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Abstract—It is known, that unlike the Kalman filter (KF) 

finite impulse response (FIR) filters allow to avoid the 

divergence and unsatisfactory object tracking connected with 

temporary perturbations and abrupt object changes. The main 

challenge is to provide the appropriate choice of a sliding 

window size for them. In this paper, the new finite impulse 

response (FIR) filtering algorithm with the adaptive horizon 

size selection is proposed. The algorithm uses the receding 

horizon optimal (RHOFIR) filter which receives estimates, an 

abrupt change detector and an adaptive recurrent mechanism 

for choosing the window size. Monotonicity and asymptotic 

properties of the estimation error covariance matrix and the 

RHOFIR filter gain are established. These results form a solid 

foundation for justifying the principal possibility to tune the 

filter gain using them and the developed adaptation 

mechanism. The proposed algorithm (the ARHOFIR filter) 

allows reducing the impact of disturbances by varying 

adaptively the sliding window size. The possibility of this 

follows from the fact that the window size affects the filter 

characteristics in different ways. The ARHOFIR filter chooses 

a large horizon size in the absence of abrupt disturbances and 

a little during the time intervals of their action. Due to this, it 

has better transient characteristics compared to the KF and 

RHOFIR filter at intervals where there is temporary 

uncertainty and may provide the same accuracy of estimates as 

the KF in their absence. By simulation, it is shown that the 

ARHOFIR filter is more robust than the KF and RHOFIR 

filter for the temporarily uncertain systems. 

Keywords—FIR filtering; Temporary uncertainty; Horizon 

size; Change detectors 

I. INTRODUCTION 

The Kalman filter (KF) filter and its numerous 

modifications widely used in various applications including 

in particular control, robotics, target tracking, signal 

processing [1–11] and so on are algorithms allowing 

receiving estimates for state-space models corrupted by 

noises. In the classical setting, the system dynamics and 

noise covariance matrices are assumed known and 

determine the achievable estimates accuracy [12]. However, 

these model assumptions are not realistic in many cases and 

their violation may degrade the estimate of the state leading 

to divergence and unsatisfactory tracking of the KF. One of 

the well-known approaches to improve the robustness of the 

KF is to estimate the uncertain parameters of the noise 

models during filtering and tune the filter gain using them 

and an adaptation mechanism. The methods implementing 

this approach are known as adaptive Kalman filters. These 

methods can be divided into two types based on the 

adaptation of the gain of the filter and using several models 

of the system [12]. In the filter with gain adaptation, only 

one system model is used jointly with relations for the 

estimation of the state and unknown noise parameters. The 

second approach uses several system models for different 

modes of its work. In the literature, many methods have 

been proposed that implement each of them. The Bayesian 

inference approach [13-18] is used for obtaining the 

posterior probability density function of the unknown 

covariance matrix parameters from their prior and the 

observed measurements by the Bayes' formula recursively. 

In general, the Bayesian approach is computationally 

intractable due to the numerical integration over a large 

parameter space. In maximum likelihood estimation [19-

24], the noise statistics are obtained by maximizing the 

probability density function of the measurement residuals 

generated by the filter, which is the likelihood of the noise 

parameters. Adaptive filters based on maximum likelihood 

methods require nonlinear optimization and are 

computationally intractable. In addition to computational 

complexity, this method suffers from convergence to a local 

optimum. In addition, both methods use a parametrized 

noise covariance matrix. The basic idea of the covariance-

matching techniques [25-29] is that the sample covariance 

of the innovations should be consistent with its theoretical 

value. The unknown noise covariance is estimated from the 

innovation sequences accumulated over the entire historical 

data (or in a moving time window). The disadvantage of this 

method is the lack of proof of its convergence. 

