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Abstract—Electric cars have undergone many developments 

in the current digital era. This is to avoid the use of increasingly 

scarce fuel. Recent studies on electric cars show that battery 

estimation is an interesting topic to be implemented directly. 

The battery estimation strategy is carried out by the Battery 

Management System (BMS). BMS is an indispensable part of 

electric vehicles or hybrid vehicles to ensure optimal and 

reliable operation of regulating, monitoring, and protecting 

batteries. A reliable BMS can extend battery life by setting 

voltage, temperature, and charging and discharging current 

limits. The main estimation strategy used by BMS is battery 

fault, SOH, and battery life. Battery State of Health (SOH) is 

part of the information provided by the BMS to avoid battery 

damage and failure. SOC is the proportion of battery capacity 

SOH is a measure of battery health. This study aims to develop 

a method for estimating SOH simultaneously using Coulomb 

Counting and Open Circuit Voltage (OCV) algorithms. The 

battery is modeled to obtain battery parameters and 

components of internal resistance, capacitance polarization and 

OCV voltage source. Several tests were implemented in this 

research by applying the constant current (CC)-charge CC-

discharge test. The state-space system is then formed to apply 

the Coulomb Counting and OCV algorithms so that SOH can be 

estimated simultaneously. The OCV-SOC function is obtained 

in the form of a tenth order polynomial and the battery model 

parameters say that these parameters change with the health of 

the battery. The results of the model validation are able to 

accurately model the battery with an average relative error of 

0.027%. Coulomb Counting resulted in an accurate SOH 

estimation with an error of 3.4%.  

Keywords—State of Health (SOH); Coulomb Counting; Open 

Circuit Voltage (OCV) 

I. INTRODUCTION 

In the current era of developing technology, the high 

population and massive vehicles raise new problems. The 

research background are many vehicles fill the streets every 

day which can cause traffic jams, vehicle smoke continues to 

billow from the exhaust which emits carbon emissions and 

contributes significantly to air pollution and global warming 

[1]. With this phenomenon, a solution is needed to make the 

surrounding environment safer and healthier [2], [3], [4]. One 

solution is electric vehicles that use battery energy sources to 

slow down the rate of global warming. Batteries do not 

produce emissions like gasoline or diesel, so they can reduce 

pollution and reduce global warming [5]. However, the 

battery is not one of the cheap vehicle components so we need 

a way to keep the battery having an optimal and healthy life 

time [6], [7]. 

Electric vehicle batteries have a relatively small capacity 

and voltage. A battery system usually consists of many cells 

[8]. To manage it, a battery management system (BMS) is 

required for state of health (SOH) estimation. SOH initially 

comes from SOC which cannot be measured directly so 

estimation is needed [9], [10], [11]. Accurate estimation will 

affect battery health and prevent battery from damage. SOH 

is a quantization of battery performance [12]. SOH estimation 

helps determine the actual condition of the battery after 

repeatedly experiencing the charge-discharge process. 

Batteries will experience a process of quality degradation due 

to use and increase in cycle [13], [14] life. This causes the 

parameters in the battery to change and cause a decrease in 

performance. One of the parameters in the battery that 

changes is the internal resistance of the battery. Another 

parameter is battery capacity. As the cycle life [15], [16] 

increases, the battery capacity decreases. 

The battery elements, namely current, voltage, and 

temperature, are physical quantities that can be measured 

directly [17]. Meanwhile, battery capacity, battery health 

cannot be measured directly, so an algorithm is needed to 

estimate it. The related work from the past research are 

developed many battery estimation algorithms includes 

Coulomb Counting, Neural Network (NN), Fuzzy Logic, 

ANFIS, Open Circuit Voltage (OCV), Kalman Filter [18], 

[19], [20] and so on. From related research, it is stated that 

the simulation results of the proposed OCV model can 

increase the SOC of the battery compared to the casing 

without the model [21], [22]. In addition, the proposed model 

produces more aggregators for voltage and frequency 

regulation services. The voltage stability produced by the 

OCV model is also better than all network buses considered 

[23], [24], [25]. As for the Coulomb Counting method and 

open-circuit voltage calculations which can provide accurate 

real-time estimates of SOC. The algorithm is one method that 

depends on the application of the battery system and the 

requirements of the battery management system [26], [27]. 

