

during the performance of a cooperative technological 

operation. Self-collisions can lead to non-fulfillment of the 

technological operation or even to the failure of the 

manipulators. In this regard, it is necessary to develop a method 

for online detection and avoidance of self-collisions of 

manipulators. The article presents a method for detecting and 

avoiding self-collisions of multi-link manipulators using an 

artificial neural network by the example of the dual-arm robot 

SAR-401. A comparative analysis is carried out and the 

architecture of an artificial neural network for self-collisions 

avoidance control of dual-arm robot manipulators is proposed. 

The novelty of the proposed approach lies in the fact that it is an 

alternative to the generally accepted methods of detecting self-

collisions based on the numerical solution of inverse kinematics 

problems for manipulators in the form of nonlinear 

optimization problems. Experimental results performed based 

on MATLAB model, the simulator of the robot SAR-401 and on 

the real robot itself confirmed the applicability and effectiveness 

of the proposed approach. It is shown that the detection of 

possible self-collisions using the proposed method based on an 

artificial neural network is performed approximately 10 times 

faster than approaches based on the numerical solution of the 

inverse kinematics problem while maintaining the specified 

accuracy. 

Keywords—multilink manipulator; dual-arm robot; neural 

network; self-collision avoidance 

I. INTRODUCTION 

The multilink manipulators of modern robots allow 

solving high-precision technological problems. As a rule, 

these manipulators are redundant, have a degree of freedom 

(DOF) of at least six, which allows them to move the end-

effector of the manipulator in any position within their 

workspace. 

The synthesis of the motion control systems for such 

manipulators can be carried out based on various approaches. 

The technique used, as well as the way it is implemented, can 

have a significant impact on the performance of the 

manipulator and on the possible range of applications. On the 

other hand, the mechanical design of the manipulator affects 

the type of control circuit used. For example, the control 

problem of a Cartesian manipulator differs significantly from 

the control problem of a multilink manipulator. 

Regardless of the specific type of mechanical 

manipulator, it should be noted that the target setting 

(movement and efforts of the end-effector) is usually carried 

out in the operational space, and the control actions 

(generalized forces of the actuators) – in the joint space. This 

fact leads to the consideration of two types of general 

automatic control schemes: a control scheme in the joint 

space and a control scheme in the operational space [1]. 

Some robots with multilink manipulators make it possible 

to implement a control design based on the “Programming by 

Demonstration” approach [1 – 4]. The “Programming by 

Demonstration” approach is based on the robot teaching to 

perform the various operations based on the results of the 

operator's (teacher's) actions. In this case, the operator should 

be able to “demonstrate” either by directly moving the joints 

of the manipulator, or with the help of special master devices 

[5]. As a rule, such master devices have a kinematic similarity 

with an actuating mechanism of the manipulator. In this case, 

the operator using the master device makes the required 

movements of the manipulator. The presence of a master 

device makes it possible to organize a copy-type control of 

the manipulators, forcing the robot to copy the movements of 

the operator in real time, for example, when the robot is 

operating in an unstructured and dangerous environment. 

Self-collision detection is a basic feature that plays an 

important role in performing fully or partially autonomous 

manipulations in an unstructured environment. In practice, it 

usually turns out that the seemingly large working space of 

the manipulator is significantly reduced due to the danger of 

collision with other objects, the presence of joint limits, 

special positions and zones of limited controllability [2, 6]. 

The solution of the problem of detection and preventing 

the critical movements of manipulator becomes much more 

complicated if the robot has several manipulators with 

possible mutual influence on each other. In particular, for 

robots with several manipulators, there is a danger that 

manipulators will collide with each other. Such collisions are 

called self-collisions [7-11]. For robots with a copy-type 

control, the self-collisions control problem falls on the 

operator. There may be cases when self-collisions of 

manipulators will be possible (for example, due to poor 

calibration of the master device, or as a result of erroneous 

actions of the operator, or, for example, as a result of a 

mismatch between anthropomorphic characteristics of the 

operator and the master device). 