This paper deals with finite impulse response (FIR) 

filters for state estimation of linear discrete systems which 

are extensively employed in a variety of applications see for 

instance [30–40]. Unlike the KF, they allow to avoid the 

divergence and unsatisfactory object tracking connected 

with temporary perturbations, errors in the noise statistics 

setting, abrupt object changes [1, 14, 15]. This is reached 

using observations and inputs specified only at a finite 

discrete interval (a sliding window) which is called the 

recent receding horizon and where the system model is 

adequate to the real system. Thus, the size of the sliding 

window is a parameter the choice of which can impact the 

estimation performance of the filter. The main challenge is 
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to provide the appropriate choice of a sliding window size 

that ensures estimates accuracy improving of the system 

state on it. To address this challenge, this paper proposes a 

new FIR filtering algorithm with an adaptive horizon size 

selection mechanism which unlike [13-24] does not require 

parametrization of the noise covariance matrix. 

Various methods have been proposed to construct FIR 

algorithms. The optimal algorithms for a given horizon size 

are considered in [41-44] and the references therein]. The 

main idea of the proposed approaches in these works is that 

initial conditions at starting points of the sliding windows 

are assumed to be diffuse random variables or unknown 

arbitrary values. It is shown that the obtained estimates are 

unbiased. Computer modeling shows that such filters can be 

more robust than the KF filter if the size of the sliding 

window is properly fitted. However, the proposed recursive 

filters have two disadvantages. First, a butch form of the 

algorithm is needed for the initialization of the recursive 

filter during the learning cycle which may be inconvenient 

or even problematic in some cases (e.g., in case of gaps in 

the observations, estimation parameters of nonlinear 

systems and non-stationary processes). Second, these filters 

do not use priory known information for initialization at 

starting points of sliding windows. Various generalizations 

of this approach are proposed in [45-55]. In [56], it is 

proposed to jointly assess the state of the system and noise 

statistics using the optimal FIR with a fixed given size of 

sliding window and sequential noise statistics estimation 

method. Another approach ensuring optimality and 

unbiasedness in a finite number of steps is described in [32, 

57, 58]. The receding horizon optimal unbiased FIR filter 

suggested by the authors uses known statistical information 

for parts of state vector components at starting points of 

sliding windows and a learning cycle is not required for its 

the initialization. Within the framework of covariance 

analysis this allows to take into account priory statistical 

information about random biases, trends and specified 

movements of the system. 

There are general requirements for the horizon size. First 

of all, the model must be adequate to the object within the 

sliding windows. Second, if the horizon size is too small 

then there is not enough available information to obtain an 

acceptable accuracy estimate. Vice versa, if it is too large 

then it may not be acceptable from the point of view of the 

practical implementation and the filter transient 

characteristics. Approaches for its selection are based on 

Monte Carlo simulation, analytical relations for sufficiently 

simple models and real measurements. Several adaptive 

algorithms have been proposed in the literature to select the 

horizon size of the FIR filters for linear state-space models. 

In [59], the butch FIR filtering is proposed based on two 

user-defined windows of different sizes and the chi-square 

test statistic for the states comparison of the nominal and 

temporarily uncertain systems. The butch form for the FIR 

filter is developed from the conditional density of the 

current state given finite past measurements. It is verified by 

the simulation that it may achieve a significant performance 

improvement compared with an ordinary FIR filter which 

uses a fixed horizon size. In [60], the horizon selection 

strategy and the design of the adaptive-horizon iterative 

unbiased FIR filter are developed. It exploits the fact that 

the current iteration with large horizon length contains 

information of the previous iterations with small horizon 

lengths 

The research contributions of the present paper are as 

follows:  

1) A new FIR filtering algorithm with the adaptive 

horizon size selection based on the joint use of the receding 

horizon optimal FIR (RHOFIR) filter [57, 58] and abrupt 

change detectors is developed. To ensure the work of the 

filter, parametrization of the covariance matrix is not 

required, as well as setting the sizes of sliding windows and 

their number. We call such filtering algorithm further the 

adaptive RHOFIR (ARHOFIR) filter. 

2) The ARHOFIR filter chooses a large horizon size in 

the absence of abrupt disturbances and a little during the 

time intervals of their action. Due to this, it has better 

transient characteristics compared to the KF and RHOFIR 

filter at intervals where there is temporary uncertainty and 

may provide the same accuracy of estimates as the KF in 

their absence. 

