
Journal of Robotics and Control (JRC)

Volume 3, Issue 3, May 2022

ISSN: 2715-5072, DOI: 10.18196/jrc.v3i3.14318 309

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Self-Collision Avoidance Control of Dual-Arm

Multi-Link Robot Using Neural Network Approach

Vadim Kramar 1, Oleg Kramar 2, Aleksey Kabanov 3*

Department of Informatics and Control in Technical Systems, Sevastopol State University, Sevastopol, Russia

Email: 1 kramarv@mail.ru, 2 rolets@yandex.ru, 3 kabanovaleksey@gmail.com

*Corresponding Author

The research was supported by the Russian Science Foundation grant No. 22-19-00392, https://rscf.ru/project/22-19-00392/

Abstract—The problem of mutual collisions of manipulators

of a dual-arm multi-link robot (so-called self-collisions) arises

during the performance of a cooperative technological

operation. Self-collisions can lead to non-fulfillment of the

technological operation or even to the failure of the

manipulators. In this regard, it is necessary to develop a method

for online detection and avoidance of self-collisions of

manipulators. The article presents a method for detecting and

avoiding self-collisions of multi-link manipulators using an

artificial neural network by the example of the dual-arm robot

SAR-401. A comparative analysis is carried out and the

architecture of an artificial neural network for self-collisions

avoidance control of dual-arm robot manipulators is proposed.

The novelty of the proposed approach lies in the fact that it is an

alternative to the generally accepted methods of detecting self-

collisions based on the numerical solution of inverse kinematics

problems for manipulators in the form of nonlinear

optimization problems. Experimental results performed based

on MATLAB model, the simulator of the robot SAR-401 and on

the real robot itself confirmed the applicability and effectiveness

of the proposed approach. It is shown that the detection of

possible self-collisions using the proposed method based on an

artificial neural network is performed approximately 10 times

faster than approaches based on the numerical solution of the

inverse kinematics problem while maintaining the specified

accuracy.

Keywords—multilink manipulator; dual-arm robot; neural

network; self-collision avoidance

I. INTRODUCTION

The multilink manipulators of modern robots allow

solving high-precision technological problems. As a rule,

these manipulators are redundant, have a degree of freedom

(DOF) of at least six, which allows them to move the end-

effector of the manipulator in any position within their

workspace.

The synthesis of the motion control systems for such

manipulators can be carried out based on various approaches.

The technique used, as well as the way it is implemented, can

have a significant impact on the performance of the

manipulator and on the possible range of applications. On the

other hand, the mechanical design of the manipulator affects

the type of control circuit used. For example, the control

problem of a Cartesian manipulator differs significantly from

the control problem of a multilink manipulator.

Regardless of the specific type of mechanical

manipulator, it should be noted that the target setting

(movement and efforts of the end-effector) is usually carried

out in the operational space, and the control actions

(generalized forces of the actuators) – in the joint space. This

fact leads to the consideration of two types of general

automatic control schemes: a control scheme in the joint

space and a control scheme in the operational space [1].

Some robots with multilink manipulators make it possible

to implement a control design based on the “Programming by

Demonstration” approach [1 – 4]. The “Programming by

Demonstration” approach is based on the robot teaching to

perform the various operations based on the results of the

operator's (teacher's) actions. In this case, the operator should

be able to “demonstrate” either by directly moving the joints

of the manipulator, or with the help of special master devices

[5]. As a rule, such master devices have a kinematic similarity

with an actuating mechanism of the manipulator. In this case,

the operator using the master device makes the required

movements of the manipulator. The presence of a master

device makes it possible to organize a copy-type control of

the manipulators, forcing the robot to copy the movements of

the operator in real time, for example, when the robot is

operating in an unstructured and dangerous environment.

Self-collision detection is a basic feature that plays an

important role in performing fully or partially autonomous

manipulations in an unstructured environment. In practice, it

usually turns out that the seemingly large working space of

the manipulator is significantly reduced due to the danger of

collision with other objects, the presence of joint limits,

special positions and zones of limited controllability [2, 6].

The solution of the problem of detection and preventing

the critical movements of manipulator becomes much more

complicated if the robot has several manipulators with

possible mutual influence on each other. In particular, for

robots with several manipulators, there is a danger that

manipulators will collide with each other. Such collisions are

called self-collisions [7-11]. For robots with a copy-type

control, the self-collisions control problem falls on the

operator. There may be cases when self-collisions of

manipulators will be possible (for example, due to poor

calibration of the master device, or as a result of erroneous

actions of the operator, or, for example, as a result of a

mismatch between anthropomorphic characteristics of the

operator and the master device).

Often in the literature, methods of analysis of the critical

positions of manipulators that lead to collisions are reduced

to the analysis of the kinematic model of the manipulators

Journal of Robotics and Control (JRC) ISSN: 2715-5072 310

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

and the search of the coordinates and their combinations at

which these critical positions arise [7–24]. In [7], the authors

presented a solution of the problem of two manipulators

motion control using a constraint-based programming

approach, which was used to generate online motion plans.

