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Abstract—Post-stroke dysarthria (PSD) is a widespread 

outcome of a stroke. To help in the objective evaluation of 

dysarthria, the development of pathological voice recognition 

and technology has a lot of attention. Soft robotics therapy 

devices have been received as an alternative rehabilitation and 

hand grasp assistance for improving activity daily living 

(ADL). Despite the significant progress in this field, most soft 

robotic therapy devices use a complex, bulky, lack of 

pathological voice recognition model, large computational 

power, and stationary controller. This study aims to develop a 

portable wirelessly multi-controller with a simulated 

dysarthric vowel speech in Bahasa Indonesia and non-

dysarthric micro speech recognition, using tiny machine 

learning (TinyMl) system for hardware efficiency. The speech 

interface using INMP441, compute with a lightweight Deep 

Convolutional Neural network (DCNN) design and embedded 

into ESP-32. Feature model using Short Time Fourier 

Transform (STFT) and fed into CNN. This method has proven 

useful in micro-speech recognition with low computational 

power in both speech scenarios with a level of accuracy above 

90%. Realtime inference performance on ESP-32 using hand 

prosthetics, with 3-level household noise intensity respectively 

24db,42db, and 62db, and has respectively resulted from 95%, 

85%, and 50% Accuracy. Wireless connectivity success rate 

with both controllers is around 0.2 - 0.5 ms.   

Keywords—Post Stroke Dysarthria; Dysarthic Speech 

Recognition; SCR; ASR; Micro Speech; KWS; TinyML; Edge 

Controller Devices; STFT-CNN. 

I.  INTRODUCTION  

Strokes are a type of illness where parts of the brain are 

damaged from blood clots, resulting in various after-effects 

depending on the affected area and, in many cases, leading 

to death [1, 2, 3]. Research has revealed that strokes impact 

approximately 16 million individuals worldwide each year, 

and about 57% to 69% of stroke patients experience speech 

disorders, including dysarthria and aphasia or both [4]. Post-

stroke dysarthria (PSD) is a common and persistent 

aftermath of a stroke, affecting most of all acute stroke cases 

[5, 6, 7, 8], but this group has received limited research 

attention, especially particularly pronounced in Indonesian 

speakers. Non- invasive brain stimulation (NIBS), Lee 

Silverman voice treatment (LSVT) and other traditional 

dysarthria assessments primarily depend on invasive testing 

with different speech impairment treatments due to subject 

severity classes, leading to significant variations clinical 

improvement and efficacy [9-13]. To provide an objective 

basis for diagnosis, treatment, and assistive, pathological 

voice recognition technology has emerged as a helpful 

device in distinguishing transdisciplinary program for 

dysarthtria treatment. This has led to increased interest and 

attention from both society and the industry for clinical 

rehabilitation, with the aid of integrated robotic devices like 

AmadeoTM, HandMentor, HomeRehab, ReJoyce, 

Robotherapist 2d, and others [14, 15, 16, 17]. Enriching 

patients’s motivation to do their basic needs for activity 

daily living (ADL), and increasing level of independency 

for the sufferer. 

A researcher developed an integrated robotic control-

based rehabilitation that makes it easier for medical 

personnel to carry out renewable methods that accompany 

clinical therapy sessions to be able to do it independently, 

and ergonomically [18, 19]. Exo-glove poly device 

development became popular among researchers to strive 

for ergonomics, safety, portability, and reliability for users. 

The choosen of materials [20, 21, 22, 23] with a different 

mechanical approach, and a variety of control also have a 

significant change for a user to get the best user experience. 

The underactuated motor tendon-driven mechanism 

concept uses a servo motor system, with fewer cables 

transmission. Control and navigation system that switches 

from pneunets or combustion driver actuation that is heavy 

and bulky, to an underactuated servo control mechanism 

[22-30] that has a lot of room for portability. Due to come 

with a novel for enhanced control experience, this study 

develops a more comfortable way to control such therapy 

devices, like Exo gloves with an edge or TinyML system, 

using a simulated dysarthric speech interface with keyword 

spotting system (KWS) for a better and more reliable user 

experience. 

Researchers use deep neural networks (DNN) to conduct 

further analysis of pathological voices, due to its exceptional 

capability in learning features for identifying or operating a 

device [31-37]. However, most existing method have 

limitations in detecting pathologhical voice with hardware 

efficiency. This is because they rely on classical features 

such as Mel-Frequency cepstrum coefficient (MFCC), 

which have limitations in fully capturing the deep 

characteristics of pathological sounds, and require a 

significant amount of computational power and RAM to 

run. 
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David et al. [31] Research related to ASR in dysarthria 

with KWS uses the CNN model, developing a software 

ecosystem for full recognition of dysarthric speech for 

certain needs of patient assistance running using personal 

computer. The results of the implementation accuracy in 

modeling on average for all target classes are 86%. 

Y.-Y. Lin et al. [32] compared speech feature models for 

dysarthric speech preprocessing and proposed a 

Convolutional Neural Network with Phonetic Posteriorgram 

(CNN-PPG) model. They also compared this model with a 

CNN model using Mel-frequency Cepstral Coefficients 

(CNN-MFCC) and an ASR-based system. The experimental 

results showed that the CNN-PPG system had 93.49% 

accuracy, which was better than both the CNN-MFCC 

(65.67%) and the ASR-based systems (89.59%). 

Furthermore, the CNN-PPG model had a smaller size, 

consisting of only 54%. 

Yakoub et al. [33], developed dysarthric speech 

recognition using empirical mode, EMDH-CNN approach, 

combining empirical mode decomposition and Hurst-based 

mode selection (EMDH) with a CNN for enhancing 

dysarthric speech recognition. The EMDH technique acts as 

a preprocessing step to improve speech quality, followed by 

feature extraction using MFCC from the processed speech, 

and overall consisting around 62.7% accuracy. 

Vachhani et al. [34] conducted a study on the use of data 

augmentation through temporal and speed modifications on 

healthy speech to simulate dysarthric speech. They 

evaluated the results with both DNN-HMM based 

Automatic Speech Recognition (ASR) and Random Forest 

classification. The synthetic dysarthric speech was classified 

for its severity level using a Random Forest classifier 

trained on real dysarthric speech samples. The results 

showed an improvement of 4.24% and 2% in the ASR 

performance when using tempo-based and speed-based data 

augmentation respectively, compared to using healthy 

speech alone for training. 

Shamiri et al. [35] focused on presenting the Speech 

Vision (SV), which addresses by recognizing word shapes 

using visual-feature representations. Additionally, SV deals 

with limited dysarthric speech samples by applying data 

augmentation, generating synthetic speech, and utilizing 

transfer learning. Evaluations showed SV achieving average 

Accuracy rate of 61.11% and 64.71%. 

Joshy et al. [36] discover present a comparative study on 

the classification of dysarthria severity levels using a pre-

trained DeepSpeech-1 ASR model. Trained with 1000 hours 

of data, achieved comparable results to the simple MFCC-

DNN with an unbalanced small dataset and achieved an 

average accuracy of 70.52%. 

Jiang et al. [37] present a paper that suggests a hybrid 

recognition model that combines 1DCNN and Double-

LSTM (DLSTM) networks based on MFCC features of 

pathological voices. To build the model, a database of 

syllable pronunciations was created using Mandarin-

speaking participants including normal adults and patients 

with PSD. The 1DCNN network was then used to process 

the MFCC features of the syllable pronunciations and 

extract deeper hidden features. The results of the 

experiments showed that the further processing of MFCC 

features by the 1DCNN network significantly improved the 

performance of the DLSTM-based recognition model, with 

an accuracy of 82.1% at the syllable level and 97.4% at the 

speaker level. 

Another variety of interfacing pursued in supporting 

servo control for therapy devices, such as in studies that 

focus on bio-electric sensors using electromyography 

(EMG), electroencephalography (EEG), electrocardiography 

(ECG), and phyisichal sensory eg, Flex sensor, leap motion, 

Intertial measurement unit sensory (IMU), even 

multisensory approach and inference models on hand 

rehabilitation devices [24, 25, 38, 39]. Thus sensor will have 

a high level of accuracy when using a multichannel design 

with a sensitive, relatively expensive, and larger acquisition 

device and hig computational power. Hence, the speech 

command recognition (SCR) approach with lightweight 

CNN is used in this study for ergonomic control and 

produce a smaller resolution by applying the micro speech 

method or KWS model [40-47], which uses STFT to 

generate spectrogram images for CNN modeling features. 

This research contribution is to present detailed process 

development of dysarthic and non dysarthic SCR based 

using TinyML system, and proposed KWS algorithm model 

with limited dataset, and low stake perform of augmentation 

using ambient noise and normalise voice data. Trained 

model converted and inference for low computational power 

in to microcrontroller, then wirelessly navigate 

underactuated servo motor for ADL activity on theraphy 

device which simulate using a hand prosthetic. Also, pre 

build for Bahasa corpus for Indonesia dysasrthic speech 

dataset. This paper will contain the following sections in a 

sequence: 

• Briefly proposed prototype method for designing 

dysarthric and non-dysarthic SCR and TinyML based 

controller devices includes limited dataset collection, 

preprocessing, data augmentation, CNN Conv2D 

modeling, rendering, testing evaluation, inference 

process and interpreter with ESP32 microcontroller 

based on KWS model. 