3) Monotonicity and asymptotic properties of the 

estimation error covariance matrix (EECM) and the 

RHOFIR filter gain are established. These results form a 

solid foundation for justifying the principal possibility to 

tune the filter gain using them and an adaptation 

mechanism. 

Applications of the proposed filtering algorithm to the 

monitoring of the a F404 gas turbine aircraft engine model 

and to the elevation angle monitoring of the underwater 

moving object obtained with the help of video surveillance 

are considered. Computer simulation demonstrates that it 

has better transient performance compared to the KF and 

RHOFIR filter at intervals where there is temporary 

uncertainty and provides the close estimation accuracy to 

estimates of the KF in their absence. 

      The work is organized as follows. The considered 

problem is formulated in Section II. Properties of the 

RHOFIR filter are established in Section III. In Section IV, 

the FIR filtering algorithm with the adaptive horizon size 

selection is derived. Computer simulation is given in 

Section V. The conclusions are presented in Section VI.    

II. PROBLEM STATEMENT  

 Consider a linear discrete time-invariant system model 

 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑤𝑡 , (1) 

 𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝜉𝑡 , (2) 

where 𝑥𝑡 ∈ 𝑅𝑛 is the state vector, 𝑦𝑡 ∈ 𝑅𝑚 is the measured 

vector,  𝑤𝑡  and  𝜉𝑡 are uncorrelated random processes with 

zero means and known covariance matrices 𝐸(𝑤𝑡𝑤𝑡
𝑇) = 𝑄, 

𝐸(𝜉𝑡𝜉𝑡
𝑇) = 𝑉, and 𝐴, 𝐵, 𝐶, 𝐷 are known matrices of 

appropriate dimensions, 𝑡 = 1, 2, . ... 

Introduce the discrete intervals [𝑡 − 𝑁, 𝑡], 𝑡 ∈ 𝑇𝑁 =
{𝑁, 𝑁 + 1, . . . }, where 𝑁 is the horizon size. Assume that the 

following conditions are valid. 
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  A1: A priory information on components of 𝑥𝑡−𝑁 𝑡 ∈ 𝑇𝑁 is 

absent and they are either unknown constants or random 

variables the statistical characteristics of which are 

unknown. 

A2: If 𝑥𝑡−𝑁 are random variables then they are 

uncorrelated with 𝑤𝑡  and 𝜉𝑡 for𝑡 = 1,2, . ...   

Under the assumptions A1, A2, the unbiased linear state 

estimate of (1) for 𝑖 ∈ 𝑇* = [𝑡 − 𝑁 + 𝑁*, 𝑡], 𝑡 ∈ 𝑇𝑁 

minimizing the criterion 𝐸[(𝑥𝑖 − 𝑥̂𝑖)
𝑇(𝑥𝑖 − 𝑥̂𝑖)] (the 

RHOFIR filter) is determined by the following relations [57, 

58] 

 𝑥̂𝑖+1 = 𝐴𝑥̂𝑖 + 𝐾𝑖(𝑦𝑖 − 𝐶𝑥̂𝑖),   𝑥̂𝑡−𝑁 = 0, (3) 

 𝐾𝑖 = 𝐾𝑖
𝑠 + 𝐾𝑖

𝑡𝑟 , (4) 

 𝐾𝑖
𝑠 = 𝐴𝑖𝑆𝑖𝐶𝑖

𝑇𝑁𝑖
−1, (5) 

 𝐾𝑖
𝑡𝑟 = 𝐴1𝑖𝑅𝑖𝑀𝑖+1

+ 𝑅𝑖
𝑇𝐶𝑇 𝑁𝑖

−1, (6) 

 
𝑆𝑖+1 = 𝐴𝑆𝑖𝐴𝑇 − 𝐴𝑆𝑖𝐶𝑇 𝑁𝑖

−1𝐶𝑆𝑖𝐴𝑇  

+𝑄̃,   𝑆𝑡−𝑁 = 0, 
(7) 