The control problem is reduced to the analysis of the

interaction of only the end-effectors of the manipulators,

ensuring the avoidance of their self-collisions and collisions

with external obstacles. Obviously, this approach does not

guarantee the prevention of collisions between manipulators

links. Another approach is based on the search for restrictions

on control signals that exclude the movement of manipulators

with the intersection of the trajectories of all the parts of the

manipulators. In [8, 9, 25], the authors proposed a simple

approach based on linear algebra methods for self-collisions

control of multilink manipulators. In [14], to detect the

manipulators collisions and represent them in a two-

dimensional coordinate system, the so-called collision map

was proposed as a collision zone. In this case, collision

avoidance is achieved by temporarily planning the trajectory

of the movement of the robot that received the move

instruction. The manipulator, which becomes an obstacle in

the path of another one receives an escape instruction. To

generate real-time movements of manipulators to avoid

collision, a reliable reactive algorithm called the “skeleton

algorithm” is proposed [15]. According to this algorithm, the

structure of the robot is divided into segments, so that

arbitrary points can be selected and controlled. The algorithm

determines the collision points on such segments and

generates the appropriate control for collision avoidance.

This algorithm requires sensory information about the

position of each link while moving in order to plan avoidance

trajectories before possible collisions. An occupied-free

approach can be seen in [16] (with the provision that the

approach is applicable for a two-dimensional space). In [19]

the authors developed a backward quadratic search algorithm

as an option for solving inverse kinematics problems in

obstacle avoidance. The algorithm executes a backward

search for possible obstacle collisions, from the end-effector

to the base, and avoids obstacles by utilizing a hybrid inverse

kinematics scheme. In [20] a non-collision trajectory-

planning algorithm in three-dimensional space was

presented. The algorithm is based on velocity potential field

for robotic manipulators, which can be applied to collision

avoidance among serial industrial robots and obstacles, and

path optimization in multi-robot collaborative operation. In

[23] the approach of collision prediction of a dual-arm robot

based on a 3D point cloud is proposed. According to the

approach, a simplified 3D model of the robot is generated

using a segmented point cloud, and a self-identification

control is based on the over-segmentation approach and the

forward kinematic model of the robot. In [24] a self-collision

between a manipulator and a mobile robot was considered.

Authors introduced the concept of a distance buffer border,

which is a 3D curved surface enclosing a buffer region of the

mobile robot. When the distance between the manipulator

and the mobile robot is less than the buffer distance, the

proposed strategy is to move the mobile robot away from the

manipulator.

All the above methods are united by the fact that the

solution of the kinematic problems necessary for their

implementation is performed based on classical approaches.

At the same time, a number of articles [26-32] propose

approaches to design kinematic control of multilink

manipulators based on neural networks, where the data

obtained because of solving the direct kinematics problem

(DKP) are used as a set of training parameters. At the same

time, there are studies that show the effectiveness of the

neural network approach, primarily in terms of computational

speed. It is especially important for real-time self-collisions

control for robots with copy-type master devices. In this

regard, it is very useful to consider the problem of the self-

collision control of robot manipulators using a neural

network approach without solving the inverse kinematics

problem and analytical approaches. This, according to the

authors, should lead to a reduction in the time to solve the

problem of self-collision analysis, which will allow a more

efficient online control implementation.

This paper considers the solution of self-collisions control

problem for multi-link robot manipulators with a copy-type

master device based on a neural network approach. As an

object, the robot SAR-401 with two multilink

(anthropomorphic) manipulators controlled through a master

device in the form of a copy suit is considered. The proposed

design is based on the use of the special choice of the

structure of the input dataset and experimental choice of the

structure of the neural network. The approach proposed in the

article made it possible to reduce the computation time by

approximately 10 times compared to the application of the

computational approach to the analysis of the self-collision

[8, 9] while maintaining the specified accuracy. By reducing

the computation time, the approach proposed in the article

becomes an effective tool for developing a control program

with an online mode for detecting and avoiding self-

collisions of multi-link manipulators. The proposed approach

can be extended to other anthropomorphic robots. Note that

the approach proposed in the article is based on solving a

regression problem, the use of which for detecting and

avoiding a self-collision, in our opinion, is more effective

than the classification approach, which gives a prediction

with a certain probability of less than 100%, which as a result

may lead to an incorrect result.

The rest of the article is structured as follows. Section 2

presents the problem statement and the description of the

robot SAR-401. The kinematic analysis of the robot SAR-401

manipulators is shown in section 3. The problems of the

neural network design, including training dataset,

architecture are discussed in section 3. Section 4 is devoted

to the neural network learning process. Section 5 presents the

results of the operation of the self-collision control system.