Often in the literature, methods of analysis of the critical 

positions of manipulators that lead to collisions are reduced 

to the analysis of the kinematic model of the manipulators 
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and the search of the coordinates and their combinations at 

which these critical positions arise [7–24]. In [7], the authors 

presented a solution of the problem of two manipulators 

motion control using a constraint-based programming 

approach, which was used to generate online motion plans. 

The control problem is reduced to the analysis of the 

interaction of only the end-effectors of the manipulators, 

ensuring the avoidance of their self-collisions and collisions 

with external obstacles. Obviously, this approach does not 

guarantee the prevention of collisions between manipulators 

links. Another approach is based on the search for restrictions 

on control signals that exclude the movement of manipulators 

with the intersection of the trajectories of all the parts of the 

manipulators. In [8, 9, 25], the authors proposed a simple 

approach based on linear algebra methods for self-collisions 

control of multilink manipulators. In [14], to detect the 

manipulators collisions and represent them in a two-

dimensional coordinate system, the so-called collision map 

was proposed as a collision zone. In this case, collision 

avoidance is achieved by temporarily planning the trajectory 

of the movement of the robot that received the move 

instruction. The manipulator, which becomes an obstacle in 

the path of another one receives an escape instruction. To 

generate real-time movements of manipulators to avoid 

collision, a reliable reactive algorithm called the “skeleton 

algorithm” is proposed [15]. According to this algorithm, the 

structure of the robot is divided into segments, so that 

arbitrary points can be selected and controlled. The algorithm 

determines the collision points on such segments and 

generates the appropriate control for collision avoidance. 

This algorithm requires sensory information about the 

position of each link while moving in order to plan avoidance 

trajectories before possible collisions. An occupied-free 

approach can be seen in [16] (with the provision that the 

approach is applicable for a two-dimensional space). In [19] 

the authors developed a backward quadratic search algorithm 

as an option for solving inverse kinematics problems in 

obstacle avoidance. The algorithm executes a backward 

search for possible obstacle collisions, from the end-effector 

to the base, and avoids obstacles by utilizing a hybrid inverse 

kinematics scheme. In [20] a non-collision trajectory-

planning algorithm in three-dimensional space was 

presented. The algorithm is based on velocity potential field 

for robotic manipulators, which can be applied to collision 

avoidance among serial industrial robots and obstacles, and 

path optimization in multi-robot collaborative operation. In 

[23] the approach of collision prediction of a dual-arm robot 

based on a 3D point cloud is proposed. According to the 

approach, a simplified 3D model of the robot is generated 

using a segmented point cloud, and a self-identification 

control is based on the over-segmentation approach and the 

forward kinematic model of the robot. In [24] a self-collision 

between a manipulator and a mobile robot was considered. 

Authors introduced the concept of a distance buffer border, 

which is a 3D curved surface enclosing a buffer region of the 

mobile robot. When the distance between the manipulator 

and the mobile robot is less than the buffer distance, the 

proposed strategy is to move the mobile robot away from the 

manipulator. 

All the above methods are united by the fact that the 

solution of the kinematic problems necessary for their 

implementation is performed based on classical approaches. 

At the same time, a number of articles [26-32] propose 

approaches to design kinematic control of multilink 

manipulators based on neural networks, where the data 

obtained because of solving the direct kinematics problem 

(DKP) are used as a set of training parameters. At the same 

time, there are studies that show the effectiveness of the 

neural network approach, primarily in terms of computational 

speed. It is especially important for real-time self-collisions 

control for robots with copy-type master devices. In this 

regard, it is very useful to consider the problem of the self-

collision control of robot manipulators using a neural 

network approach without solving the inverse kinematics 

problem and analytical approaches. This, according to the 

authors, should lead to a reduction in the time to solve the 

problem of self-collision analysis, which will allow a more 

efficient online control implementation. 