 𝑅𝑖+1 = 𝐴1𝑖𝑅𝑖 ,   𝑅𝑡−𝑁 = 𝐼𝑛 , (8) 

 𝑀𝑖+1 = 𝑀𝑖 + 𝑅𝑖
𝑇𝐶𝑇 𝑁𝑖

−1𝐶𝑅𝑖 , 𝑀𝑡−𝑁 = 0, (9) 

 𝑁𝑖 = 𝐶𝑆𝑖𝐶𝑇 + 𝑉̃, (10) 

 𝐴𝑖 = 𝐴 − 𝐴𝑆𝑖𝐶
𝑇 𝑁𝑖

−1𝐶  (11) 

 
𝑁* = 𝑚𝑖𝑛𝑖{ 𝑖: 𝑀𝑖 > 0, 𝑖 = 𝑡 − 𝑁, 𝑡 − 𝑁 + 1, . . . }, 

𝑖 ∈ [𝑡 − 𝑁, 𝑡], 𝑡 ∈ 𝑇𝑁 
(12) 

where 𝑄̃ = 𝐵𝑄𝐵𝑇 , 𝑉̃ = 𝐷𝑉𝐷𝑇 , 𝐴+ is the Moore-Penrose 

inverse of 𝐴, 𝐼𝑛 is the identity matrix of the size 𝑛. 

The EECM of the RHOFIR filter for 𝑖 ∈ 𝑇* = [𝑡 − 𝑁 +
𝑁*, 𝑡], 𝑡 ∈ 𝑇𝑁 is given by the expression 

 𝑃𝑖 = 𝑆𝑖 + 𝐻𝑖 , (13) 

Where 𝐻𝑖 = 𝑅𝑖𝑀𝑖
+𝑅𝑖

𝑇. In (4), (13), (7) 𝐾𝑖
𝑡𝑟 , 𝐻𝑖  are the 

transient components of the filter gain and the EECM 

reflecting the absence of a priori information of 𝑥𝑡−𝑁 , 𝑡 ∈
𝑇𝑁, 𝑆𝑖 is the standard matrix Riccati equation with zero 

initial condition, respectively. 

 The problem is formulated as follows. The model (1)-

(2) is considered as a nominal one for the analyzed object 

and the RHOFIR filter described by expressions (3)-(13) is 

used to estimate its state. It is required to detect changes in 

the properties of the object based on observations of the 

filter residuals 𝜐𝑖 = 𝑦𝑖 − 𝐶𝑥̂𝑖 and propose a FIR algorithm 

for selecting the sliding window size 𝑁 at each moment of 

time to improve its tracking ability. 

 

III. MONOTONICITY PROPERTIES OF THE RHOFIR FILTER 

This section is devoted to the development of properties 

of 𝑃𝑖 , 𝐻𝑖 , 𝐾𝑖
𝑡𝑟. Using asymptotic analysis, it is shown that 

under certain conditions they are not increasing functions 

converging to a steady state with increasing the horizon 

size.  

It follows from (3-11), (13) that 𝑃𝑖 , 𝐻𝑖 , 𝐾𝑖
𝑡𝑟 do not 

depend on 𝑡 and it is sufficient to study their behavior within 

one sliding window 𝑖 ∈ [0, 𝑁] for 𝑡 = 𝑁.  

Theorem 1. Let the following conditions be fulfilled: 

(a)  the pair of matrices [𝐴, 𝑄̃1/2] is detectable,  

(b)  the pair of matrices [𝐴, 𝐶𝑇] is stabilizable, 

(c)  𝑉̃ > 0, 

(d)  |𝜆𝑖(𝐴)| ≤ 1, where 𝜆𝑖 (A), 𝑖 = 1,2, . . . , 𝑛 are eigenvalues 

of 𝐴.
 