II. THE DESCRIPTION OF THE ROBOT SAR-401 AND

PROBLEM STATEMENT

The robot SAR-401 is a torso manipulation robot with

anthropomorphic structure and consisting of a base, a body

mounted on it. Two manipulators with five-finger grippers

and a head module with a computer stereo vision system are

mounted on the robot’s body (Fig. 1) [33, 34]. Fig. 1 shows:

1 – head module; 2 – compartment for stereo video cameras;

3 - rotary mechanism of the head module; 4 - body; 5,6,7,8 -

rotational kinematic pairs of the manipulator; 9 - five-

Journal of Robotics and Control (JRC) ISSN: 2715-5072 311

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

fingered gripper; 10 - rack of SAR-401. Each manipulator of

the robot SAR-401 is an anthropomorphic.

The parameters of the anthropomorphic manipulator of

the robot SAR-401 are shown in Table 1.

TABLE I. THE PARAMETERS OF THE ROBOT SAR - 401

Parameters Manipulator of the SAR-401

Weight 70.0 kg (with hand 1.2 kg)

Height 825 mm

Articulation types of the
manipulator

revolving

Robot manipulator length
shoulder to elbow (290 mm)

elbow to wrist (280 мм)

Joint Motor Swing Speed
Swing speed of the gripper motors

170 grad/s
110 grad/s

Joint Positioning Accuracy 12 bit (4 096 pulses per rotation)

The master device, for example, a copy suit (Fig. 1(a)),

makes it possible to organize a copy-type control of the

manipulators, forcing the robot to copy the movements of the

operator in real time. In this case, it is necessary to control the

self-collisions of the manipulators.

a)

b)

Fig. 1. Robot SAR-401: a) robot SAR-401 and an operator in a master
device; b) structure of robot SAR-401

The problem of the self-collision control in the copy-type

control mode of the robot SAR-401 is to develop a method

for determining the configurations of both manipulators,

which can lead to self-collisions with a high probability. To

determine the current configuration, signals from the motors

of the robot's manipulators are used. With the help of these

signals, the values of the generalized coordinates of the

manipulators are formed, knowing which the coordinate

values of all the manipulators links are calculated through the

direct kinematics problem solution.

Based on the information about the planned movement of

the manipulator links received in real time from the master

device, the possibility of a self-collision during movement is

analyzed based on the calculation of the minimum distance

between the manipulator links. The results obtained are

transmitted to the control system, and it blocks this movement

and provides information to the operator about a possible

self-collision if the minimum distance between the

manipulators is less than a certain threshold value. At the

same time, the analysis of the relationship between

configurations with a minimum distance between

manipulators in this paper is proposed to be performed on the

basis of a neural network. The training data set for neural

network can be obtained by solving the direct kinematics

problem.

III. KINEMATICS ANALYSIS

To construct a kinematic diagram of the manipulators of

the robot SAR-401, we use the Denavit-Hartenberg notation

and methodology [35, 36]. Consider the left manipulator.

To represent the geometry of the manipulator, we will use

a kinematic diagram (Fig. 2), which sequentially displays the

representation of the links of the manipulator connected by

joints. Since the manipulator has only a rotational type of

joints, the relative position of adjacent links will be

determined by the angular variable i . The Denavit-

Hartenberg parameters for the left manipulator of the robot

SAR-401 are shown in Table II.

TABLE II. THE DENAVIT-HARTENBERG PARAMETERS FOR THE LEFT

MANIPULATOR OF THE ROBOT SAR - 401

Link, i iA , m i , rad id , m i , rad

1 0 π/2 0 i

2 0 π/2 0 2/ i

3 0 π/2 -0.3 2/ i

4 0 π/2 0 i

5 0 π/2 -0.3 i

6 -0.24 0 0 2/ i

In Table 2, the following designations are adopted: iA is

the distance between the 1iZ and iZ axes along the iX

axis, i is the angle from the 1iZ axis to the iZ axis about

the iX axis, id is the distance from the origin of the frame

1i to the iX axis along the 1iZ axis, i are generalized

coordinates (the angles of rotation of joints) (Fig. 2). The

parameters 6,1, ii are variables and are initially 0.

For the right manipulator, the Denavit-Hartenberg

parameters are identical. Restrictions on the movements of

the joint servos of the SAR-401 manipulators (servo limits)

are shown in Table III.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 312

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

TABLE III. THE LIMITS OF SERVOS OF MANIPULATORS

№ Min Max Min max
0 -90° 0° -90° 0°

1 0° 105° -105° 0°

2 -40° 40° -40° 40°

3 -110° 5° -110° 5°

4 -40° 40° -40° 40°

5 -10° 10° -10° 10°

When solving the direct kinematics problem two

coordinate systems are considered: the initial one, associated

with the base joint 000 ,, zyx , and the final one, associated

with the end-effector of the manipulator nnn zyx ,, .