This paper considers the solution of self-collisions control 

problem for multi-link robot manipulators with a copy-type 

master device based on a neural network approach. As an 

object, the robot SAR-401 with two multilink 

(anthropomorphic) manipulators controlled through a master 

device in the form of a copy suit is considered. The proposed 

design is based on the use of the special choice of the 

structure of the input dataset and experimental choice of the 

structure of the neural network. The approach proposed in the 

article made it possible to reduce the computation time by 

approximately 10 times compared to the application of the 

computational approach to the analysis of the self-collision 

[8, 9] while maintaining the specified accuracy. By reducing 

the computation time, the approach proposed in the article 

becomes an effective tool for developing a control program 

with an online mode for detecting and avoiding self-

collisions of multi-link manipulators. The proposed approach 

can be extended to other anthropomorphic robots. Note that 

the approach proposed in the article is based on solving a 

regression problem, the use of which for detecting and 

avoiding a self-collision, in our opinion, is more effective 

than the classification approach, which gives a prediction 

with a certain probability of less than 100%, which as a result 

may lead to an incorrect result. 

The rest of the article is structured as follows. Section 2 

presents the problem statement and the description of the 

robot SAR-401. The kinematic analysis of the robot SAR-401 

manipulators is shown in section 3. The problems of the 

neural network design, including training dataset, 

architecture are discussed in section 3. Section 4 is devoted 

to the neural network learning process. Section 5 presents the 

results of the operation of the self-collision control system. 

II. THE DESCRIPTION OF THE ROBOT SAR-401 AND 

PROBLEM STATEMENT 

The robot SAR-401 is a torso manipulation robot with 

anthropomorphic structure and consisting of a base, a body 

mounted on it. Two manipulators with five-finger grippers 

and a head module with a computer stereo vision system are 

mounted on the robot’s body (Fig. 1) [33, 34]. Fig. 1 shows: 

1 – head module; 2 – compartment for stereo video cameras; 

3 - rotary mechanism of the head module; 4 - body; 5,6,7,8 - 

rotational kinematic pairs of the manipulator; 9 - five-
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fingered gripper; 10 - rack of SAR-401. Each manipulator of 

the robot SAR-401 is an anthropomorphic. 

The parameters of the anthropomorphic manipulator of 

the robot SAR-401 are shown in Table 1. 

TABLE I.  THE PARAMETERS OF THE ROBOT SAR - 401  

Parameters Manipulator of the SAR-401 

Weight 70.0 kg (with hand 1.2 kg) 

Height 825 mm 

Articulation types of the 
manipulator 

revolving 

Robot manipulator length 
shoulder to elbow (290 mm)  

elbow to wrist (280 мм) 

Joint Motor Swing Speed 
Swing speed of the gripper motors 

170 grad/s 
110 grad/s 

Joint Positioning Accuracy 12 bit (4 096 pulses per rotation) 

 

The master device, for example, a copy suit (Fig. 1(a)), 

makes it possible to organize a copy-type control of the 

manipulators, forcing the robot to copy the movements of the 

operator in real time. In this case, it is necessary to control the 

self-collisions of the manipulators. 

 

 

a) 

 

b) 

Fig. 1. Robot SAR-401: a) robot SAR-401 and an operator in a master 
device; b) structure of robot SAR-401  

The problem of the self-collision control in the copy-type 

control mode of the robot SAR-401 is to develop a method 

for determining the configurations of both manipulators, 

which can lead to self-collisions with a high probability. To 

determine the current configuration, signals from the motors 

of the robot's manipulators are used. With the help of these 

signals, the values of the generalized coordinates of the 

manipulators are formed, knowing which the coordinate 

values of all the manipulators links are calculated through the 

direct kinematics problem solution. 

Based on the information about the planned movement of 

the manipulator links received in real time from the master 

device, the possibility of a self-collision during movement is 

analyzed based on the calculation of the minimum distance 

between the manipulator links. The results obtained are 

transmitted to the control system, and it blocks this movement 

and provides information to the operator about a possible 

self-collision if the minimum distance between the 

manipulators is less than a certain threshold value. At the 

same time, the analysis of the relationship between 

configurations with a minimum distance between 

manipulators in this paper is proposed to be performed on the 

basis of a neural network. The training data set for neural 

network can be obtained by solving the direct kinematics 

problem. 

III. KINEMATICS ANALYSIS 

To construct a kinematic diagram of the manipulators of 

the robot SAR-401, we use the Denavit-Hartenberg notation 

and methodology [35, 36]. Consider the left manipulator. 