Coulomb Counting and OCV battery parameters were 

obtained using the recursive least square (RLS) algorithm and 

were able to anticipate the nonlinear nature of the battery 

[28], [29]. One of the advantages of the RLS algorithm is that 

it is accurate in determining the parameter values for each 

iteration so that the parameter changes can be seen [30]. 
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Comparative studies were also carried out on several battery 

models, such as the Thevenin battery model with one RC 

ladder which was the best considering its complexity, 

accuracy, and durability. Another parameter that needs to be 

obtained so that the battery model can be used is the OCV 

voltage [31]. And to get the OCV-SOC curve, it is necessary 

to use the terminal voltage data in the charging and 

discharging process [32]. When charging, the battery is 

connected to the charger for a few minutes then the charger 

is removed and the battery is allowed to rest until the voltage 

reaches a steady state [33]. The part of the steady voltage is 

sampled then the process is repeated again until the battery is 

full. Then the results of the voltage sample are connected so 

that the OCV curve is obtained when charging. Almost a 

similar process is carried out when discharging. The battery 

is connected to a load for 5 minutes then rested until it reaches 

a steady voltage [34], [35], [36]. The test is then called a pulse 

test. From the steady test conditions, the OCV discharging 

curve can be obtained. The two curves are then positioned at 

the same SOC and then averaged [37], [38]. The result is an 

OCV-SOC curve and with curve fitting we can get the 

equation in polynomial form. Another method that is almost 

similar to obtain the OCV-SOC function is by averaging the 

terminal voltage from the constant current method of 

charging with the discharging terminal voltage of the constant 

current method at the same SOC. Curve fitting is used to get 

the equation of function. 

The measure of battery health can be seen from changes 

in capacity, internal resistance or other parameters as the 

number of battery life cycles increases [39]. In this study, the 

Thevenin battery model is used which is the best choice in 

terms of accuracy, complexity, and durability. SOH 

estimation methods used in this study are Coulomb Counting 

and OCV. An important part of a battery model is finding the 

right parameters in it. The innovation of this research is by 

applying a battery model that has a lighter dynamic parameter 

value, namely the polarized resistance and capacitance 

parameters. The Thevenin model consists of one OCV source 

voltage, one internal resistance, and one parallel section 

containing polarizing resistance and polarizing capacitance. 

And other parameters have been identified with the recursive 

least square (RLS) algorithm, because of its recursive ability 

which allows the latest parameters to be obtained in each 

iteration so that the parameter characteristics can be obtained 

accurately. The main research contribution is to make the 

battery in a healthy condition so that it can extend battery life, 

help and understand alternative SOH estimation methods, and 

reduce the computational burden on the BMS. 

II. METHOD 

BMS is an indispensable part of electric vehicles or 

hybrid vehicles to ensure optimal and reliable operation of 

regulating, monitoring, and protecting batteries [40], [41] 

(Fig. 1). BMS aims to extend battery life by determining the 

limits for voltage, temperature, SOC, and SOH and limits for 

charging and discharging currents. The main estimation 

strategies used by BMS are battery fault, SOC, SOH, and 

battery life. SOC and SOH is an important part to maintain 

the condition of the battery [42]. Proper SOC estimation can 

prevent the battery from overcharge and over-discharge. 

While the SOH can find out the proper condition of using the 

battery. 

 

Fig. 1. Experimental Design 

A. Battery 

The battery used in this study is a Lithium Polymer 

battery. This battery consists of three cells but in this study 

only one battery cell was used. The battery has a capacity of 

2200mAh, with a maximum discharge current of 44A and a 

maximum charge rate of current of 4.4A. 