Extended position vectors TzyxX 1ˆ
0000 and

 Tnnnn zyxX 1ˆ , for the specified coordinate

systems are related by the formula

nn XTX ˆˆ 0

0 (1)

where

tf

pR
T

x

xx
n

31

13330
 is a 4x4 matrix of a homogeneous

transformation that carries information about the translation

(vector 13xp) and the rotation of one coordinate system

relative to another (matrix 33xR), 31xf is a 1x3 vector that

specifies the perspective transformation, t is a global scaling

factor. In our case]000[31 xf , 1t .

Now for each joint, we can define a homogeneous

transformation matrix iT that specifies the sequence of

transformations according to the Denavit-Hartenberg

notation: rotation around the axis X by an angle i , shift

along the axis X by iA , rotate along the axis Z by an

angle i , shift along the axis Z by id

.
10

0

1010

0

10

ixiAizid

ixiAxizidzi

RpIRpI

TTTTT

 (2)

The calculation of the homogeneous transformation

matrix (depending on the angles 654321 ,,,,,) is

carried out using the relation

654321

0 TTTTTTTn . (3)

Fig. 2. The kinematic diagram of the left manipulator of the robot SAR-401

As a result, we get the transformation matrix

1000

0

zaon

yaon

xaon

T
zzz

yyy

xxx

n . (4)

To form a dataset for training the neural network, we need

to know the coordinates of each joint. It is necessary to

compose 6 transformation matrices for each joint of the

manipulator, which are used to generate data for training the

neural network

1

0
1 TT , 21

0
2 TTT , 321

0
3 TTTT ,

4321
0
4 TTTTT , 54321

0
5 TTTTTT ,

654321
0 TTTTTTTn .

(5)

IV. PROPOSED ARTIFICIAL NEURAL NETWORK DESIGN

A. The Training Dataset

The output data for the training set. The output data of

the neural network will be the minimum distance between the

Journal of Robotics and Control (JRC) ISSN: 2715-5072 313

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

robot manipulators. All the distances between the links of the

manipulators are calculated, and the minimum distance for

each configuration in the robot workspace for the

corresponding input data is used as an output value.

The input data for the training set. To collect an input

dataset, it is necessary to generate a set of configurations of

robot manipulators in a random order. Data collection using

the copy-type master device consists of the random

positioning of the manipulators by the operator and receiving

the coordinates of all the joints of the manipulators from the

robot, as well as coordinates zyx ,, and Euler angles ,,

of the end-effectors [37]. Similarly, the collection of the input

dataset using the solution of the direct kinematics problem

consists in choosing randomly the positions of the

manipulators and finding the coordinates zyx ,, and Euler

angles ,, of the end-effectors. The position of the

manipulators changes until a sufficient amount of data

necessary for training the neural network is accumulated.

Data (random values of the possible positions of the robot

servo drives in different places of its working space) will be

collected for two manipulators and stored in vectors

],[1

6
1
5

1
4

1
3

1
2

1
11 qqqqqqX ,

],[2
6

2
5

2
4

2
3

2
2

2
12 qqqqqqX ,

(6)

where
j

iq is the angle of rotation of the servo of the i-th joint,

j-th manipulator, 21, XX are the vectors of positions of the

servo drive of the left and right manipulator, respectively. As

an input dataset we will use the values of the servos rotation

angles for each joint of two manipulators: a vector

][2112 XXX .

We will call the neural network with the specified input

dataset as Network 1.

As an alternative, we will also create a second input

dataset (Network 2), in which we will feed the elements of

the transformation matrix to the input of the neural network -

nine elements of the rotation matrix and three values of the

position vector for each manipulator:

zzz

yyy

xxx

х

aon

aon

aon

R 33 ,

z

y

x

p Х13 . (7)

In favor of such a choice of the input dataset for training

the neural network is the effectiveness that is obtained when

using such a neural network to solve the inverse kinematics

problem (some results on this issue can be found in [12]).

As the second input dataset, it is proposed to supply a

vector iX , consisting of 24 elements of two transformation

matrices for the left and right manipulators:

].

[

RzRyRxRaRa

RaRoRoRoRnRn

RnLzLyLxLaLaLa

LoLoLoLnLnLnX

zy

xzyxzy

xzyx

zyxzyxi

 (8)

Here

1000

0

LzLaLoLn

LyLaLoLn

LxLaLoLn

TL
zzz

yyy

xxx

n is the

transformation matrix for the left manipulator,

1000

0

RzRaRoRn

RyRaRoRn

RxRaRoRn

TR
zzz

yyy

xxx

n is the transformation

matrix for the right manipulator.

B. Amount of the training dataset

For the primary analysis, the generation of initial data was

carried out based on solving the direct kinematics problem

based on the kinematic model of manipulators. To determine

the training dataset, it was proposed to make 2000 random

positions for each manipulator. As a result, for the

combination “each with each”, we get 4 000 000 random

positions.