To represent the geometry of the manipulator, we will use 

a kinematic diagram (Fig. 2), which sequentially displays the 

representation of the links of the manipulator connected by 

joints. Since the manipulator has only a rotational type of 

joints, the relative position of adjacent links will be 

determined by the angular variable i . The Denavit-

Hartenberg parameters for the left manipulator of the robot 

SAR-401 are shown in Table II.  

TABLE II.  THE DENAVIT-HARTENBERG PARAMETERS FOR THE LEFT 

MANIPULATOR OF THE ROBOT SAR - 401  

Link, i iA , m i , rad id , m i , rad 

1 0 π/2 0 i  

2 0 π/2 0 2/ i  

3 0 π/2 -0.3 2/ i  

4 0 π/2 0  i  

5 0 π/2 -0.3  i  

6 -0.24 0 0 2/ i  

 

In Table 2, the following designations are adopted: iA  is 

the distance between the 1iZ and iZ  axes along the iX  

axis, i   is the angle from the 1iZ  axis to the iZ  axis about 

the iX  axis, id  is the distance from the origin of the frame 

1i  to the iX  axis along the 1iZ  axis, i  are generalized 

coordinates (the angles of rotation of joints) (Fig. 2). The 

parameters 6,1, ii  are variables and are initially 0. 

For the right manipulator, the Denavit-Hartenberg 

parameters are identical. Restrictions on the movements of 

the joint servos of the SAR-401 manipulators (servo limits) 

are shown in Table III. 
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TABLE III.  THE LIMITS OF SERVOS OF MANIPULATORS 

№ Min Max Min max 
0 -90°  0° -90° 0° 

1 0° 105° -105° 0° 

2 -40° 40° -40° 40° 

3 -110° 5° -110° 5° 

4 -40° 40° -40° 40° 

5 -10° 10° -10° 10° 

 

When solving the direct kinematics problem two 

coordinate systems are considered: the initial one, associated 

with the base joint 000 ,, zyx , and the final one, associated 

with the end-effector of the manipulator nnn zyx ,, . 

Extended position vectors  TzyxX 1ˆ
0000  and 

 Tnnnn zyxX 1ˆ  , for the specified coordinate 

systems are related by the formula 

 
nn XTX ˆˆ 0

0   (1) 

where 









tf

pR
T

x

xx
n

31

13330
 is a 4x4 matrix of a homogeneous 

transformation that carries information about the translation 

(vector 13xp ) and the rotation of one coordinate system 

relative to another (matrix 33xR ), 31xf  is a 1x3 vector that 

specifies the perspective transformation, t  is a global scaling 

factor. In our case ]000[31 xf , 1t . 

Now for each joint, we can define a homogeneous 

transformation matrix iT  that specifies the sequence of 

transformations according to the Denavit-Hartenberg 

notation: rotation around the axis X  by an angle i , shift 

along the axis X   by iA , rotate along the axis Z  by an 

angle i , shift along the axis Z  by id  
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The calculation of the homogeneous transformation 

matrix (depending on the angles 654321 ,,,,,  ) is 

carried out using the relation 

 
654321

0 TTTTTTTn  . (3) 

 

 

 

 

 

Fig. 2. The kinematic diagram of the left manipulator of the robot SAR-401  

As a result, we get the transformation matrix  

 




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
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
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T
zzz
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To form a dataset for training the neural network, we need 

to know the coordinates of each joint. It is necessary to 

compose 6 transformation matrices for each joint of the 

manipulator, which are used to generate data for training the 

neural network 

 
1

0
1 TT  , 21

0
2 TTT  , 321

0
3 TTTT  , 

4321
0
4 TTTTT  , 54321

0
5 TTTTTT  , 

654321
0 TTTTTTTn  . 

(5) 

IV. PROPOSED ARTIFICIAL NEURAL NETWORK DESIGN 

A. The Training Dataset 

The output data for the training set. The output data of 

the neural network will be the minimum distance between the 
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robot manipulators. All the distances between the links of the 

manipulators are calculated, and the minimum distance for 

each configuration in the robot workspace for the 

corresponding input data is used as an output value. 