B. LiPo Balance Charger iMAX B6 

This charger has several capabilities. One of the 

capabilities used in this research is charging with the constant 

current-constant voltage (CC-CV) method. This capability 

allows the battery to be fully charged. The CC-CV process 

starts from the condition that the battery runs out or has been 

used [43]. The battery will be charged in CC mode with a 

constant current until the battery voltage reaches the 

maximum limit and in this study is 4.2 Volts. After that, the 

charger will change the mode to CV with the charger current 

will gradually decrease until the battery is completely full. 

This method attempts to keep the battery healthy. 

C. Dummy Load 

A dummy load is a device used to simulate electrical 

loads, usually for testing purposes. In this study, a dummy 

load branded GWINSTEK PEL-2004 was used. PEL-2004 

has several modes such as constant current, constant voltage, 

constant resistance, constant power, and sequence. 

D. Current Regulator LM317 

This circuit is used to provide a constant current input to 

the battery of ±2.2 A (Fig. 2 and Fig. 3). This circuit is used 

because the iMAX B6 charger will die if the battery is 

disconnected from the charger when used in a switching 

circuit. In practice, the value of Ri = 2.2 is used and the four 

circuits are arranged in parallel to obtain a current of 2.159 

A. 

 
Fig. 2. Current Regulator LM 317 
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Fig. 3. Charger LM317 

E. Loading Circuit 

This circuit is connected to the battery, charger, dummy 

load, and Arduino UNO32. This circuit serves to regulate 

when the battery is connected to the charger, the load, or not 

connected to both. In this circuit there is also a current sensor 

and a voltage sensor [44]. 

F. Arduino UNO32 

In this research, Arduino is used to control the switching 

process. In addition, Arduino is also used to record current 

and voltage sensor data. The recorded data will be entered 

into a personal computer to store battery current and voltage 

data using Microsoft Excel. Through a PC, MATLAB is used 

to process the data. Likewise in the development of 

estimation algorithms. In addition, the program for data 

retrieval via Arduino also starts from MATLAB. 

G. System Design 

Fig. 4 is a block diagram of the entire system containing 

many parts, including the most important part, namely the 

implementation of the Coulomb Counting and OCV methods. 

 

Fig. 4. Block Diagram Coulomb Counting OCV System 

From the block diagram in Fig. 4, it is described step by step 

as follows. 

▪ Battery input (V, I) 

Input is taken directly from two important elements of 

the battery, namely voltage (V) and current (I) which is then 

taken data to identify parameters. 

▪ Data processing 

 Tests the battery with various inputs and records the 

output. Various kinds of tests were carried out to support the 

development of the SOH estimation algorithm. Tests were 

also carried out to validate the research results. 

▪ Identify the Function of OCV-SOC 

Get battery OCV-SOC function. It is useful in battery 

modeling. In addition, this function is also used to estimate 

SOH through the Coulomb Counting. The OCV-SOC 

function relates to battery modeling accuracy [45]. And to get 

the battery model parameters with the RLS algorithm. The 

algorithm is implemented by inputting the battery test voltage 

and current data. The algorithm output is the battery model 

parameter. 

▪ Identify Battery Parameters 

Getting the battery model parameters with the RLS 

algorithm. The algorithm is implemented by inputting the 

battery test voltage and current data. The algorithm outputs 

are parameters 𝑅0, 𝑅𝑝, and 𝐶𝑝 of the battery model. 

▪ Battery Modelling 

After obtaining the parameters, the battery model is run 

and validated by providing current input to the model. The 

model output voltage is compared with the test data voltage. 

If the model error is more than 1%, improve the RLS 

algorithm, if the error is less than 1%, proceed to the next 

step. 

▪ Estimation of SOH 

After obtaining the parameters, the battery model is run 

and validated by providing current input to the model. The 

model output voltage is compared with the test data voltage. 

If the model error is more than 1%, improve the RLS 

algorithm, if the error is less than 1%, proceed to the next 

step. Developed an algorithm for SOH estimation. If the 

estimation results are not running, correct and develop the 

system again until good results are obtained. The results 

obtained from the development of the algorithm are analyzed 

and written into a scientific report. 