Since most of the generated positions were far from

potential self-collisions, it was decided to reduce the sample.

Only those cases were left in the sample when one or both

manipulators fall into a given corridor 07.0 m relative to

the central axis of the robot, or pass through it (Fig. 3). The

corridor is determined by the thickness of the manipulators.

This value is the threshold value, which should not exceed

the minimum distance between the links of the manipulators.

This condition for the considered robot SAR-401 means that

the coordinates along the central axis of the right manipulator

are greater than 0.07 m, or the coordinates along the central

axis of the left manipulator are greater than 0.07 m (Fig. 3).

As a result, three states remain in the sample:

- the left manipulator approaches the central axis of the

robot, and the right manipulator is positioned arbitrarily;

- the right manipulator approaches the central axis of the

robot, and the left manipulator is positioned arbitrarily.

- the left and the right manipulators approach the central

axis of the robot.

Because of the reduction, out of 4 000 000 configurations,

about 250 000 values remained. Of the 250 000 values, about

2 000 led to self-collisions of the manipulators.

According to the standard approach, the input dataset is

divided in the following proportion: 70% is used for training

data, 15% for validation, and 15% for testing.

Fig. 4 shows the situation where data is excluded.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 314

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

Fig. 3. The variants of the location of the manipulators for forming the input

dataset

Fig. 4. Options for the manipulators to exclude from the input dataset

As a result of the experiments, we will choose the sigmoid

function as the activation function, the loss function will be

estimated using the Mean Squared Error method, and we will

choose the Levenberg-Marquardt algorithm as the training

function.

C. Hidden layers

Taking into account the recommendations for the hidden

layers design [38, 39], we will prepare two neural networks

for research to choose the most accurate solution. The neural

network parameters are shown in Table IV.

TABLE IV. PARAMETERS OF NEURAL NETWORKS FOR SELF-COLLISION

ANALYSIS

Network

No.

Amount of

training

data

Number of

hidden

layers

Number of neurons in

hidden layers

Network 1 250 000 1 11

Network 2 250 000 1 47

D. Neural network configuration

We will explore a multi-layered perceptron neural

network structure (Fig. 5) [40, 41].

To calculate the error, we use the Mean Squared Error

(MSE) method

,)(
1

1

2

n

i

nk yy
т

MSE

(9)

where ky are the true output values of the robot, ny are the

output values that the NN received, n is the total amount of

data.

For the designed neural network, we need an activation

function that will repeat all the properties of the sigmoid

function but lie in the range from -1 to 1. For this task, we

will use the hyperbolic tangent function

Journal of Robotics and Control (JRC) ISSN: 2715-5072 315

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

1

1
)tanh(

2

2

n

n

e

e
n

.

(10)

In MATLAB, we will use the tansig(x) function, which is

equivalent to the function that implements the hyperbolic

tangent tanh(x).

According to the standard approach, the input data is

divided into the following proportion: 70% are used as

training data, 15% as validation data, and 15% are used for

testing [40, 41]. The duplicate input data should be removed

[40, 41].

Based on the above, in Table V, we will give the

characteristics of the designed neural network.

а)

b)

Fig. 5. Neural network architecture; a) Network 1, b) Network 2

The inputs and outputs of the NN (Fig. 5) are described

as follows:

),(_][211 XXNetANNQ
,

),,,,,

,,,,,,(_][

2
6

2
5

2
4

2
3

2
2

2
1

1
6

1
5

1
4

1
3

1
2

1
11

qqqqqq

qqqqqqNetANNQ

.

(11)

].

[_][2

RzRyRxRaRa

RaRoRoRoRnRn

RnLzLyLxLaLaLa

LoLoLoLnLnLnNetANNQ

zy

xzyxzy

xzyx

zyxzyx

 (12)

TABLE V. CHARACTERISTICS OF NEURAL NETWORKS 1 AND 2

Characteristics Network 1 Network 2

Hidden layers 1

The number of neurons in the first layer 11 47

Layer activation function tansig

Output layer activation function Linear

Loss function MSE

Learning function trainlm

Number of epochs 1000

Number of inputs 6 24

Number of output 1

V. TRAIN A NEURAL NETWORK AND RESULTS

We will train the considered neural networks (Section IV)

using the backpropagation method on the obtained training

data set to detect a possible self-collision of the SAR-401

robot manipulators. Self-collision is detected when the

minimum distance between all manipulator links is less than

0.14 m. If the distance between any manipulator links is less

than 0.14 m, we will signal that a collision can take place and

block the motion.

To train neural networks, we will use a previously

prepared training dataset consisting of 177 979 variants of the

position of manipulators. The loss function for each of the

neural networks is shown in Table VI.

TABLE VI. RESULTS OF NEURAL NETWORKS TRAINING

Network

No.