The input data for the training set. To collect an input 

dataset, it is necessary to generate a set of configurations of 

robot manipulators in a random order. Data collection using 

the copy-type master device consists of the random 

positioning of the manipulators by the operator and receiving 

the coordinates of all the joints of the manipulators from the 

robot, as well as coordinates zyx ,,  and Euler angles  ,,  

of the end-effectors [37]. Similarly, the collection of the input 

dataset using the solution of the direct kinematics problem 

consists in choosing randomly the positions of the 

manipulators and finding the coordinates zyx ,,  and Euler 

angles  ,,  of the end-effectors. The position of the 

manipulators changes until a sufficient amount of data 

necessary for training the neural network is accumulated. 

Data (random values of the possible positions of the robot 

servo drives in different places of its working space) will be 

collected for two manipulators and stored in vectors 

 
],[ 1

6
1
5

1
4

1
3

1
2

1
11 qqqqqqX  , 

],[ 2
6

2
5

2
4

2
3

2
2

2
12 qqqqqqX  , 

(6) 

where 
j

iq  is the angle of rotation of the servo of the i-th joint, 

j-th manipulator, 21, XX  are the vectors of positions of the 

servo drive of the left and right manipulator, respectively. As 

an input dataset we will use the values of the servos rotation 

angles for each joint of two manipulators: a vector 

][ 2112 XXX  . 

We will call the neural network with the specified input 

dataset as Network 1. 

As an alternative, we will also create a second input 

dataset (Network 2), in which we will feed the elements of 

the transformation matrix to the input of the neural network - 

nine elements of the rotation matrix and three values of the 

position vector for each manipulator: 

 



















zzz

yyy

xxx

х

aon

aon

aon

R 33 , 


















z

y

x

p Х13 . (7) 

In favor of such a choice of the input dataset for training 

the neural network is the effectiveness that is obtained when 

using such a neural network to solve the inverse kinematics 

problem (some results on this issue can be found in [12]). 

As the second input dataset, it is proposed to supply a 

vector iX , consisting of 24 elements of two transformation 

matrices for the left and right manipulators: 
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Here 
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transformation matrix for the left manipulator, 























1000

0

RzRaRoRn

RyRaRoRn

RxRaRoRn

TR
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n  is the transformation 

matrix for the right manipulator. 

B. Amount of the training dataset 

For the primary analysis, the generation of initial data was 

carried out based on solving the direct kinematics problem 

based on the kinematic model of manipulators. To determine 

the training dataset, it was proposed to make 2000 random 

positions for each manipulator. As a result, for the 

combination “each with each”, we get 4 000 000 random 

positions. 

Since most of the generated positions were far from 

potential self-collisions, it was decided to reduce the sample. 

Only those cases were left in the sample when one or both 

manipulators fall into a given corridor 07.0  m relative to 

the central axis of the robot, or pass through it (Fig. 3). The 

corridor is determined by the thickness of the manipulators. 

This value is the threshold value, which should not exceed 

the minimum distance between the links of the manipulators. 

This condition for the considered robot SAR-401 means that 

the coordinates along the central axis of the right manipulator 

are greater than 0.07 m, or the coordinates along the central 

axis of the left manipulator are greater than 0.07 m (Fig. 3).  

As a result, three states remain in the sample: 

- the left manipulator approaches the central axis of the 

robot, and the right manipulator is positioned arbitrarily; 

- the right manipulator approaches the central axis of the 

robot, and the left manipulator is positioned arbitrarily. 

- the left and the right manipulators approach the central 

axis of the robot. 

Because of the reduction, out of 4 000 000 configurations, 

about 250 000 values remained. Of the 250 000 values, about 

2 000 led to self-collisions of the manipulators. 

According to the standard approach, the input dataset is 

divided in the following proportion: 70% is used for training 

data, 15% for validation, and 15% for testing. 