• Proposed unicast wireless protocol using ESP NOW, 

multi-task module using FreeRTOS, interfacing using 

INMP441 and momentary button, and electrical 

design. 

• Results and discussion show the spectrogram feuture 

analysis from audio data feuture extraction, wireless 

and proposed prototype response time, and Range of 

motion (ROM) for ADL practical experiment result 

using hand prosthetic. 

• Finally, the conclusion section concludes the paper and 

future work advice for the next research. 

II. PROPOSED METHOD 

This study's proposed Multi control design uses voice 

and button control simultaneously. Fig. 1 indicates the block 

diagram of this study. The proposed voice control design 

includes limited dataset collection, preprocessing, 

lightweight CNN modeling, and rendering with a local 
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machine, then inference with ESP32 which relatively low 

cost and powerful to use for TinyMl embedded [48-55] and 

single-channel INMP441 as microphone modules. The 

modeling will be generated and converted for tiny machine 

learning (TinyMl) requirements on the ESP32 

microcontroller using Jupyternotebook and the python 

language, along with libraries and modules. 

 

 Fig. 1. The proposed dysarthia speech command TinyML block diagram 

The button control design uses two buttons using 

internal pullups on the ESP32, which is configured through 

C/C++ programming, with a normally closed button and 

loop system to control servo per increment continuously. 

The inferencing model and final firmware development with 

the ESP32 microcontroller will also be compiled using the 

C/C++ programming language. The compiled firmware 

were develop using transfer learning method from open 

framework, and pre trained model by microspeech firmware 

from TensorFlow [42]. 

III. TINYML CONTROLLER DESIGN 

In this study, feautured engineering for neural net has 

been employed. Feautured data using multiple sources of 

datasets, and preprocessing by transforming voice signals in 

the time domain into spectrogram images as in this paper 

[56-61]. Deep learning using lightweight architecture CNN-

STFT with 2 convolution layer, and adam optimizer [62-

70]. Conversion and quantization of neural net model or 

inferencing the model for ESP32 using tf.lite converter, also 

designing button controller, wireless and multi-task protocol 

also describe in this section. 

A. Preparation of the Dataset 

This study SCR approach to dysarthric speech as in Fig. 

2 which refers to Ref. [16, 17], used Indonesian vocal vowel 

sound recordings, namely ''eee'' and ''iii'' on healthy subjects 

mimicking a dysarthric way of speech by two healthy 

subjects. Selection of vowels ''eee'' and ''iii'' to reduce false 

negatives and false positives in models with vowel 

phonemes that have a probability close to the production of 

other phonemic sounds or the resonant characteristics of 

voice, such as ''eee'' and ''aaa'' or ''eee '' and ''ooo'' based on 

linguistic research based on the Vowel Space Area (VSA) 

conducted by previous researcher [71]. The recording was 

performed with parameters based on speech_command v2 

datasets [72], as shown in Table I. Recordings vowels 

dataset were taken 100 times each, with a total of 500 

recordings for dysarthric vowel mimicking speech ''aaa'','' 

iii,'', ''uuu'', ''eee'' and ''ooo''. The audio format used was 

*WAV, 16-bit, mono, and a sampling rate of 16 kHz, for 1s, 

at a noise around 35db, and recorded using a smartphone. 

 

 

 Fig. 2. Flowchart SCR based TinyML proposed system 
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The final dataset was grouped into one folder with a 

ratio of 80:10:10% for training, validation, and testing, 

which will be extracted into a spectrogram as an image 

transformation from sound waves for CNN modeling 

features.  The amount of data is 200 recordings of vowel 

speech, namely ''eee'' and ''iii'' from TORGO dataset and 

single subject with mimicking dysarthic speech, two types 

of speech from speech_command v2 with a total, 3221 

recordings, namely ''forward and backward'', six types of 

background noise in addition to data augmentation, and 33 

other types of speech with a total of 102,608 recordings 

from folders speech_command v2 becomes invalid class. 

The total dataset used for model training is 106,035 

recorded data with 5 target classes, namely, vocal ''eee'', 

''iii'', ''forward'', ''backward'' and invalid, for overall 

information from the dataset variables shown in Table II. 

TABLE I. COMMAND WORDS AND DATASET RATIO 

Command 
No of 

Speakers 

No of 

Utterances 

Training 

(80%)  

Testing  

(10%) 

Validation  

(10%)  

Forward 390 1,557 1,245 125 125 

Backward 416 1,664 1,331 166 166 

Vowel iii 2 100 80 10 10 

Vowel eee 2 100 80 10 10 

Invalid      1,812 102,608 1,245 82,086 82,086 

TABLE II. VOICE RECORDING PARAMETERS BASED ON SPEECH_COMMAND 

V2 DATASETS   

Dataset Variable Information 

Dysarthic Speech Vowel ''iii '' and '' eee '' 

Non Dysarthic Speech 'Forward'' and ''Backward.'' 

Number of total Samples 6000 

Duration 1s 

Recording location Indoor room 

Sample Rate 16.000 Hz 

Bit Depth 16 bit 

Channel 1 / Mono 

Bitrate 256 Kbit/s 

Byterate 32 Kbyte/s 

Format *.wav (PCM) 

B. Short Time Forier Transform (STFT) 

Short Time Fourier Transform (STFT) is a mathematical 

transformation that decomposes a function in the time 

domain into its constituent frequencies [73, 74, 75, 76]. This 

transformation is widely used, especially in signal 

processing [77]. Defined in equation (1), the Fourier 

transforms a function in the time domain f(t) into another 

function in the frequency domain f(x). 

𝑓(𝑥) = ∫ 𝑓(𝑡)𝑒−𝑖 × 𝑡
∞

−∞

𝑑𝑡 (1) 

Other transformations related to the Fourier are also 

used to convert from time to frequency domain for both 

continuous and discrete data [78]. STFT is a discrete 

Fourier transform (DFT) used to determine the sinusoidal 

frequency in the local part of the signal as the signal 

changes with time. In other words, STFT is a Fourier 

transform in a windowed signal, as shown in Fig. 3.  

STFT provides localized information (concerning time) 

of the frequency component, in contrast to the standard 

Fourier transform, which includes frequency information 

over time intervals [74]. STFT is formulated as the product 

of the signal with a weight which is called the window x(t), 

where is the Spectro-temporal index as in equation (2). 

𝑥(𝜏, 𝜔) = ∫ 𝑥(𝑡). 𝜔(𝑛 − 𝜏). 𝑒−𝑖 × 𝑡 𝑑𝑡
∞

−∞

 (2) 

Where –– Input signal at time n, w(n) window function 

used, Xm(ω) –– DTFT result of window per sample (mR), R 

–– Hop, on sample window w, can be selected from a wide 

variety of existing sinusoidal functions. In this study, the 

Hamming Window as the weight, shown in equation (3). 

𝑤(𝑛) = 0.54 − 0.46 𝑐𝑜𝑠 (2𝜋
𝜋

𝑁
) , 0 ≤ 𝑛 ≤ 𝑁 (3) 

where w = Hamming window, n = time index, N = sampling 

rate. In its application, converting the sample of sound 

waves in the time domain into the combined time and 

frequency domain, using equation (2) to decompose the bin 

frequency into a spectral quantity (magnitude), represented 

by 2-dimensional color output. The spectogram parameter 

approach as a general image is used to build a short speech 

recognition system using the CNN model. 

 

 Fig. 3. Time domain voice signal transformation with STFT with hamming 

window 

In this study, computational configuration with STFT 

was carried out using the NumPy and SciPy library in 

python, with the function configuration w(n) using a 

hamming window, 50% overlap in each frame or window 

size, sampling rate using 16 kHz, a window size of 320 

points, amplitude for the duration of the sample per frame 

blocking is 20ms without overlap, with 50% overlap in each 

blocking frame value is obtained stride in the amplitude, or 

the stride size is 160 amplitude points, sampled 10ms for 

each bin frequency. Each configuration windowed for the 

internal time of the voice signal for 1 second. 

Representation bin frequency through computation, to be 

transformed by the STFT algorithm into a spectral quantity 

in the form of a spectrogram. 

Fig. 4 is the downsampling with logarithmic scale of 

spectrogram (log-spectrogram) was employed, using 

average pooling and pixel reduction with a 1x6 kernel was 

intended to reduce the number of initial pixels of the 

spectrogram to 99x43 pixels as the primary input to the 

CNN model. This preprocessing method was conducted 

from previous research and has significant result to make 

spectrogram feature convertible for small form factor [79-

85]. 
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 Fig. 4. The proposed STFT with 1x downsampling spectrogram for model 

features 

C. Convolutional Neural Network 

Lightweight CNN architecture is one of a deep learning 

commonly used in image data processing in a small form 

factor neural net [86-90]. In this research, can be seen in 

Fig. 5 which is the architecture consisting of convolution, 

neurons with weights and biases, backpropagation, and 

activation functions. The CNN method has two stages: the 

feedforward, and the learning stage using the 

backpropagation neural network (BPNN). CNN's algorithm 

is similar to a multilayer perceptron (MLP), but each neuron 

on CNN is presented in two-dimensional form. Unlike the 

case with MLP, where each neuron only has one dimension. 