Number

of

training

data

Number of

hidden

layers

Number of

neurons in

hidden

layers

Loss

function

(meters)

Network 1 177979 1 11 8.5806e-06

Network 2 177979 1 47 1.3562e-06

Fig. 6 shows the solution for Network 1, where the neural

network out is shown in red, and the reference solution is

shown in blue. d is the minimum distance between

manipulators, t is the amount of training dataset. Fig. 7

shows the solution for Network 2, where, as above, the neural

network out is shown in red, and the reference solution is

shown in blue. We supply 12 values
j

iq of the left and the

right manipulator to the input of Network 1. At the output of

Network 1, we get one value - the minimum distance between

manipulators d . The average error is 8.5806e-06 meters.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 316

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

a)

 b)

Fig. 6. a) Network 1 solutions; b) Scaled Network 1 solutions plot

At the input of Network 2, we supply the values of the

transformation matrices – 24 values. At the output of the

Network 2, we get one value - the minimum distance between

the manipulators. The average error is 1.3562e-06 meters. It

can be seen from the graphs that Network 2 shows a more

accurate result.

Let's carry out an additional test of neural networks for

the accuracy of a self-collision detection. For testing, we will

select from a random sample of positions only those positions

that lead to the self-collision (when the minimum distance

between the manipulators is less than 0.14 meters). The value

of 0.14 meters was chosen based on the condition of

guaranteed blocking of the manipulators motion before the

self-collision occurs.

The solution of neural networks on these data gives more

demonstrative results (Fig. 8, Fig. 9). It can be seen that

Network 2 is more accurate too. The average error when

testing only self-collisions: Network 1 defines an accuracy of

0.0255 meters and Network 2 – 0.0029 meters.

Training of both neural networks showed good results in

estimating the minimum distance between the manipulators

and analyzing the self-collision between the robot

manipulators with a minimum error. Thus, finally, we will

stop our choice on Network 2, where elements of the

transformation matrix are used as input dataset.

a)

 b)

Fig. 7. a) Network 1 solutions; b) Scaled Network 2 solutions plot

VI. TESTS

Using the developed neural network (Network 2), we will

test the correct operation of the self-collision control

algorithm. The tests will be carried out using MATLAB to

check the operation of the control algorithm, using the SAR-

401 robot simulator and the robot itself to check the copy-

type control mode. As before, we set the minimum distance

between the manipulators to 0.14 meters.

Based on the developed neural network, a universal

approach to the self-collision avoidance control of dual-arm

robot manipulators is proposed. The proposed system for the

self-collisions avoidance of manipulators includes a serial

connection of a software-mathematical module for

determining the position of the manipulators, a collision

detection module and a collision avoidance module, which

are functionally connected in series. Before each new

movement, an analysis is carried out using a trained neural

network for the collision detection. If the neural network

estimates the distance between the arms to be less than 0.14

m for this example (an occurrence of the self-collision), then

this movement of the robot arms is blocked, thereby

preventing the collision. Since the analysis of a possible

collision is carried out using the neural network, the detection

speed of which is higher than other methods, the collision

check process does not slow down the work of the robot as a

whole and allows you to work in real time, even if there is a

need to break the trajectory into 100 or more parts.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 317

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

a)

b)

Fig. 8. a) Network 1 solutions; b) Scaled Network 1 solutions plot

a)

b)

Fig. 9. a) Network 2 solutions; b) Scaled Network 2 solutions plot

As a result of the work, in Figs. 10-12 it can be seen that

the developed neural network works correctly, providing

information to block the movements of the manipulators in

case their possible self-collision is detected.

Fig. 10. The result of the algorithm in MATLAB and in the simulator

Fig. 11. Manipulator self-collision blocking on the robot SAR-401

simulator

Journal of Robotics and Control (JRC) ISSN: 2715-5072 318

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

Fig. 12. Manipulator self-collision blocking on the robot SAR-401

VII. CONCLUSION

In the control design for multilink manipulators, neural

network approaches have been actively used recently. An

important component of the problem of control design for

multilink manipulators during their cooperative work is the

control of their possible self-collision. This task becomes

especially important when implementing a copy-type control.

The article proposes an approach to the analysis of a self-

collision of multilink manipulators during their cooperative

work. The proposed approach, in contrast to the approaches

based on algebraic methods, is based on the use of neural

networks. A feature of solving the problem is its solution

using the regression method, in contrast to the classification

approach, which gives a forecast with a certain probability of

less than 100%, which consequently may lead to an incorrect

result.

Therefore, an efficient solution was obtained in terms of

algorithm computational speed and accuracy compared to

algebraic approaches based.

In this paper, the self-collision control problem is solved

based on a regression approach using neural networks.

Although in the future the authors see the solution of this

problem based on the classification approach to obtain an

unambiguous answer - whether there is a self-collision,

without additional processing of the neural network output.

REFERENCES

[1] M. Ostanin, D. Popov, and A. Klimchik, “Programming by

Demonstration Using Two-Step Optimization for Industrial Robot,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 72–77, 2018.