Fig. 4 shows the situation where data is excluded. 
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Fig. 3. The variants of the location of the manipulators for forming the input 

dataset 

  

 

Fig. 4. Options for the manipulators to exclude from the input dataset  

As a result of the experiments, we will choose the sigmoid 

function as the activation function, the loss function will be 

estimated using the Mean Squared Error method, and we will 

choose the Levenberg-Marquardt algorithm as the training 

function. 

C. Hidden layers 

Taking into account the recommendations for the hidden 

layers design [38, 39], we will prepare two neural networks 

for research to choose the most accurate solution. The neural 

network parameters are shown in Table IV. 

TABLE IV.  PARAMETERS OF NEURAL NETWORKS FOR SELF-COLLISION 

ANALYSIS 

Network 

No. 

Amount of 

training 

data 

Number of 

hidden 

layers 

Number of neurons in 

hidden layers 

Network 1 250 000 1 11 

Network 2 250 000 1 47 

 

D. Neural network configuration 

We will explore a multi-layered perceptron neural 

network structure (Fig. 5) [40, 41]. 

To calculate the error, we use the Mean Squared Error 

(MSE) method 

 

,)(
1

1

2




n

i

nk yy
т

MSE

 

(9) 

where ky  are the true output values of the robot, ny  are the 

output values that the NN received, n is the total amount of 

data. 

For the designed neural network, we need an activation 

function that will repeat all the properties of the sigmoid 

function but lie in the range from -1 to 1. For this task, we 

will use the hyperbolic tangent function 
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)tanh(
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.
 

(10) 

In MATLAB, we will use the tansig(x) function, which is 

equivalent to the function that implements the hyperbolic 

tangent tanh(x). 

According to the standard approach, the input data is 

divided into the following proportion: 70% are used as 

training data, 15% as validation data, and 15% are used for 

testing [40, 41]. The duplicate input data should be removed 

[40, 41]. 

Based on the above, in Table V, we will give the 

characteristics of the designed neural network. 

 

а) 

 

b) 

Fig. 5. Neural network architecture; a) Network 1, b) Network 2 

The inputs and outputs of the NN (Fig. 5) are described 

as follows: 
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TABLE V.  CHARACTERISTICS OF NEURAL NETWORKS 1 AND 2 

Characteristics Network 1 Network 2 

Hidden layers 1 

The number of neurons in the first layer 11 47 

Layer activation function tansig 

Output layer activation function Linear 

Loss function MSE 

Learning function trainlm 

Number of epochs 1000 

Number of inputs  6 24 

Number of output  1 

 

V. TRAIN A NEURAL NETWORK AND RESULTS 

We will train the considered neural networks (Section IV) 

using the backpropagation method on the obtained training 

data set to detect a possible self-collision of the SAR-401 

robot manipulators. Self-collision is detected when the 

minimum distance between all manipulator links is less than 

0.14 m. If the distance between any manipulator links is less 

than 0.14 m, we will signal that a collision can take place and 

block the motion.  

To train neural networks, we will use a previously 

prepared training dataset consisting of 177 979 variants of the 

position of manipulators. The loss function for each of the 

neural networks is shown in Table VI. 

TABLE VI.  RESULTS OF NEURAL NETWORKS TRAINING 

Network 

No. 

Number 

of 

training 

data 

Number of 

hidden 

layers 

Number of 

neurons in 

hidden 

layers 

Loss 

function 

(meters) 

Network 1 177979 1 11 8.5806e-06 

Network 2 177979 1 47 1.3562e-06 

 

Fig. 6 shows the solution for Network 1, where the neural 

network out is shown in red, and the reference solution is 

shown in blue. d  is the minimum distance between 

manipulators, t  is the amount of training dataset. Fig. 7 

shows the solution for Network 2, where, as above, the neural 

network out is shown in red, and the reference solution is 

shown in blue. We supply 12 values 
j

iq  of the left and the 

right manipulator to the input of Network 1. At the output of 

Network 1, we get one value - the minimum distance between 

manipulators d . The average error is 8.5806e-06 meters. 
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a) 

   

 b) 

Fig. 6. a) Network 1 solutions; b) Scaled Network 1 solutions plot 

At the input of Network 2, we supply the values of the 

transformation matrices – 24 values. At the output of the 

Network 2, we get one value - the minimum distance between 

the manipulators. The average error is 1.3562e-06 meters. It 

can be seen from the graphs that Network 2 shows a more 

accurate result. 