III. STATE OF HEALTH EXPERIMENT 

A. Static Capacity Test 

Static capacity test is useful for knowing battery capacity 

in ampere hours with constant current [46], [47]. This test is 

carried out by placing a load on the battery so that the battery 

produces a constant current until it reaches the voltage limit 

stated on the battery product [48]. If it is not stated, then 50% 

of the maximum battery voltage is used as the discharge limit. 

A test with a current of 1C is commonly used in this test. 

The test begins by charging the battery to its maximum 

voltage, on a Li-Po battery, which is 4.2 V. Then the battery 

is rested for one hour so that the voltage is steady and then 

the terminal voltage is measured at 100% SOC. The terminal 

voltage at that time also shows the OCV voltage because the 

battery is not connected to the load. After that, the battery is 

discharged with a current of 1C for one hour to get the actual 

capacity value and get the battery voltage limit or 0% SOC. 

Fig. 5 is a flowchart of parameter identification in battery 

modeling which contains several polarized resistance and 

capacitance parameters. 

The battery is given a load so that it produces an electric 

current in the form of a discharging current pulse. The pulse 

is to reduce battery capacity little by little. In addition, it is 

also to sample the terminal voltage of each current worth 0 A 

or not connected to the load in order to get the battery 𝑉𝑜𝑐  

value. The battery terminal voltage response is recorded. 

These data are used to identify the OCV-SOC function and 

parameters 𝑅0, 𝑅𝑝, and 𝐶𝑝. These data are also used for 

validation by comparing the output terminal voltages of the 

battery model. From the pulse test terminal voltage data, just 
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before the current pulse enters the battery, the terminal 

voltage is sampled. The sampling points of each voltage pulse 

are connected so that they become a voltage line 𝑉𝑜𝑐  with 

respect to time. By changing the time domain to the SOC 

domain, the voltage line 𝑉𝑜𝑐  to SOC is obtained. By applying 

curve fitting, the OCV-SOC function will be obtained. 

 

Fig. 5. Parameter Identification on Battery Modelling 

The RLS algorithm is to provide input in the form of 

current and voltage pulse test. It is carried out by providing 

input in the form of current and pulse test voltage [49]. The 

relationship between input current and output voltage on the 

battery is a parameter obtained from the polarized resistance 

and capacitance parameter values. Parameters of 𝑅𝑜, 𝑅𝑝, 𝐶𝑝 

that can be recorded and stored. To get the dynamics of the 

battery model parameters, the parameter identification 

process is repeated until the battery SOC reaches 0%. The 

battery model parameters and the OCV-SOC function that 

have been obtained are applied to the Thevenin battery model 

[50], [51]. The pulse test current input is fed into the battery 

model to see the output voltage response of the terminals. 

Then it will proceed to decision making. 

B. Pulse Test 

Pulse test (Fig. 6) aims to obtain the OCV-SOC curve and 

vice versa SOC-OCV. This test needs to be done to get the 

𝑉𝑜𝑐  function in a series of battery models. In addition, this test 

is also carried out to obtain battery parameter values. The test 

is carried out by discharging for 30 seconds with a current of 

1C then rest for 30 seconds repeatedly until the battery 

voltage reaches the discharge limit. The discharging period 

of 30 seconds was chosen to narrow the distance between 

OCV samples so that the curve obtained is more accurate. 

Rest 30 seconds was chosen because the battery terminal 

voltage does not change significantly when it is greater than 

that. In other words, at 30 seconds the battery voltage has 

reached steady state. 

 

Fig.  6.  Pulse test input profile 

C. Pulse Variation Test 

After obtaining the OCV-SOC function, parameters 𝑅𝑜, 

𝑅𝑝, 𝐶𝑝, a test is needed to validate the battery model used. 

Pulse variation test (Table 1) is used for the validation 

process. In this test, the battery is loaded with varying 

currents. The current is also used as input to the battery 

model. The battery voltage response and the output voltage 

of the battery model were compared to validate the model 

[52]. The pulse variation test profile is based on the Dynamic 

Stress Test (DST). DST is one of the tests for the endurance 

of the battery discharge process with various load profiles 

[53]. One 360 second DST period with multiple discharging 

and charging profiles. In this study, because the LM317 

charger used is only capable of producing 1C current, and the 

iMAX B6 charger cannot be integrated into the circuit, the 

charging profile on DST is removed and replaced with a rest 

state. 