[2] S. Calinon, “Learning from Demonstration (Programming by

Demonstration),” Encyclopedia of Robotics, M. H. Ang, O. Khatib,
B. Siciliano, Berlin, Heidelberg: Springer Berlin Heidelberg, 2018,

pp. 1–8.

[3] V. Alchakov, V. Kramar, and A. Larionenko, “Basic approaches to

programming by demonstration for an anthropomorphic robot,” IOP

Conference Series: Materials Science and Engineering, vol. 709, no.
2, 2020, p. 022092.

[4] J. Peters, D. Lee, J. Kober, D. Nguyen-Tuong, J. Bagnell and S.

Schaal, Chapter 15: Robot Learning, Springer Handbook of Robotics.
Springer International Publishing, 2017.

[5] Z. Zhu and H. Hu, “Robot Learning from Demonstration in Robotic
Assembly: A Survey,” Robotics, vol. 7, no. 2, p. 17, 2018.

[6] X. Tian, Q. Xu, and Q. Zhan, “An analytical inverse kinematics

solution with joint limits avoidance of 7-DOF anthropomorphic
manipulators without offset,” Journal of the Franklin Institute, vol.

358, no. 2, pp. 1252–1272, 2021.

[7] Y. Wang, P. Ogren, C. Simth, F. Vina, Y. Karayiannidis, “Dual arm

manipulation using constraint based programming,” Proc. 19th World

Congress IFAC,Cape Town, vol 19, 2014, pp. 311-319.

[8] V. Kramar, A. Kabanov, and V. Alchakov, “Application of linear

algebra approaches for predicting self-collisions of dual-arm multi-
link robot,” International Journal of Mechanical Engineering and

Robotics Research., vol. 9, no. 11, pp. 1521-1525, 2020.

[9] V. A. Kramar, “The method for predicting self-collisions of multi-link
manipulators,” Journal of Physics: Conference Series, vol. 1661, p.

012052, 2020.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 319

Vadim Kramar, Self-Collision Avoidance Control of Dual-Arm Multi-Link Robot Using Neural Network Approach

[10] M. Lei, T. Wang, C. Yao, H. Liu, Z. Wang, and Y. Deng, “Real-Time

Kinematics-Based Self-Collision Avoidance Algorithm for Dual-Arm

Robots,” Applied Sciences, vol. 10, no. 17, p. 5893, 2020.

[11] Y. Liu, C. Yu, J. Sheng, and T. Zhang, “Self-collision Avoidance

Trajectory Planning and Robust Control of a Dual-arm Space Robot,”
Int. J. Control Autom. Syst., vol. 16, no. 6, pp. 2896–2905, 2018.

[12] A. A. Kabanov and D. A. Tokarev, “Self-collision Avoidance Method
for a Dual-arm Robot,” Proc. of 2019 3rd International Conference on

Control in Technical Systems, 2019, pp. 273-276.

[13] C. Scoccia, G. Palmieri, M. C. Palpacelli, and M. Callegari, “A
Collision Avoidance Strategy for Redundant Manipulators in

Dynamically Variable Environments: On-Line Perturbations of Off-

Line Generated Trajectories,” Machines, vol. 9, no. 2, p. 30, Feb.
2021.

[14] A. Y. Afaghani, Y. Aiyama, “On-line collision avoidance between
two robot manipulators using collision map and simple escaping

method,” Proc. IEEE/SICE Int. Symposium on System Integration,

2013, pp. 105-110.

[15] A. Santis, A. Albu-Schäffer, C. Ott, B. Siciliano, G. Hirzinger, “The

skeleton algorithm for real-time collision avoidance of a

humanoid manipulator interacting with humans,” Proc. IEEE/ASME
international conference on advanced intelligent mechatronics,

Zurich, 2007, 9871732.

[16] Y. Wang, P. Ogren, C. Simth, F. Vina, and Y. Karayiannidis, “Dual-
arm manipulation using constraint-based programming,” in Proc. 19th

World Congress IFAC, Cape Town, vol. 19, 2014, pp. 311-319.

[17] S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini
“Dual-arm relative tasks performance using sparse kinematic

control,” IROS: Intelligent Robots and Systems, 2018, pp.6003-6009.

[18] T. Kivelä, J. Mattila, J. Puura, and S. Launis, “On-Line Path Planning

With Collision Avoidance for Coordinate-Controlled Robotic

Manipulators,” Proc. ASME/BATH 2017 Symposium on Fluid Power
and Motion Control, 2017, p. V001T01A048.

[19] T. Hu, T. Wang, J. Li, and W. Qian, “Obstacle Avoidance for

Redundant Manipulators Utilizing a Backward Quadratic Search
Algorithm,” International Journal of Advanced Robotic Systems, vol.

13, no. 3, 2016, p. 119.