Let's carry out an additional test of neural networks for 

the accuracy of a self-collision detection. For testing, we will 

select from a random sample of positions only those positions 

that lead to the self-collision (when the minimum distance 

between the manipulators is less than 0.14 meters). The value 

of 0.14 meters was chosen based on the condition of 

guaranteed blocking of the manipulators motion before the 

self-collision occurs. 

The solution of neural networks on these data gives more 

demonstrative results (Fig. 8, Fig. 9). It can be seen that 

Network 2 is more accurate too. The average error when 

testing only self-collisions: Network 1 defines an accuracy of 

0.0255 meters and Network 2 – 0.0029 meters. 

Training of both neural networks showed good results in 

estimating the minimum distance between the manipulators 

and analyzing the self-collision between the robot 

manipulators with a minimum error. Thus, finally, we will 

stop our choice on Network 2, where elements of the 

transformation matrix are used as input dataset. 

 

a) 

  

 b) 

Fig. 7. a) Network 1 solutions; b) Scaled Network 2 solutions plot 

VI. TESTS 

Using the developed neural network (Network 2), we will 

test the correct operation of the self-collision control 

algorithm. The tests will be carried out using MATLAB to 

check the operation of the control algorithm, using the SAR-

401 robot simulator and the robot itself to check the copy-

type control mode. As before, we set the minimum distance 

between the manipulators to 0.14 meters. 

Based on the developed neural network, a universal 

approach to the self-collision avoidance control of dual-arm 

robot manipulators is proposed. The proposed system for the 

self-collisions avoidance of manipulators includes a serial 

connection of a software-mathematical module for 

determining the position of the manipulators, a collision 

detection module and a collision avoidance module, which 

are functionally connected in series. Before each new 

movement, an analysis is carried out using a trained neural 

network for the collision detection. If the neural network 

estimates the distance between the arms to be less than 0.14 

m for this example (an occurrence of the self-collision), then 

this movement of the robot arms is blocked, thereby 

preventing the collision. Since the analysis of a possible 

collision is carried out using the neural network, the detection 

speed of which is higher than other methods, the collision 

check process does not slow down the work of the robot as a 

whole and allows you to work in real time, even if there is a 

need to break the trajectory into 100 or more parts. 
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a)  

b)  

Fig. 8. a) Network 1 solutions; b) Scaled Network 1 solutions plot  

a)  

b)  

Fig. 9. a) Network 2 solutions; b) Scaled Network 2 solutions plot  

As a result of the work, in Figs. 10-12 it can be seen that 

the developed neural network works correctly, providing 

information to block the movements of the manipulators in 

case their possible self-collision is detected. 

 

 

Fig. 10. The result of the algorithm in MATLAB and in the simulator   

 

 

Fig. 11. Manipulator self-collision blocking on the robot SAR-401 

simulator    
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Fig. 12. Manipulator self-collision blocking on the robot SAR-401 

 

VII. CONCLUSION  

In the control design for multilink manipulators, neural 

network approaches have been actively used recently. An 

important component of the problem of control design for 

multilink manipulators during their cooperative work is the 

control of their possible self-collision. This task becomes 

especially important when implementing a copy-type control. 

The article proposes an approach to the analysis of a self-

collision of multilink manipulators during their cooperative 

work. The proposed approach, in contrast to the approaches 

based on algebraic methods, is based on the use of neural 

networks. A feature of solving the problem is its solution 

using the regression method, in contrast to the classification 

approach, which gives a forecast with a certain probability of 

less than 100%, which consequently may lead to an incorrect 

result. 

Therefore, an efficient solution was obtained in terms of 

algorithm computational speed and accuracy compared to 

algebraic approaches based. 

In this paper, the self-collision control problem is solved 

based on a regression approach using neural networks. 

Although in the future the authors see the solution of this 

problem based on the classification approach to obtain an 

unambiguous answer - whether there is a self-collision, 

without additional processing of the neural network output. 
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