 

 Fig. 5. A novel 2DCNN architectural diagram of processing dysarthic 

vowel using only 2 convolution layers with downsampling spectrogram 

feuture 

In this study, the architecture model was developed 

using a Jupyternotebook with Tensorflow and Keras 

libraries and inspired by a pre-trained model from 

TensorFlow [42].  

Fig. 6 is the flowchart of architecture 2DCNN then uses 

a sequential method with several layers including 2 

convolution layers with 4 filters with a 3x3 kernel, 2 max-

pooling for downsampling output shape with pool size 2x2 

and ReLU activation, the next layer is a fully connected 

layer or MLP including, flatten layer, dense layer with 

several neurons 80-unit nodes and dropout of a neuron 

weight about 10% or 0.1, activation function using Softmax, 

and then BPNNs layer.  

Dataset augmentation and configuration on the MLP 

uses a kernel tuning to determine and limit the value of the 

neuron weights in the convulsion process or weight 

initializer, one of which is the regulation of kernel weights 

or filters with L2 regulators using a threshold with kernel 

size 1x1 on the convoulution process in addition to 

Prevention of overfitting [91]. 

The spectrogram image in the final dataset or feature for 

modeling is 99 x 43 pixels. Then the model fits with 10 

epochs and is carried out per 30 batches, and the following 

are the results map with a summary of the algorithm 

sequence: 

● Input Feature, input for CNN architecture is an image 

spectrogram with a size of [99 x 43] pixel. The input 

image represents the voice signal taken from the STFT 

operation with a total duration of 1s and the previously 

explained dataset parameter. 

 

 Fig. 6. Proposed flowchart 2DCNN architecture  

● First Convolution Layer, in this study, every 

convolution using a single channel performed in each 

layer to produce a feature map with a mathematical 

model (4). In the first Convulsion Layer, the input image 

will be convoluted by a kernel with dimension [1 x 1], 

with the number of filters 4, stride [1 x 1], and padding 

“same” with a value of 0. If the padding is “same” the 

system will apply the zero padding to the input matrix. 

The value of zero padding can be determined using 

equation (5). 

(𝐼 × 𝐾)𝑖𝑗 =  ∑ ∑ 𝐾𝑚,𝑛

𝑘2−1

𝑛=0

𝑘1−1

𝑚=0

𝐼𝑖+𝑚,𝑗+𝑛 +𝑏 (4) 

(𝑃) =  
𝐾 − 1

2
 (5) 

 Due to the filter size used by the l2 regularization, from 

the equation, the output shape for convolution on (6) is 

obtained, and the stride size is [1 x 1]. The output shape 

of the first convulsion layer is the same as the size input 

shape of the input image, namely [99 x 43]. The 

activation function uses the ReLU layer, which aims to 

change the minus value at the output of the convolution 

process to zero due to non-linearity. 

(𝑂) =  
𝑊 − 𝐾 + +2𝑃

𝑆
+ 1 (6) 

● First Maxpooling Layer, the number of input shapes for 

the first convolution is the output shape for the first max-

pooling layer. In this layer, the image will be 
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downsampled using a pool size of [2 x 2], stride [2 x 2], 

with padding mode 0. The padding value in this layer 

can be calculated using equation (1) which can also be 

found in the first convolution layer. While output size on 

the max-pooling layer uses the following equation (6), 

the output of the max-pooling layer based on equations 

(6) and (7) is [49 x 21]. 

 [ℎ 𝑤] =  
𝑤 − 𝑃𝑠 + (2. 𝑃)

2
+ 1 (7) 

● Second convolution process is to continue the pooling 

result by inputting an image matrix of [49 x 21] with the 

same configuration as the first convolution so that the 

output shape remains [49 x 21]. 

● Second Maxpooling layer, the number of output shapes 

on the second convolution is the input shape, using the 

same configuration as the first max-pooling and 

producing an output shape [24 x 10]. 

● And the last, fully connected layer, calculate the final 

dot product, weights, and biases using the BPNN 

technique, with loss cross-entropy autocorrelation dot 

product and stochastic gradient descent (SGD) 

operations, as well as weight transformation with the 

flatten, at this stage, it is used to convert the output 

pooling layer into a 1-dimensional vector. In the 

propagation and classification process or predicting 

images, a dropout regulation technique selects several 

neurons randomly and will not be used during the 

training process; in other words, the neurons are 

discarded randomly. This process aims to reduce 

overfitting during the training [91, 92, 93, 94]. 

Furthermore, another fully connected process uses dense 

with 80-unit nodes and the layer using SoftMax 

activation function, and this layer becomes the last layer 

that will calculate the probability of the input image 

against all target classes, which is possible and will then 

determine the target class based on the given input 

compact. 

D. Model Conversion and Quantization  

The conversion process is required for inferencing a pre-

trained model to every compact embedded microcontroller. 

This study used a library and an API interpreter provided by 

TensorFlow, which adjusts the data type for the C array on 

ESP32 to store the modeling conversion via ESP32 read-

only memory (ROM) so that quantization and 

transformation when using the function of tf. lite converter 

for microcontrollers, only a tiny amount of memory was 

needed [42]. Quantize model is carried out one time of 8bit 

quantization according to the capacity of ESP32. After 

conversion and quantization, the modeling weight value will 

be hex code in a C array with .cc format. 

E. Button Control 

Button control using two tactile buttons, or momentary 

buttons, with an internal pullup on the ESP32, then 

connected to 2 analog GPIOs on the ESP32 with an 8-bit 

unsigned char integer data type, 0-255 with a normally open 

gate, and for loop sequence for 0–180-degree servo 

increments. The button sequence sub-program will be 

combined with the last stage of TinyMl firmware. 

F. Wireless Protocol with ESP-NOW 

Wireless communication is provided by ESP32 using 

Wi-Fi infrastructure with an organization identifier marked 

on the MAC address number on the microcontroller device 

known as ESP-NOW, so peer-to-peer communication must 

register between microcontroller devices and enable to have 

repairing process efficiently. The control topology used in 

this study is unicast, as shown in Fig. 7. 

 

 Fig. 7. ESP NOW unicast protocol transmitting command words to 

prosthethic devices 

G. Final Embedded TinyML Master–Slave 

The final multi-control firmware using 2 separate 

firmwares. The master and slave firmware for each of the 2 

ESP32; the ESP32-Master, as shown in Fig. 8, installed on 

the remote control, ESP32-Master firmware combined 

button control and SCR into one framework – with 

subprograms, headers, and supporting libraries, namely, 

ESP NOW master register peer & ESP NOW slave callback, 

Freertos Xtask with semaphore, pulse width modulation 

(PWM) servo, analog to digital (ADC) compiler, The 

ESP32-Slave, as shown in Fig. 9, was mounted on the servo 

controller in this case as a substitution of flexion and 

extension movement patterns for the Exo-glove poly using a 

hand prosthetic and servo mechanism from proto 1 [95], 

using  underactuated pulley mechanism with DC servo as 

artificial MCP joint or flexion and extension to articulate 

finger movement which has similar as exo-glove poly servo 

mechanism [96, 97, 98, 99]. 

 

 

 
(a) 

 
(b) 

 Fig. 8. (a) ESP32-master controller. (b) ESP32-master schematic 
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(a) 

 
(b) 

 Fig. 9. (a) ESP32-slave prosthetic. (b) ESP32-slave schematic 

The final firmware will be built with C++ programming 

with a .cpp extension like a pre-trained model design. The 

ESP32-Slave will be a receiver, that will callback data 

threshold sent by the ESP32-Master, then control HIGH or 

LOW for the 4 GPIO output pins connected to the each 4 

servo running in series, based on the threshold activation 

xtasks, respectively. 

IV. EXPERIMENTAL RESULT 

A. Spectrogram Image Result 

Data in this study are shown; only the initial and the 

final processes of the STFT mechanism, which are signals 

in the time domain, and the results of STFT signal 

transformation for the features model in a total time of 1 

second. As shown in the graphs below, feature 

representation as a spectrogram was computed without 

downsampling, and it can be identified by spectral pattern or 

from the pixel image value for the ML model. 

Characteristics of each signal will be different by 

determining the value of the envelope amplitude or 

frequency bin on each signal so that the convolution layer, 

BPNN learning in the MLP layer, or fully connected until 

the output layer will get a prediction of neuron weight in 

target class its respective. 

Extracted Speech on the word "Forward" is shown in 

Fig. 10. The high-amplitude activity is in the 50-2000 Hz 

bin frequency interval at 200-550ms when viewed from the 

spectrogram image. The second speech sample is in the 

frequency interval bin 50-2000 Hz at a time of 200-850ms. 