TABLE I.  PULSE VARIATION TEST 

Step 

to 

Duration 

(second) 

Discharge 

Current 

(Ampere) 

Step 

to 

Duration 

(second) 

Discharge 

Current 

(Ampere) 

1 16 0 11 12 1.1 

2 28 0.55 12 8 0 

3 12 1.1 13 16 0 

4 8 0 14 36 0.55 

5 16 0 15 6 4,4 

6 24 0.55 16 24 2.75 

7 12 1.1 17 8 0 

8 8 0 18 32 1.1 

9 16 0 19 8 0 

10 24 0.55 20 44 0 

 

D. CC-Charge and CC-Discharge Test 

This test (Fig. 7) is also known as the aging cycle test, in 

which the battery is charged with constant current until it is 

full, then given a rest, then discharging with constant current 

and ending with rest in one period. One period of this test is 

referred to as one cycle life. This test is repeated with the aim 

of increasing the cycle life of the battery. Of course, this test 

will take a long time to see the effect on the battery. This test 

is also useful to see the SOH of the battery. 

In this study, 60 charge-discharge cycles were tested. 

However, due to lack of tools and time, the testing process 

was carried out continuously for five cycles and then stopped. 

In the process, the battery is charged until it reaches 80% 

SOC then rests for 10 minutes. After that the battery is 

discharging to 20% SOC then rest 10 minutes. The process is 

repeated. Rest time is 10 minutes because at that time the 

battery voltage has reached steady-state. 
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Fig.  7.  Current input cutout pulse variation test 

IV. STATE OF HEALTH ESTIMATION 

As use and age, batteries experience a decrease in 

performance which is often called degradation. The 

degradation of battery cells affects changes in parameters in 

the battery such as internal resistance, capacity, electrode 

quality [54] and so on. The change in performance is 

expressed by the state of health (SOH) but universally, there 

is no single definition of SOH itself. SOH can also be 

described as the current battery performance compared to the 

ideal condition when the battery was new [55]. In addition, 

SOH can also be interpreted as a measure of the size of the 

current battery condition compared to its ideal condition [12], 

[56], [57]. The SOH unit is a percent, and 100% indicates the 

SOH of a new battery. 

A. Battery Modelling 

A Battery modeling is the key to successful determination 

of SOC or SOH. Battery modeling is useful for changing 

input battery parameters in the form of voltage, current, and 

temperature into SOC, SOH or various other purposes [58]. 

In order to estimate SOC or SOH accurately, the right battery 

model is needed. The Thevenin model (Fig. 8) is the best 

choice considering complexity, accuracy and robustness [59], 

[60]. 𝐼𝑏𝑎𝑡𝑡  current is the current in or out of the battery and 

acts as an input variable. The source voltage 𝑉𝑜𝑐  is the open 

circuit voltage. The terminal voltage 𝑉𝑡 becomes the output 

variable. Resistance 𝑅0 represents the internal resistance of 

the battery. The internal resistance of the battery consists of 

the resistance of the electrode material, electrolyte, separation 

material, and contact resistance between parts [61]. 

Resistance and capacitance represent the polarization 

resistance and capacitance which are associated with changes 

in the value of the voltage immediately after a voltage drop 

occurs or to represent the voltage transient response. This is 

to describe the polarization of the electrochemical process, be 

it concentration polarization or electrochemical polarization.  

 

Fig. 8. Thevenin battery modelling 

The mathematical equation for the battery model is as 

follows: 

𝑢̇𝑝 =  −
𝑢𝑝

𝐶𝑝𝑅𝑝

+  
𝐼𝑏𝑎𝑡𝑡

𝐶𝑝

 (1) 

𝑉𝑡 =  𝑉𝑜𝑐 − 𝑢𝑝 − 𝐼𝑏𝑎𝑡𝑡𝑅0 (2) 

where 𝑢𝑝 is the voltage across the parallel RC section. 