Then 1. There are one-parameter families of matrix functions 

𝑃𝑖
𝜇

, 𝐻𝑖
𝜇

 and a value 𝜇* > 0 such that for any 𝜀 > 0, finite 

interval 𝑇* = [𝑁*, 𝑁] 

 ||𝑃𝑖 − 𝑃𝑖
𝜇

|| ≤ 𝜀, ||𝐻𝑖 − 𝐻𝑖
𝜇

|| ≤ 𝜀 (14) 

 𝑃𝑖+1
𝜇

≤ 𝑃𝑖
𝜇

, 𝐻𝑖+1
𝜇

≤ 𝐻𝑖
𝜇

 (15) 

for all 𝑖 ∈ 𝑇* and 𝜇 ≥ 𝜇*. 

2. With an unlimited increase in the length of the horizon 

size, there are limits 

 𝑃𝑖
𝜇

→ 𝑃̄, 𝐻𝑖
𝜇

→ 0 as 𝑖 → ∞, (16) 

where  

 𝑃̄ = 𝐴𝑃̄𝐴𝑇 − 𝐴𝑃̄𝐶𝑇(𝐶𝑃̄𝐶𝑇 + 𝑉̃)−1𝑃̄𝐴𝑇 + 𝑄̃ .   (17) 

for all 𝜇 ≥ 𝜇*. 

Proof. 1. Let’s define 𝑃𝑖
𝜇

. Assume that the state of (1) at 

the starting point of the sliding window 𝑥0 is the diffuse 

random variable, i.e., 𝐸(𝑥0) = 0, 𝐸(𝑥0𝑥0
𝑇) = 𝜇𝐼𝑛 , where 

𝜇 > 0 is a large parameter. Then the EECM of the state 

estimation (1) with help of the KF has the form 

 𝑃𝑖+1
𝜇

= 𝐴𝑃𝑖
𝜇

𝐴𝑇 − 𝐴𝑃𝑖
𝜇

𝐶𝑇𝑁𝑖
−1𝐶𝑃𝑖

𝜇
𝐴𝑇 + 𝑄̃, (18) 

where 𝑃0
𝜇

 = 𝜇𝐼𝑛 , 𝑁𝑖 = 𝐶𝑃𝑖
𝜇

𝐶𝑇 + 𝑉̃. The approximating 

property (17) of 𝑃𝑖
𝜇

 follows from the uniform asymptotic 

representation on 𝑇∗ [57, 58]  

 
𝑃𝑖

𝜇
= 𝑅𝑖(𝐼𝑛 − 𝑀𝑖𝑀𝑖

+)𝑅𝑖
𝑇 + 𝑆𝑖 + 𝑅𝑖𝑀𝑖

+𝑅𝑖
𝑇 +

𝑂(1/𝜇), as 𝜇 → ∞, 
(19) 

due to the disappearance of the first term in this expression 

for 𝑖 ∈ 𝑇∗ and (13). 

Let’s now define 𝐻𝑖
𝜇

 setting 

 𝐻𝑖
𝜇

= 𝑃𝑖
𝜇

− 𝑆𝑖 , (20) 

where 𝑃𝑖
𝜇

,  𝑆𝑖 are specified by (19) and (7), respectively. As 
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𝑃𝑖
𝑢 and 𝑆𝑖 are the solutions of the same Riccati equation then 

their difference satisfies the following homogenous equation 

[57, 58] 

 𝐻𝑖+1
𝜇

= 𝐴𝑖𝐻𝑖
𝜇

𝐴𝑖
𝑇 − 𝐴𝑖𝐻𝑖

𝜇
𝐶𝑇𝑁1𝑖

−1𝐶𝐻𝑖
𝜇

𝐴𝑖
𝑇 , (21) 

where  𝐻0
𝜇

 = 𝜇𝐼𝑛, 𝐴𝑖 is defined by (11), 𝑁1𝑖 = 𝐶𝑆𝑖𝐶𝑇 +

𝐶𝐻𝑖
𝜇

𝐶𝑇 + 𝑉̃. The approximating property (14) of 𝐻𝑖
𝜇

 

follows from the uniform asymptotic representation on 𝑇* 

[57, 58] 