There is a slight difference in the magnitude of the 

amplitude with respect to time, but it still looks identical. 

Meanwhile, other amplitude activities at different times also 

represent the word "forward" characteristics when 

computing the spectrogram to be used in modeling. So that 

when compared between 2 samples of "forward" on the plot 

of spectrogram-1 and spectrogram-2, it is visually different 

and able to spot even without using ML modeling. The 

characteristics of the sound signal character can be seen in 

the output shape. 

  
(a) (b) 

  
(c) (d) 

 Fig. 10. (a) Time domain signal “Forward-1”. (b) Time domain signal 

“Forward-2”. (c) Spectrogram “Forward-1”. (d) Spectrogram “Forward-2” 

The first sample of the dysarthric vocal speech ''eee'' 

shown in Fig. 11 can't be easily distinguished by a pattern 

rather than the non-dysarthric speech vowel.  

  
(a) (b) 

  
(c) (d) 

 Fig. 11. (a) Time Domain Signal “vowel eee-1”. (b) Time Domain Signal 
“vowel eee-2”. (c) Spectrogram “vowel eee-1”. (d) Spectrogram “vowel 

eee-2” 

Fig. 11 is the pattern looks constant because single 

phonemes are pronounced as steady or continuous at a 

particular frequency level, with a vocal intensity that can be 

aligned, depending on the speaker's condition. However, the 

amplitude activity in the first speech, produce the highest 

frequency in the bin frequency interval of 10-256 Hz at 200-

800 ms. The second speech sample is at the bin frequency 
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interval of 10-200 Hz at 20-80 ms. There is a slight 

difference in the amplitude at a particular frequency 

indicates the intensity of the speaker, but identical amplitude 

activity can be seen between frequencies of 256Hz and 

3kHz. 

For dysarthric vowel speech ''iii'' as shown in Fig. 12, 

the high-amplitude activity is in the 50-400 Hz bin 

frequency interval at 200-800 ms. The 2nd speech sample is 

in the 50-400 Hz bin frequency interval at 200-800 ms. 

Pattern for Non-dysarthric speech can be distinguished 

without scaling at a particular frequency, but dysarthric 

vowel speech has a distinctive identity at each bin frequency 

when looking at specific logarithmic scaling, as shown in 

Fig. 13. 

  
(a) (b) 

  
(c) (d) 

 Fig. 12. (a) Time domain signal “vowel iii-1”. (b) Time Domain Signal 

“vowel iii-2”. (c) Spectrogram “vowel iii-1”. (d) Spectrogram “vowel iii-

2” 

  

 Fig. 13. Differences in amplitude activity of vowels iii in logarithmic scale 

B. Training and Accuracy 2DCNN  Modelling Result 

The results training was carried out in this research by 

each batch, epochs, or iterations, with a total of 10 epochs, 

and doing data sate divided batch size by 32 states in each 

epoch. 

It is known that the results in Table III above and the 

following Fig. 14 are the accumulated results of training 

data and validation data with a ratio of 80:10% in each 

epoch iteration, which shows the value of the validation data 

is not greater than the value of the training data or 

represented in the Table III value as accuracy, and loss, 

while the validation data is “validation-loss” and 

“validation-accuracy”, and it states that the modeling with 

the architecture used in addition to getting the highest of 

accuracy is 94%, with the smallest loss value of 3.2%, 

meaning that the modeling on the training results seems 

does not experience overfitting. 

TABLE III. OBTAINED ACCURACY AND VALIDATION ACCURACY OF 

PROPOSED 2DCNN MODEL 

Epoch Loss (%) Val-loss (%) Accuracy (%) Val-Accuracy 

0 0.4498 0.2881 0.8707 0.9318 

1 0.3522 0.2861 0.9080 0.9334 

2 0.3418 0.2790 0.9119 0.9345 

3 0.3372 0.2742 0.9130 0.9367 

4 0.3347 0.2667 0.9146 0.9373 

5 0.3300 0.264 0.915 0.9354 

6 0.3286 0.2659 0.9159 0.9350 

7 0.3267 0.2611 0.9172 0.9378 

8 0.3260 0.2730 0.9177 0.9349 

9 0.3255 0.2608 0.9177 0.9400 

 

 

(a) 

 

(b) 

 Fig. 14.  (a) The proposed model training accuracy (accuracy vs epochs). 

(b) Model loss (loss vs epochs) 

C. Testing 2DCNN Modelling Result  

 As mentioned in the dataset preparation sub-page, the 

training, validation, and testing data composition was 

divided into a ratio of 80:10:10%. However in this research, 
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limited dataset for dysarthic vowel speech with single 

subject utterances were obtained based on small dataset 

approach that conducted in previous research [100-102]. In 

this research, 100 records for each target class for testing 

data and only ten records data were tested as new data. Then 

the testing results is shown in the confusion matrix Fig. 15 

using testing data. Dysarthric vocal speech appears to have 

100% accuracy without missing data. 

 

 Fig. 15. The confusion matrix of testing model results. The y-axis 

represents the true label and the x-axis represents the predicted label for 

SCR classes 

This phenomenon is declared overfitting in the testing 

process with identical new data, or the model is too 

memorized from the speaker's subject, or this phenomenon 

is also often called audio fingerprinting. However, for non-

dysarthric speech utterances with better quantitative and 

qualitative datasets taken directly from the TensorFlow 

library dataset or speech _data v2, the accuracy of the 

prediction results is very relevant in the 93-97% range with 

1-7% spatial data. 

The accuracy comparison model shown in Table IV, 

with the proposed architecture and limited dataset, the result 

shown a reliable performance. However, this proposed 

model could accept dysarthic vowel speech and non 

dsyarthic command word on this study implementation, and 

perform well according table shown in the next following 

section.  

TABLE IV. TRAINING ACCURACY COMPARISON FROM PROPOSED METHOD 

WITH EXISTING LITERATURE 

Article Algorithm  Accuracy (%)  
David et al. [31] CNN 86% 

Y.-Y. Lin et al. [32] CNN – MFCC 65.67% 
Yakoub et al. [33] CNN – EMDH- MFCC 62.7% 
Shamiri et al. [35] SV – CNN  71 % 

Jiang et al. [37] DLSTM – MFCC 82.1 % 
[Proposed] 2DCNN – STFT 93 % 

D. TinyML Controller Speech Test Results 

The speech test was conducted with the noise measured 

with a sound pressure level (SPL) meter software, or decibel 

meter using the “decibel x” apps available on Playstore, 

with sensibility performance and calibration of noise in a 

relatively representative indoor scenario, which ranges from 

24db, 42db and 62db as shown in Table V, Table VI, and 

Table VII. The distance and position on this test were 

around ± 25cm from the sound source with a speech 

intensity ranging from 60-70db. Proto-1 will perform 

flexion and extension servo mechanism activities as a 

substitute for the Exo glove during a duty cycle or fully 

opening and closing hands sequence. 

TABLE V. SPEECH TEST WITH NOISE LEVEL ±24DB - ENCLOSED ROOM 

Command Word No of test True  Percentage (%)  
Vowel ‘‘iii’’ 20 18 90 
Vowel ‘‘eee’’ 20 17 85 

Forward 20 20 100 
Backward 20 20 100 

TABLE VI. SPEECH TEST WITH NOISE LEVEL ±42DB – HOUSEHOLD 

Command Word No of test True  Percentage (%)  
Vowel ‘‘iii’’ 20 16 80 
Vowel ‘‘eee’’ 20 15 75 

Forward 20 18 90 
Backward 20 18 90 

TABLE VII. SPEECH TEST WITH NOISE LEVEL ±62DB – CROWD IN THE 

ROOM  

Command Word No of test True  Percentage (%)  
Vowel ‘‘iii’’ 20 5 25 
Vowel ‘‘eee’’ 20 13 65 

Forward 20 9 40 
Backward 20 11 55 

 

In the first test, the noise level of about 24dB was tested 

in a closed room scenario and the system had a good 

performance with level accuracy ranging and consistent 

around 85-100%. In the second scenario, which is about 

42dB of noise generated by environmental or surrounding 

noise around the house, such as motorbikes, birds chirping, 

kitchen activities, and other natural noises. The accuracy of 

speech recognition decreases around -10% level from the 

latest value, and the noise scenario is 62db which was tested 

among a crowd of conversations, and the performance 

decline is up to -70% so that the design SCR system in this 

research is temporarily better if applied to noise levels 

ranging from 20-42 dB. 

E. Button Test Results 

Testing for button controller with an on/off sequence, 

which moves every 5 increments, or 5 degrees on the Proto - 

1 servos, then observes its activity in a serial monitor, along 

with the response of the data packet transmission, measured 

on each button pressed for 1-meter range. The measured 

time response from the controller was about 45ms per 

increment, and packet size transmission activity was 

observed for a total of 1000ms period as shown in Table 

VIII and Table IX. 