 To use the Thevenin battery model, the parameters 𝑉𝑜𝑐 , 

𝑅0, 𝑅𝑝, and 𝐶𝑝 must be identified first. Parameter 

identification details are as follows:  

1) The value of 𝑉𝑜𝑐  is determined from the measurement of 

the terminal voltage when it is open and in steady-state. 

2) The internal resistance 𝑅𝑜 is proportional to the 

instantaneous voltage drop, the polarization resistance 

and capacitance (𝑅𝑝 and Cp) correspond to the transient 

portion of the terminal voltage as the battery current 

changes. The mathematical equations of Thevenin battery 

model circuit in the frequency domain are, 

𝑉𝑡(𝑠) − 𝑉𝑜𝑐(𝑠) = −𝐼𝑏𝑎𝑡𝑡(𝑠) (𝑅0 +
𝑅𝑝

1 + 𝑠𝑅𝑝𝐶𝑝
) (3) 

3) If 𝑉 is 𝑉𝑡  −  𝑉𝑜𝑐 , the transfer function 𝐺(𝑠), then the 

equation can be written as 

𝐺(𝑠) =
𝑉(𝑠)

𝐼𝑏𝑎𝑡𝑡(𝑠)
= −𝑅0 −

𝑅𝑝

1 + 𝑠𝑅𝑝𝐶𝑝

 (4) 

4) Bilinear transformation is used to convert equation (4) to 

discrete form by substituting, 

𝑠 =
2

𝑇
 
1 − 𝑧−1

1 + 𝑧−1
 (5) 

 Battery modeling is done to see the error of the battery 

model with the actual battery. This is done in order to get an 

accurate system [62], [63]. The battery model parameters are 

used in Coulomb Counting as system equations and process 

equations. Because of this, the parameter values in the battery 

model are also used in the OCV method. Before Coulomb 

Counting is executed, the system state value is initialized. In 

the estimation of SOH, the initial value of SOH must be given 

first. 

B. Result of SOH  

SOH is obtained by looking at changes in the parameters 

of the battery. One parameter that changes over time and 

usage is capacity. By looking at the change in capacity, SOH 

is defined as 

𝑆𝑂𝐻𝐶 =
𝐶𝑎𝑐𝑡

𝐶𝑐𝑎𝑝

 𝑥 100% (6) 

Equation (6) shows where 𝑆𝑂𝐻𝐶  is the SOH value, 

𝐶𝑎𝑐𝑡  capacity is the current maximum capacity of the battery. 

In general, if the battery capacity is less than 80% of the initial 

capacity, which means the SOH is less than 80%, then the 

BMS will warn the operator to replace the battery. Another 

parameter that changes in the degradation process is the 

internal resistance of the battery. The battery's internal 

resistance will increase in value with time and use. The 
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increased internal resistance causes the change in voltage 

when the battery is connected to a large load. It accelerates 

the battery to reach the terminal voltage when the battery 

capacity is depleted. When SOH is 100%, the internal 

resistance of the battery is 𝑅𝑜  =  𝑅𝑖 where 𝑅𝑖 is the initial 

internal resistance when the battery is new. When SOH is 0%, 

the internal resistance of the battery will change to 𝑅𝑜  =  2𝑅𝑖  

[47]. SOH based on internal resistance can be formulated as: 

𝑆𝑂𝐻𝑅𝑖
= (1 +

𝑅𝑖 − 𝑅𝑜

𝑅𝑖

)  𝑥 100% (7) 

where 𝑆𝑂𝐻𝑅𝑖  represents the SOH value, resistance 𝑅𝑖 is the 

new battery's internal resistance, and 𝑅𝑜 is the current internal 

resistance. 