 
𝐻𝑖

𝜇
= 𝑅𝑖(𝐼𝑛 − 𝑀𝑖𝑀𝑖

+)𝑅𝑖
𝑇 + 𝑅𝑖𝑀𝑖

+𝑅𝑖
𝑇 + 𝑂(1/𝜇), 

as 𝜇 → ∞. 
(22) 

Consider the first inequality in (15). It is sufficient to 

show that it is true for some value 𝑖 = 𝑘. Let 𝑘 = 1. We 

show that 𝑃1
𝜇

≤ 𝑃0
𝜇

= 𝜇𝐼𝑛 for a large 𝜇. It follows from (19) 

 𝑃1
𝜇

= 𝜇𝐴𝐴𝑇 − 𝜇𝐴𝑃𝐶𝑇(𝐶𝐶𝑇 + 𝑉̃/𝜇)−1𝐶𝐴𝑇 + 𝑄̃. (23) 

As for any 𝑚 × 𝑛 matrix 𝐶 and nonsingular 𝑚 × 𝑛 matrix 

𝑉̃ [58, Lemmas 2.1, 2.2] 

 
Ω = (𝐶𝐶𝑇 + 𝑉̃/𝜇)−1 = 𝑉̃−1(𝐼𝑛 − 𝐶𝐶𝑇(𝐶𝐶𝑇)+)𝜇 

+(𝐶𝐶𝑇)+ + 𝑂(1/𝜇) as 𝜇 → ∞, 
(24) 

 (𝐼𝑛 − 𝐶𝐶𝑇(𝐶𝐶𝑇)+)С = 0 (25) 

Then 

 𝐶𝑇Ω𝐶 = 𝐶𝑇 (𝐶𝐶𝑇)+𝐶 + 𝑂(1/𝜇) as 𝜇 → ∞. (26) 

Since 𝐶𝑇(𝐶𝐶𝑇)+ = 𝐶+ then substitution of this expression in 

(23) gives 

 
𝑃1

𝜇
= 𝜇𝐴𝐴𝑇 − 𝜇𝐴𝐶𝑇(𝐶𝐶𝑇)+𝐶𝐴𝑇 + 𝑂(1)  

= 𝜇𝐴Σ𝐴𝑇 + 𝑂(1), as 𝜇 → ∞, 
(27) 

Where Σ = 𝐼𝑛 − 𝐶+𝐶. Therefore, it is necessary to show 

that 

 𝐴Σ𝐴𝑇 ≤ 𝐼𝑛 , (28) 

Taking into account that Σ has only zeros and ones as 

eigenvalues and the eigenvalues of 𝐴𝐴𝑇 are coincide with 

𝜆𝑖
2(𝐴), 𝑖 = 1,2, . . . , 𝑛,  we successively find for any 𝑧 ≠ 0 

using the theorem condition (d) 

 𝑧 𝐴𝑇 Σ𝐴𝑇𝑧 ≤  𝑧 𝐴𝑇 𝐴𝑇𝑧 ≤ 𝑧 𝑧𝑇 . (28) 

It implies the first inequality in (18).  

    Consider the second inequality in (15). We find from 

(19), (20) 

 
(𝑃𝑖

𝜇
− 𝑃𝑖+1

𝜇
) − (𝑆𝑖 − 𝑆𝑖+1) = 

𝐻𝑖
𝜇

− 𝐻𝑖+1
𝜇

+ 𝑂(1/𝜇) as 𝜇 → ∞ 
(29) 

for 𝑖 ∈ 𝑇*. Since 𝑆𝑖 is the solution of the Riccati equation 

with zero initial condition then 𝑆𝑖+1 ≥ 𝑆𝑖 for any 𝑖 = 1,2, . ... 
Besides, we have also 𝑃𝑖+1

𝜇
≤ 𝑃𝑖

𝜇
 from (15). This implies 

from (29) that for a large 𝜇 (15) will be valid. 

2. As (7), (18) are the standard Riccati equations then the 

existence of the limits in (16) for any 𝜇 > 0 follows from the 

conditions theorem (a), (b), (c) and (20). 