The button bounce phenomenon was recorded by 

looking at packet size activity per 1000ms and had no 

significant bounce. The number of buttons pressed for 

movement of flexion or extension until it is intact, or 100% 

duty cycle measured, was 12 times, and the maximum 

bounce was around at 20 increments or 4 times the trigger 

button sequence but does not interfere with high spike, 
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peaking, or ripple on servo voltage. Meanwhile, the 

limitation of data transmission parameters measured in this 

study is the number per frame/complete packet, which is 

100-111 packets/second.  

TABLE VIII. WIRELESS BOUNCING BUTTON TEST – FLEXION SEQUENCE 

Flexion 

Push Order Increment 

 (0-180)  

Time (ms) Packet size Degree (°) 

1 5-20 45 109 0-20 

2 25-30 48 100 20-30 

3 35-45 47 108 30-45 

4 50-60 47 102 45-60 

5 65-75 47 108 60-75 

6 80-85 46 106 75-85 

7 90-95 47 105 85-95 

8 100 - 105 47 105 95-105 

9 110-130 94 107 105-130 

10 135-145 46 110 130-145 

11 150-165 95 105 145-165 

12 170-180 47 111 165-180 

TABLE IX. WIRELESS BOUNCING BUTTON TEST – EXTENSION SEQUENCE 

Extension 

Push Order Increment 

 (0-180)  

Time (ms) Packet size Degree (°) 

1 180-165 47 117 180-165 

2 160 - 150 46 117 165-150 

3 145-130 48 108 150-130 

4 130-125 96 108 130-125 

5 125-120 50 100 125-120 

6 115-100 93 109 120-100 

7 95-80 93 111 100-80 

8 75-60 608 105 80-60 

9 55-45 92 111 60-45 

10 45-40 94 110 45-40 

11 35-20 46 110 40-20 

12 15-0 46 112 0 

F. Range of Motion (ROM) Proto-1 

Fig. 16 is the ROM activities in this study were carried 

out to indicate projection performance of flexion and 

extension activities using hand prosthetics and validate the 

implementation of a multi-control system with servo 

performance for grip activities on selected objects according 

to the study [9]. 

  
(a) (b) 

  
(c) (d) 

 Fig. 16. Photographs ROM Activities, demonstrate Proto-1 grasping 
objects of various shapes. (a–d) Grasping a Qur’an, grasping a metal mug, 

grasping a deodorant, and grasping a comb 

V. CONCLUSION 

 Speech recognition system for dysarthric and non-

dysarthric uses the CNN-STFT technique to represent the 

sound signal captured by the microphone sensor, then 

processes it into a spectrogram log image, which will be 

classified into image patterns by the CNN algorithm. The 

total dataset used was 102,124 recordings, combined with 

the speech_command v2 dataset and a small dataset for 

dysarthric speakers. Testing Accuracy for dysarthric and 

non-dysarthric speech control is quite good, ''forward'' 

speech get 95% accuracy, for ''Backward'' speech 97%, for 

vowel dysarthric speech "eee" and ''iii'' both have overfitted 

phenomenon 100% (overfit) cause of lack quantity, quality 

and augmented method for a small dataset but in real life 

testing, had a quite good performance. Implementing neural 

net modeling on ESP32 with the INMP441 mic sensor 

module as voice signal input was conducted with three 

scenarios of noise levels 24db, 42db, and 62db, each tested 

20 times, and produced an average accuracy of 95%, 85%, 

50% respectively. The results of the wireless data 

distribution response with ESP-NOW using a button 

control, the on-off sequence for the remote was about 60ms, 

while for the full duty cycle it was about 800ms. For 

hardware or electrical circuit design, there is a bouncing 

phenomenon in momentary button, use filters in the circuit 

to reduce this phenomenon, adding an H-bridge for the 

efficiency of servo output current, and using PID or fuzzy 

logic control for the safety open loop mechanism of the 

servo. In feature engineering or dataset engineering, 

overfitting occurs in modeling, especially in large dysarthic 

spoken language datasets, so increasing the quantity and 

quality of datasets, such as using datasets from severe 

subjects or related open datasets, and performing 

preprocessing variations like using mel-spectrogram, log 

mel spectrogram, L2M spectrogram, Chroma and others, 

can be used as a comparison for upcoming research. 

REFERENCES 

[1] C. M. J. M. Dourado Jr, S. P. P. da Silva, R. V. M. da Nóbrega, A. C. 

da S. Barros, P. P. R. Filho, and V. H. C. de Albuquerque, “Deep 
learning IoT system for online stroke detection in skull computed 

tomography images,” Computer Networks, vol. 152, pp. 25–39, Apr. 
2019, doi: 10.1016/j.comnet.2019.01.019. 

[2] S. Wang, H. Zhai, L. Wei, B. Shen, and J. Wang, “Socioeconomic 

status predicts the risk of stroke death: A systematic review and meta-
analysis,” Preventive Medicine Reports, vol. 19, p. 101124, Sep. 

2020, doi: 10.1016/j.pmedr.2020.101124. 

[3] F. Herpich and F. Rincon, “Management of Acute Ischemic Stroke,” 
Critical Care Medicine, vol. 48, no. 11, pp. 1654–1663, Oct. 2020, 
doi: 10.1097/ccm.0000000000004597. 

[4] R. Chiaramonte and M. Vecchio, “A Systematic Review of Measures 

of Dysarthria Severity in Stroke Patients,” PM&R, vol. 13, no. 3, pp. 
314–324, Oct. 2020, doi: 10.1002/pmrj.12469. 

[5] K. Brown and K. Spencer, “Dysarthria following Stroke,” Seminars in 

Speech and Language, vol. 39, no. 1, pp. 015–024, Jan. 2018, doi: 
10.1055/s-0037-1608852. 

[6] Z. Mou, Z. Chen, J. Yang, and L. Xu, “Acoustic properties of vowel 

production in Mandarin-speaking patients with post-stroke 
dysarthria,” Scientific Reports, vol. 8, no. 1, Sep. 2018, doi: 
10.1038/s41598-018-32429-8. 

[7] M.-Y. Liaw et al., “Respiratory muscle training in stroke patients with 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 476 

 

Bambang Riyanta, Development of Speech Command Control Based TinyML System for Post-Stroke Dysarthria Therapy 

Device 

respiratory muscle weakness, dysphagia, and dysarthria – a 
prospective randomized trial,” Medicine, vol. 99, no. 10, p. e19337, 

Mar. 2020, doi: 10.1097/md.0000000000019337. 

[8] R. Chiaramonte, P. Pavone, and M. Vecchio, “Speech rehabilitation in 
dysarthria after stroke: a systematic review of the studies,” European 

Journal of Physical and Rehabilitation Medicine, vol. 56, no. 5, Nov. 
2020, doi: 10.23736/s1973-9087.20.06185-7. 

[9] R. Islam, M. Tarique, and E. Abdel-Raheem, “A Survey on Signal 

Processing Based Pathological Voice Detection Techniques,” IEEE 
Access, vol. 8, pp. 66749–66776, 2020, doi: 
10.1109/access.2020.2985280. 

[10] S. Pinto et al., “Treatments for dysarthria in Parkinson's disease,” The 
Lancet Neurology, vol. 3, pp . 547-556, 204, doi: doi:  
10.1016/S1474-4422(04)00854-3. 

[11]  A. F. Rumbach, E. Finch, and G. Stevenson, “What are the usual 

assessment practices in adult non-progressive dysarthria 

rehabilitation? A survey of Australian dysarthria practice patterns,” 
Journal of Communication Disorders, vol. 79, pp. 46–57, May 2019, 
doi: 10.1016/j.jcomdis.2019.03.002. 

[12] P. Balzan, C. Tattersall, and R. Palmer, “Non-invasive brain 

stimulation for treating neurogenic dysarthria: A systematic review,” 

Annals of Physical and Rehabilitation Medicine, vol. 65, no. 5, p. 
101580, Sep. 2022, doi: 10.1016/j.rehab.2021.101580. 

[13] M. Icht, “Improving speech characteristics of young adults with 

congenital dysarthria: An exploratory study comparing articulation 
training and the Beatalk method,” Journal of Communication 

Disorders, vol. 93, p. 106147, Sep. 2021, doi: 
10.1016/j.jcomdis.2021.106147. 

[14]  I. Díaz et al., “Development of a robotic device for post-stroke home 

tele-rehabilitation,” Advances in Mechanical Engineering, vol. 10, no. 
1, Jan. 2018, doi: 10.1177/1687814017752302. 

[15] A. A. Khan, S. K. Ranjha, M. U. Akram, S. G. Khawaja, and A. 

Shaukat, “Neurotransmission cognitive theory: A novel approach for 
non-invasive brain stimulation using mechanical vibrations for the 

rehabilitation of neurological patients,” Medical Hypotheses, vol. 143, 
p. 110078, Oct. 2020, doi: 10.1016/j.mehy.2020.110078. 