Fig. 9 shows the results of the static capacity test. After 

the battery is discharged for one hour with a constant current 

of 1C, the character of the battery voltage can be seen from 

100% SOC to 0% SOC conditions. When the discharge time 

is more than 3000 seconds or SOC 20%, the battery voltage 

changes drastically. This is one proof that the battery is a 

nonlinear system. From the test, the discharging terminal 

voltage value is 1C SOC 100% = 4.20 volts, SOC 80% = 3.93 

volts, SOC 20% = 3.63 volts and SOC 0% = 1.98 volts. The 

terminal voltages when SOC 80% and 20% are used for limits 

on CC-charge and CC-discharge tests to prevent the battery 

from overcharge and over-discharge. 

 

Fig.  9.  Static Capacity Test 

The open circuit voltage OCV(SOC) is required as the 

source voltage in the Thevenin battery model. The OCV is 

obtained from the pulse test as shown in Figure 10. When 

resting on the pulse test, the battery voltage is not connected 

to the load. The voltage just before connecting the load is 

sampled for each pulse and connected until the red OCV is 

obtained in Fig. 10. 

Battery usage is easier and more precisely expressed in 

SOC. Therefore, the estimated OCV of the pulse test is made 

into a function of SOC. The red line in the Fig. 11 is the result 

of fitting the OCV estimate. 

Fig. 12 shows the internal resistance data measured and 

estimated using RLS and Coulomb Counting. There was a 

spike in data decline four times. When the battery is drawn 

current, the battery voltage that is read by the sensor does not 

increase immediately. This is because the sampling period of 

the voltage sensor is less small so it is less able to read large 

changes in a short time in battery voltage. 

 
Fig.  10.  Pulse Test Voltage 

 
Fig.  11.  Curve fitting OCV-SOC function 

 

Fig.  12.  OCV estimation with the RLS algorithm 

Fig. 13 shows the estimation of SOH using OCV and the 

RLS algorithm with the measurement results. The internal 

resistance of OCV has a value that is not much different from 

RLS. This is indicated by the relative error of the two 

algorithms. In the OCV method, the average relative error of 

the estimated 𝑅0 is 11%, while with the RLS algorithm the 

relative error is 10%. In estimation for one battery cycle by 

pulse test, the RLS algorithm is more accurate than CC. 

Fig. 14 shows the estimated capacity of the battery during 

the pulse test. The pulse test was carried out on a new battery 

so that the battery capacity was still 2.2 Ah. The fluctuations 

that occur are also still in the range of 2.2 Ah, so the situation 

is constant. 

From the SOC test, the internal resistance, and the battery 

capacity, it can be concluded that the estimation results of the 
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Coulomb Counting are accurate. However, the OCV has not 

shown the ability to estimate SOH in more than one discharge 

data. CC-discharge and CC-charge data are used to test the 

estimated SOH of the battery by looking at changes in 

internal resistance and battery capacity. 

 

Fig.  13.  SOH estimation using Open Circuit Voltage 

 

Fig.  14.  Estimated battery capacity 

For the estimation of SOH, two pieces of data are used. 

The data is the CC-Charge and CC-Discharge test data for 6 

cycles. Main findings of the present study are the Coulomb 

Counting succeeded in estimating the terminal voltages Vt, 

SOC and SOH of the battery simultaneously. The estimation 

errors of Vt and SOC are 0.13% and 0.4%. The third data is 

60 charging-discharging cycles. In this test, the SOH 

estimation is compared with the RLS algorithm with 

Coulomb Counting. The results show Coulomb Counting has 

better accuracy than OCV. The estimation error with 

Coulomb Counting is 3.4% while the OCV is 7.08%. In 

addition, it was also found that Coulomb Counting was able 

to estimate the terminal voltage and SOC of the battery while 

OCV was only able to estimate the battery parameters. The 

model validation is able to accurately model the battery with an 

average relative error of 0.027%. 

CONCLUSION 

Based on the research conducted and the results obtained 

that the Thevenin battery model is able to accurately model 

the battery with an error of 0.4% and the identification of 

battery parameters with the recursive least square (RLS) 

algorithm shows battery parameters that change with SOC, as 

well as estimation of SOH using the Coulomb Counting 

method. and accurate OCV, as evidenced by an error of 3.4%. 
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