[20] X. Xu, Y. Hu, J. Zhai, L. Li, and P. Guo, “A novel non-collision

trajectory planning algorithm based on velocity potential field for

robotic manipulator,” International Journal of Advanced Robotic
Systems, vol. 15, no. 4, p. 172988141878707, 2018.

[21] S. Chen, M. Luo, and F. He, “A universal algorithm for sensorless

collision detection of robot actuator faults,” Advances in Mechanical
Engineering, vol. 10, no. 1, p. 168781401774071, 2018.

[22] Z. Hou, S. Ma, Q. Zeng, and A. Li, “Kinematics analysis and self -
collision detection of Truss type multi-robot cooperative welding

platform,” Procedia CIRP, vol. 81, 2019, pp. 488–493.

[23] X. Wang, C. Yang, Z. Ju, H. Ma, and M. Fu, “Robot manipulator self-
identification for surrounding obstacle detection,” Multimed Tools

Appl, vol. 76, no. 5, pp. 6495–6520, 2017.

[24] K. Jang, S. Kim, and J. Park, “Reactive Self-Collision Avoidance for

a Differentially Driven Mobile Manipulator,” Sensors, vol. 21, no. 3,

p. 890, 2021.

[25] A. A. Kabanov, O. A. Kramar, Kramar, V.A. “Collision Avoidance

Control of Multi-link Robotic Manipulators with a Copy-type Master

Device,” Proc. International Russian Automation Conference,

RusAutoCon, 2021, pp. 639–643.

[26] Y. Li, S. Li, и B. Hannaford, “A Novel Recurrent Neural Network for

Improving Redundant Manipulator Motion Planning Completeness,”

2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 2956–2961.

[27] Z. Liao, G. Jiang, F. Zhao, X. Mei, и Y. Yue, “A novel solution of
inverse kinematic for 6R robot manipulator with offset joint based on

screw theory,” International Journal of Advanced Robotic Systems,

vol. 17, no. 3, p. 172988142092564, 2020.

[28] M. Rouhani and S. Ebrahimabadi, “Inverse kinematics of a 7-DOF
redundant robot manipulator using the active set approach under joint

physical limits,” Turk J Elec Eng & Comp Sci, vol. 25, pp. 3920 –

3931, 2017.

[29] O. M. Omisore, “Non-iterative geometric approach for inverse

kinematics of redundant lead-module in a radiosurgical snake-like

robot,” BioMed Eng OnLine, vol. 16, no. 1, p. 93, dec. 2017.

[30] A. R. J. Almusawi, L. C. Dülger, and S. Kapucu, “A New Artificial

Neural Network Approach in Solving Inverse Kinematics of Robotic
Arm (Denso VP6242),” Computational Intelligence and

Neuroscience, vol. 2016, pp. 1–10, 2016.

[31] T. Uhl, Advances in Mechanism and Machine Science: Proceedings
of the 15th IFToMM World Congress on Mechanism and Machine

Science, V. 73. Cham: Springer International Publishing, 2019.

[32] V. Kramar, O. Kramar, and A. Kabanov, “An Artificial Neural

Network Approach for Solving Inverse Kinematics Problem for an

Anthropomorphic Manipulator of Robot SAR-401,” Machines, vol.
10, no. 4, p. 241, 2022.

[33] A. Bogdanov, E. Dudorov, A. Permyakov, A. Pronin, и I. Kutlubaev,
“Control System of a Manipulator of the Anthropomorphic Robot

FEDOR,” 2019 12th International Conference on Developments in

eSystems Engineering (DeSE), 2019, pp. 449–453.

[34] A. A. Kabanov and A. N. Balabanov, “The modeling of an

anthropomorphic robot arm,” MATEC Web of Conferences, vol. 224,

2018, p. 141807.

[35] K. M. Lynch and F. C. Park, Modern robotics: mechanics, planning,

and control, Cambridge, UK: Cambridge University Press, 2017.

[36] P.I. Corke, Robotics, vision and control fundamental algorithms in

Matlab: Springer, Cham, 2017.

[37] Shuai Li, Yunong Zhang, Long Jin, “Kinematic Control of Redundant

Manipulators Using Neural Networks,” IEEE Transactions On Neural

Networks And Learning Systems, vol. 28, no. 10, pp. 2243-2254,
2017.

[38] Ng, A. Machine Learning Yearning; GitHub eBook (MIT Licensed):

San Francisco, CA, USA, 2018, p. 118.

[39] J. Heaton, Deep learning and neural networks. St. Louis, MO: Heaton

Research, Inc, 2015.

[40] C. E. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, “Activation

Functions: Comparison of Trends in Practice and Research for Deep
Learning,” Proc. of the 2nd International Conference on

Computational Sciences and Technology, 2020, pp. 124 – 133.

[41] A. Bhoi, P. Mallick, CM. Liu, V. Balas, Bio-inspired
Neurocomputing. Studies in Computational Intelligence, Springer,

Singapore, 2021.