[16] R. S. Calabrò et al., “Does hand robotic rehabilitation improve motor 

function by rebalancing interhemispheric connectivity after chronic 

stroke? Encouraging data from a randomised-clinical-trial,” Clinical 

Neurophysiology, vol. 130, no. 5, pp. 767–780, May 2019, doi: 
10.1016/j.clinph.2019.02.013. 

[17]  I. Boukhennoufa, X. Zhai, V. Utti, J. Jackson, and K. D. McDonald-

Maier, “Wearable sensors and machine learning in post-stroke 

rehabilitation assessment: A systematic review,” Biomedical Signal 
Processing and Control, vol. 71, p. 103197, Jan. 2022, doi: 
10.1016/j.bspc.2021.103197. 

[18] K. Nuckols et al., “Proof of Concept of Soft Robotic Glove for Hand 

Rehabilitation in Stroke Survivors,” Archives of Physical Medicine 

and Rehabilitation, vol. 100, no. 12, p. e195, Dec. 2019, doi: 
10.1016/j.apmr.2019.10.099. 

[19] C. Proulx, D. Gagnon, and J. Higgins, “Perceived Usability and 
Acceptability of a Soft Robotic Glove for Rehabilitation of Adults 

With Hand Hemiparesis: A Mixed-Method Study Among 

Occupational Therapists in Stroke Rehabilitation,” Archives of 
Physical Medicine and Rehabilitation, vol. 101, no. 11, p. e101, Nov. 
2020, doi: 10.1016/j.apmr.2020.09.308. 

[20] J. D. Setiawan, M. Ariyanto, S. Nugroho, M. Munadi, and R. Ismail, 

“A Soft Exoskeleton Glove Incorporating Motor-Tendon Actuator for 

Hand Movements Assistance,” International Review of Automatic 

Control (IREACO), vol. 13, no. 1, p. 1, Jan. 2020, doi: 
10.15866/ireaco.v13i1.18274. 

[21] B. B. Kang, H. Choi, H. Lee, and K.-J. Cho, “Exo-Glove Poly II: A 
Polymer-Based Soft Wearable Robot for the Hand with a Tendon-

Driven Actuation System,” Soft Robotics, vol. 6, no. 2, pp. 214–227, 
Apr. 2019, doi: 10.1089/soro.2018.0006. 

[22] C.-Y. Chu and R. M. Patterson, “Soft robotic devices for hand 

rehabilitation and assistance: a narrative review,” Journal of 

NeuroEngineering and Rehabilitation, vol. 15, no. 1, Feb. 2018, doi: 
10.1186/s12984-018-0350-6. 

[23] P. Tran, S. Jeong, S. L. Wolf, and J. P. Desai, “Patient-Specific, 
Voice-Controlled, Robotic FLEXotendon Glove-II System for Spinal 

Cord Injury,” IEEE Robotics and Automation Letters, vol. 5, no. 2, 

pp. 898–905, Apr. 2020, doi: 10.1109/lra.2020.2965900. 

[24] A. Dwivedi, L. Gerez, W. Hasan, C.-H. Yang, and M. Liarokapis, “A 

Soft Exoglove Equipped With a Wearable Muscle-Machine Interface 

Based on Forcemyography and Electromyography,” IEEE Robotics 
and Automation Letters, vol. 4, no. 4, pp. 3240–3246, Oct. 2019, doi: 
10.1109/lra.2019.2925302. 

[25]  A. Foroutannia, M.-R. Akbarzadeh-T, and A. Akbarzadeh, “A deep 

learning strategy for EMG-based joint position prediction in hip 

exoskeleton assistive robots,” Biomedical Signal Processing and 
Control, vol. 75, p. 103557, May 2022, doi: 
10.1016/j.bspc.2022.103557. 

[26] F. Wang, Y. Chen, Y. Wang, Z. Liu, Y. Tian, and D. Zhang, “A soft 
pneumatic glove with multiple rehabilitation postures and assisted 

grasping modes,” Sensors and Actuators A: Physical, vol. 347, p. 
113978, Nov. 2022, doi: 10.1016/j.sna.2022.113978. 

[27]  Q. Liu, J. Zuo, C. Zhu, and S. Q. Xie, “Design and control of soft 

rehabilitation robots actuated by pneumatic muscles: State of the art,” 
Future Generation Computer Systems, vol. 113, pp. 620–634, Dec. 
2020, doi: 10.1016/j.future.2020.06.046. 

[28] M. V. M. Neves, L. Furlan, F. Fregni, L. R. Battistella, and M. Simis, 

“Robotic-Assisted Gait Training (RAGT) in Stroke Rehabilitation: A 

Pilot Study,” Archives of Rehabilitation Research and Clinical 

Translation, vol. 5, no. 1, p. 100255, Mar. 2023, doi: 
10.1016/j.arrct.2023.100255. 

[29] P. Caliandro et al., “Exoskeleton-assisted gait in chronic stroke: An 
EMG and functional near-infrared spectroscopy study of muscle 

activation patterns and prefrontal cortex activity,” Clinical 

Neurophysiology, vol. 131, no. 8, pp. 1775–1781, Aug. 2020, doi: 
10.1016/j.clinph.2020.04.158. 

[30] T. Triwiyanto, S. Luthfiyah, I. Putu Alit Pawana, A. Ali Ahmed, and 
A. Andrian, “Bilateral mode exoskeleton for hand rehabilitation with 

wireless control using 3D printing technology based on IMU sensor,” 

HardwareX, vol. 14, p. e00432, Jun. 2023, doi: 
10.1016/j.ohx.2023.e00432. 

[31]  D. Mulfari, G. Meoni, M. Marini, and L. Fanucci, “Towards a Deep 

Learning Based ASR System for Users with Dysarthria,” Computers 
Helping People with Special Needs, pp. 554–557, 2018, doi: 
10.1007/978-3-319-94277-3_86. 

[32] Y.-Y. Lin et al., “A Speech Command Control-Based Recognition 

System for Dysarthric Patients Based on Deep Learning Technology,” 

Applied Sciences, vol. 11, no. 6, p. 2477, Mar. 2021, doi: 
10.3390/app11062477. 

[33] M. S. Yakoub, S. Selouani, B.-F. Zaidi, and A. Bouchair, “Improving 

dysarthric speech recognition using empirical mode decomposition 
and convolutional neural network,” EURASIP Journal on Audio, 

Speech, and Music Processing, vol. 2020, no. 1, Jan. 2020, doi: 
10.1186/s13636-019-0169-5. 

[34] B. Vachhani, C. Bhat, and S. K. Kopparapu, “Data Augmentation 

Using Healthy Speech for Dysarthric Speech Recognition,” Proc. 
Interspeech 2018, pp. 471-475, Sep. 2018, doi: 
10.21437/interspeech.2018-1751. 

[35] S. R. Shahamiri, “Speech Vision: An End-to-End Deep Learning-

Based Dysarthric Automatic Speech Recognition System,” IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 
29, pp. 852–861, 2021, doi: 10.1109/tnsre.2021.3076778. 

[36] A. A. Joshy and R. Rajan, “Automated Dysarthria Severity 

Classification: A Study on Acoustic Features and Deep Learning 

Techniques,” IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 30, pp. 1147–1157, 2022, doi: 
10.1109/tnsre.2022.3169814. 

[37] W. Ye, Z. Jiang, Q. Li, Y. Liu, and Z. Mou, “A hybrid model for 

pathological voice recognition of post-stroke dysarthria by using 
1DCNN and double-LSTM networks,” Applied Acoustics, vol. 197, p. 
108934, Aug. 2022, doi: 10.1016/j.apacoust.2022.108934. 

[38] B. A. D. la C. Sánchez, M. A. Montiel, and E. L. González, “EMG-
controlled hand exoskeleton for assisted bilateral rehabilitation,” 

Biocybernetics and Biomedical Engineering, vol. 42, no. 2, pp. 596–
614, Apr. 2022, doi: 10.1016/j.bbe.2022.04.001. 

[39] F. Putri, W. Caesarendra, E. D. Pamanasari, M. Ariyanto, and J. D. 

Setiawan, “Parkinson Disease Detection Based on Voice and EMG 
Pattern Classification Method for Indonesian Case Study,” Journal of 

Energy, Mechanical, Material and Manufacturing Engineering, vol. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 477 

 

Bambang Riyanta, Development of Speech Command Control Based TinyML System for Post-Stroke Dysarthria Therapy 

Device 

3, no. 2, p. 87, Dec. 2018, doi: 10.22219/jemmme.v3i2.6977. 

[40] J. Hou, Y. Shi, M. Ostendorf, M.-Y. Hwang, and L. Xie, “Region 

Proposal Network Based Small-Footprint Keyword Spotting,” IEEE 

Signal Processing Letters, vol. 26, no. 10, pp. 1471–1475, Oct. 2019, 
doi: 10.1109/lsp.2019.2936282. 

[41] A. Ghandoura, F. Hjabo, and O. A. Dakkak, “Building and 
benchmarking an Arabic Speech Commands dataset for small-

footprint keyword spotting,” Engineering Applications of Artificial 

Intelligence, vol. 102, p. 104267, Jun. 2021, doi: 
10.1016/j.engappai.2021.104267. 

[42] R. Bhalley, “TensorFlow Basics,” Deep Learning with Swift for 
TensorFlow, pp. 143–169, 2021, doi: 10.1007/978-1-4842-6330-3_4. 

[43] V. J. Reddi et al., “Widening Access to Applied Machine Learning 

with TinyML,” Harvard Data Science Review, Jan. 2022, doi: 
10.1162/99608f92.762d171a. 

[44] A. M. Rostami, A. Karimi, and M. A. Akhaee, “Keyword spotting in 

continuous speech using convolutional neural network,” Speech 
Communication, vol. 142, pp. 15–21, Jul. 2022, doi: 
10.1016/j.specom.2022.06.001. 

[45] E. van der Westhuizen, H. Kamper, R. Menon, J. Quinn, and T. 

Niesler, “Feature learning for efficient ASR-free keyword spotting in 

low-resource languages,” Computer Speech & Language, vol. 71, p. 
101275, Jan. 2022, doi: 10.1016/j.csl.2021.101275. 

[46] L. Liu, M. Yang, X. Gao, Q. Liu, Z. Yuan, and J. Zhou, “Keyword 
spotting techniques to improve the recognition accuracy of user-

defined keywords,” Neural Networks, vol. 139, pp. 237–245, Jul. 
2021, doi: 10.1016/j.neunet.2021.03.012. 

[47] S. Cai et al., “A Voice-Activated Switch for Persons with Motor and 

Speech Impairments: Isolated-Vowel Spotting Using Neural 

Networks,” Proc. Interspeech 2021, pp. 4823-4827, Aug. 2021, doi: 
10.21437/interspeech.2021-330. 

[48] K. Dokic, D. Mandusic, and B. Radisic, “Analysis of ESP32 SoC for 
Feed-Forward Neural Network Applications,” Innovation in 

Information Systems and Technologies to Support Learning Research, 
pp. 165–175, Dec. 2019, doi: 10.1007/978-3-030-36778-7_18. 

[49] M. Z. H. Zim, “TinyML: analysis of sekar Xtensa LX6 

microprocessor for neural network applications by ESP32 SoC,” 
Machine Learning,  Jun. 2021, doi: arXiv:2106.10652. 

[50] R. S. Iborra and A. F. Skarmeta, “TinyML-Enabled Frugal Smart 

Objects: Challenges and Opportunities,” IEEE Circuits and Systems 
Magazine, vol. 20, no. 3, pp. 4–18, Aug. 2020, doi: 
10.1109/mcas.2020.3005467. 

[51] S. Asutkar, C. Chalke, K. Shivgan, and S. Tallur, “TinyML-enabled 
edge implementation of transfer learning framework for domain 

generalization in machine fault diagnosis,” Expert Systems with 

Applications, vol. 213, p. 119016, Mar. 2023, doi: 
10.1016/j.eswa.2022.119016. 

[52] M. M. Shibl, L. S. Ismail, and A. M. Massoud, “A machine learning-
based battery management system for state-of-charge prediction and 

state-of-health estimation for unmanned aerial vehicles,” Journal of 

Energy Storage, vol. 66, p. 107380, Aug. 2023, doi: 
10.1016/j.est.2023.107380. 

[53]  P. P. Ray, “A review on TinyML: State-of-the-art and prospects,” 
Journal of King Saud University - Computer and Information 

Sciences, vol. 34, no. 4, pp. 1595–1623, Apr. 2022, doi: 
10.1016/j.jksuci.2021.11.019. 

[54] H. Rahman et al., “IoT enabled mushroom farm automation with 

Machine Learning to classify toxic mushrooms in Bangladesh,” 

Journal of Agriculture and Food Research, vol. 7, p. 100267, Mar. 
2022, doi: 10.1016/j.jafr.2021.100267. 

[55] D. M. Matilla, Á. L. Murciego, D. M. J. Bravo, A. S. Mendes, and V. 
R. Q. Leithardt, “Low-cost Edge Computing devices and novel user 

interfaces for monitoring pivot irrigation systems based on Internet of 

Things and LoRaWAN technologies,” Biosystems Engineering, vol. 
223, pp. 14–29, Nov. 2022, doi: 
10.1016/j.biosystemseng.2021.07.010. 

[56] Lu, Xugang, Sheng Li, and M. Fujimoto, “Automatic speech 
recognition,” Speech-to-speech translation, pp. 21-38, 2020.  

[57] M. Yankayiş, “Performance Evaluation of Feature Extraction and 
Modeling Methods for Speaker Recognition,” Annals of Reviews & 
Research, vol. 4, no. 3, Nov. 2018, doi: 10.19080/arr.2018.04.555639. 

[58] B. Ustubioglu, G. Tahaoglu, and G. Ulutas, “Detection of audio copy-
move-forgery with novel feature matching on Mel spectrogram,” 

Expert Systems with Applications, vol. 213, p. 118963, Mar. 2023, 
doi: 10.1016/j.eswa.2022.118963. 

[59] G. Parisi, A. Coluccia, and A. Fascista, “On time-frequency 

correlation in spectrogram samples with application to target 

detection,” Signal Processing, vol. 200, p. 108648, Nov. 2022, doi: 
10.1016/j.sigpro.2022.108648. 

[60] S. Jothimani and K. Premalatha, “MFF-SAug: Multi feature fusion 
with spectrogram augmentation of speech emotion recognition using 

convolution neural network,” Chaos, Solitons & Fractals, vol. 162, p. 
112512, Sep. 2022, doi: 10.1016/j.chaos.2022.112512. 

[61] D. Kim and J. Lee, “Predictive evaluation of spectrogram-based 

vehicle sound quality via data augmentation and explainable artificial 

Intelligence: Image color adjustment with brightness and contrast,” 
Mechanical Systems and Signal Processing, vol. 179, p. 109363, Nov. 
2022, doi: 10.1016/j.ymssp.2022.109363. 

[62] T. Alam and A. Khan, “Lightweight CNN for Robust Voice Activity 

Detection,” Lecture Notes in Computer Science, pp. 1–12, 2020, doi: 
10.1007/978-3-030-60276-5_1. 

[63] Sutikno, K. Anam, and A. Saleh, “Voice Controlled Wheelchair for 

Disabled Patients based on CNN and LSTM,” 2020 4th International 

Conference on Informatics and Computational Sciences (ICICoS), pp. 
1-5, Nov. 2020, doi: 10.1109/icicos51170.2020.9299007. 

[64] J. Kwon and D. Park, “Hardware/Software Co-Design for TinyML 
Voice-Recognition Application on Resource Frugal Edge Devices,” 

Applied Sciences, vol. 11, no. 22, p. 11073, Nov. 2021, doi: 
10.3390/app112211073. 

[65] A. Suryarasmi, C. -C. Chang, R. Akhmalia, M. Marshallia, W. -J. 

Wang, and D. Liang, “FN-Net: A lightweight CNN-based architecture 
for fabric defect detection with adaptive threshold-based class 

determination,” Displays, vol. 73, p. 102241, Jul. 2022, doi: 
10.1016/j.displa.2022.102241. 

[66] C. Chen, H. Seo, and Y. Zhao, “A novel pavement transverse cracks 

detection model using WT-CNN and STFT-CNN for smartphone data 

analysis,” International Journal of Pavement Engineering, vol. 23, 
no. 12, pp. 4372–4384, Jun. 2021, doi: 
10.1080/10298436.2021.1945056. 

[67] S. Duan, H. Zheng, and J. Liu, “A Novel Classification Method for 

Flutter Signals Based on the CNN and STFT,” International Journal 

of Aerospace Engineering, vol. 2019, pp. 1–8, Apr. 2019, doi: 
10.1155/2019/9375437. 

[68] J. Huang, B. Chen, B. Yao, and W. He, “ECG Arrhythmia 

Classification Using STFT-Based Spectrogram and Convolutional 
Neural Network,” IEEE Access, vol. 7, pp. 92871–92880, 2019, doi: 
10.1109/access.2019.2928017. 

[69] S. M. Beeraka, A. Kumar, M. Sameer, S. Ghosh, and B. Gupta, 

“Accuracy Enhancement of Epileptic Seizure Detection: A Deep 

Learning Approach with Hardware Realization of STFT,” Circuits, 
Systems, and Signal Processing, vol. 41, no. 1, pp. 461–484, Jul. 
2021, doi: 10.1007/s00034-021-01789-4. 

[70] A. Pandey and D. Wang, “A New Framework for CNN-Based Speech 

Enhancement in the Time Domain,” in IEEE/ACM Transactions on 

Audio, Speech, and Language Processing, vol. 27, no. 7, pp. 1179-
1188, July 2019, doi: 10.1109/TASLP.2019.2913512. 

[71] Y. Lee, H. J. Park, I. H. Bae, and G. Kim, “Resonance Characteristics 

in Epiglottic Cyst: Formant Frequency, Vowel Space Area, Vowel 

Articulatory Index, and Formant Centralization Ratio,” Journal of 
Voice, Oct. 2021, doi: 10.1016/j.jvoice.2021.09.008. 

[72] P. Warden, “Speech commands: A dataset for limited-vocabulary 

speech recognition,” arXiv preprint arXiv:1804.03209, Apr. 2018, 
doi: https://doi.org/10.48550/arXiv.1804.03209. 

[73] M. M. Goodwin, “The STFT, Sinusoidal Models, and Speech 

Modification,” Springer Handbook of Speech Processing, pp. 229–
258, 2008, doi: 10.1007/978-3-540-49127-9_12. 

[74] S. A. Alim and N. K. A. Rashid, Some Commonly Used Speech 
Feature Extraction Algorithms. London, UK: IntechOpen, 2018. 

[75] X. Wang, T. Ying, and W. Tian, “Spectrum Representation Based on 

STFT,” 2020 13th International Congress on Image and Signal 

Processing, BioMedical Engineering and Informatics (CISP-BMEI), 
pp. 435-438, 2020, doi: 10.1109/CISP-BMEI51763.2020.9263516. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 478 

 

Bambang Riyanta, Development of Speech Command Control Based TinyML System for Post-Stroke Dysarthria Therapy 

Device 

[76] J. Benesty, J. Chen, and E. A. P. Habets. Speech enhancement in the 
STFT domain. Springer Science & Business Media, 2011. 

[77]  L. Rabiner and B. W. Juang. Fundamentals of speech recognition. 
Prentice-Hall, Inc., 1993. 

[78] N. Kehtarnavaz, “Frequency Domain Processing,” Digital Signal 

Processing System Design, pp. 175–196, 2008, doi: 10.1016/b978-0-
12-374490-6.00007-6. 

[79] K. Bhangale and K. Mohanaprasad, “Speech Emotion Recognition 

Using Mel Frequency Log Spectrogram and Deep Convolutional 
Neural Network,” Lecture Notes in Electrical Engineering, pp. 241–
250, Oct. 2021, doi 10.1007978-981-16-4625-6_24.0 

[80] M. Loughlin, Z. Xie, Y. Song, H. Phan, and R. Palaniappan, “Time–

Frequency Feature Fusion for Noise Robust Audio Event 

Classification,” Circuits, Systems, and Signal Processing, vol. 39, no. 
3, pp. 1672–1687, Jul. 2019, doi: 10.1007/s00034-019-01203-0. 

[81] M. T. Nguyen, W. W. Lin, and J. H. Huang, “Heart Sound 

Classification Using Deep Learning Techniques Based on Log-mel 
Spectrogram,” Circuits, Systems, and Signal Processing, vol. 42, no. 
1, pp. 344–360, Aug. 2022, doi: 10.1007/s00034-022-02124-1. 

[82] H. Xu, J. Zhang, and L. Dai, “Differential Time-frequency Log-mel 

Spectrogram Features for Vision Transformer Based Infant Cry 

Recognition,” Proc. Interspeech 2022, pp. 1963-1967, Sep. 2022, doi: 
10.21437/interspeech.2022-18. 

[83] D. Gao, X. Tang, M. Wan, G. Huang, and Y. Zhang, “EEG driving 
fatigue detection based on log-Mel spectrogram and convolutional 

recurrent neural networks,” Frontiers in Neuroscience, vol. 17, Mar. 
2023, doi: 10.3389/fnins.2023.1136609. 

[84] M. M. Oo and L. L. Oo, “Fusion of Log-Mel Spectrogram and GLCM 

Feature in Acoustic Scene Classification,” Studies in Computational 

Intelligence, pp. 175–187, Jul. 2019, doi: 10.1007/978-3-030-24344-
9_11. 

[85] H. Meng, T. Yan, F. Yuan, and H. Wei, “Speech Emotion 
Recognition From 3D Log-Mel Spectrograms With Deep Learning 

Network,” IEEE Access, vol. 7, pp. 125868–125881, 2019, doi: 
10.1109/access.2019.2938007. 

[86] Z. Diao, J. Yan, Z. He, S. Zhao, and P. Guo, “Corn Seedling 

Recognition Algorithm Based on Hyperspectral Image and 

Lightweight-3d-Cnn,” SSRN Electronic Journal, 2022, doi: 

10.2139/ssrn.4162664. 

[87] O. Attallah, “CerCan·Net: Cervical cancer classification model via 
multi-layer feature ensembles of lightweight CNNs and transfer 

learning,” Expert Systems with Applications, vol. 229, p. 120624, 
Nov. 2023, doi: 10.1016/j.eswa.2023.120624. 

[88] J. Yang, L. Zhang, X. Tang, and M. Han, “CodnNet: A lightweight 

CNN architecture for detection of COVID-19 infection,” Applied Soft 

Computing, vol. 130, p. 109656, Nov. 2022, doi: 
10.1016/j.asoc.2022.109656. 

[89] H. I. Hussein, A. O. Mohammed, M. M. Hassan, and R. J. Mstafa, 
“Lightweight deep CNN-based models for early detection of COVID-

19 patients from chest X-ray images,” Expert Systems with 

Applications, vol. 223, p. 119900, Aug. 2023, doi: 
10.1016/j.eswa.2023.119900. 

[90] Y. Wang, S. Li, H. Zhang, and T. Liu, “A lightweight CNN-based 
model for early warning in sow oestrus sound monitoring,” 

Ecological Informatics, vol. 72, p. 101863, Dec. 2022, doi: 
10.1016/j.ecoinf.2022.101863. 

[91]  K. Sanjar, A. Rehman, A. Paul, and K. JeongHong, “Weight Dropout 

for Preventing Neural Networks from Overfitting,” 2020 8th 

International Conference on Orange Technology (ICOT), Dec. 2020, 
doi: 10.1109/icot51877.2020.9468799. 

[92] L. Li and M. Spratling, “Understanding and combating robust 
overfitting via input loss landscape analysis and regularization,” 

Pattern Recognition, vol. 136, p. 109229, Apr. 2023, doi: 
10.1016/j.patcog.2022.109229. 

[93] O. İrsoy and E. Alpaydın, “Dropout regularization in hierarchical 

mixture of experts,” Neurocomputing, vol. 419, pp. 148–156, Jan. 
2021, doi: 10.1016/j.neucom.2020.08.052. 

[94] S. H. Khan, M. Hayat, and F. Porikli, “Regularization of deep neural 

networks with spectral dropout,” Neural Networks, vol. 110, pp. 82–
90, Feb. 2019, doi: 10.1016/j.neunet.2018.09.009. 

[95] Q. K. Pham, T. V. Vo, and P. T. Tran, “On the Implementation of a 

Low-Cost Mind-Voice-and-Gesture-Controlled Humanoid Robotic 

Arm Using Leap Motion and Neurosky Sensor,” Journal of Electrical 

Engineering &amp; Technology, vol. 17, no. 1, pp. 665–683, Sep. 
2021, doi: 10.1007/s42835-021-00903-5. 

[96]  W. Batayneh, E. Abdulhay, and M. Alothman, “Comparing the 

efficiency of artificial neural networks in sEMG-based simultaneous 
and continuous estimation of hand kinematics,” Digital 

Communications and Networks, vol. 8, no. 2, pp. 162–173, Apr. 2022, 
doi: 10.1016/j.dcan.2021.08.002. 

[97] J. Ramirez, A. Rubiano, and P. Castiblanco, “Soft Driving Epicyclical 

Mechanism for Robotic Finger,” Actuators, vol. 8, no. 3, p. 58, Jul. 
2019, doi: 10.3390/act8030058. 

[98] J. Park, I. Hwang, and W. Lee, “Wearable Robotic Glove Design 

Using Surface-Mounted Actuators,” Frontiers in Bioengineering and 
Biotechnology, vol. 8, Sep. 2020, doi: 10.3389/fbioe.2020.548947. 

[99] D. Kim et al., “Eyes are faster than hands: A soft wearable robot 
learns user intention from the egocentric view,” Science Robotics, vol. 
4, no. 26, Jan. 2019, doi: 10.1126/scirobotics.aav2949. 

[100]  J. Shor et al., “Personalizing ASR for Dysarthric and Accented 

Speech with Limited Data,” Proc. Interspeech 2019, pp. 784-788, 
Sep. 2019, doi: 10.21437/interspeech.2019-1427. 

[101] A. Jalali, R. Mallipeddi, and M. Lee, “Sensitive deep convolutional 

neural network for face recognition at large standoffs with small 

dataset,” Expert Systems with Applications, vol. 87, pp. 304-315, 
2017, doi: 10.1016/j.eswa.2017.06.025. 

[102] E. Li, L. Wang, Q. Xie, R. Gao, Z. Su, and Y. Li, “A novel deep 

learning method for maize disease identification based on small 
sample-size and complex background datasets,” Ecological 

Informatics, vol. 75, p. 102011, Jul. 2023, doi: 
10.1016/j.ecoinf.2023.102. 

 

 

 

 