  Comment 1.1. Let 𝑄 > 𝑄̄, 𝑉 > 𝑉̄. Then  

 
𝑃𝑖

𝜇(𝑄, 𝑉) ≥ 𝑃𝑖
𝜇(𝑄̄, 𝑉̄), 

𝐻𝑖
𝜇

(𝑄, 𝑉) ≥ 𝐻𝑖
𝜇

(𝑄̄, 𝑉̄). 
(30) 

The first inequality follows from known property of the 

Riccati equation. The second one follows from (20), (30) 

and 

𝑃𝑖
𝜇(𝑄̄, 𝑉̄) − 𝑃𝑖

𝜇(𝑄̄, 𝑉̄) ≥ 𝑆𝑖(𝑄, 𝑉) − 𝑆𝑖(𝑄̄, 𝑉̄), 

(𝑃𝑖
𝜇(𝑄, 𝑉) − 𝑃𝑖

𝜇(𝑄̄, 𝑉̄)) − (𝑆𝑖(𝑄, 𝑉) − 𝑆𝑖(𝑄̄, 𝑉̄)), 

= 𝐻𝑖
𝜇(𝑄, 𝑉) − 𝐻𝑖

𝜇(𝑄̄, 𝑉̄). 

(23) 

Comment 1.2. The conditions of the theorem, with the 

exception of the last one, are well known and provide the 

existence of the steady – state of the KF. The fulfillment of 

condition (d) and the restriction on the choice of 𝜇 

guarantees the monotonic behavior of the solutions of the 

matrix equations under consideration (18), (21). 

Theorem 2. Let conditions of Theorem 1 are fulfilled. 

Then: 1. There is such 𝜇* > 0 that 

 𝛼𝑖
𝜇

≥ 𝛼𝑖+1
𝜇

,
 
𝑖 ∈ 𝑇* = [𝑁*, 𝑁], 𝜇 ≥ 𝜇*, (31) 

where 

 
𝛼𝑖

𝜇
= 𝑡𝑟(𝐾𝑖

𝜇
(𝐾𝑖

𝜇
)𝑇), 𝐾𝑖

𝜇
= 𝐴𝑃𝑖

𝜇
𝐶𝑇(𝑁𝑖

𝜇
)−1,  

𝑁𝑖
𝜇

= 𝐶𝑃𝑖
𝜇

𝐶𝑇 + 𝑉̃, 
(32) 

Where 𝑡𝑟(𝐹) is the trace of 𝐹. 

2. If additionally 𝑑𝑒𝑡 𝐴 ≠ 0 and 𝑑𝑒𝑡 𝑉̃ ≠ 0 then 

  𝛽𝑖
𝜇

≥ 𝛽𝑖+1
𝜇

,
 
𝑖 ∈ 𝑇* = [𝑁*, 𝑁], 𝜇 ≥ 𝜇*,  (33) 

where 

 
 𝛽𝑖

𝜇
= 𝑡𝑟(𝐾𝑖

𝑡𝑟,𝜇
(𝐾𝑖

𝑡𝑟,𝜇
)𝑇), 

𝐾𝑖
𝑡𝑟,𝜇

= 𝐴𝐻𝑖
𝜇

𝐶𝑇(𝑁𝑖
𝜇

)−1, 
(34) 

3.There is a value 𝜇* > 0 such that for any 𝜀 > 0, finite 

interval 𝑇* = [𝑁*, 𝑁] and 𝑖 ∈ 𝑇* 

 ||𝐾𝑖 − 𝐾𝑖
𝜇

|| ≤ 𝜀, ||𝐾𝑖
𝑡𝑟 − 𝐾𝑖

𝑡𝑟,𝜇
|| ≤ 𝜀.  (35) 

Proof. 1. Using the identity 

𝑃𝐻𝑇(𝐻𝑃𝐻𝑇 + 𝑅)−1 = (𝑃−1 + 𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1  

for 𝑃 = 𝑃𝑖
𝜇

, 𝐻 = 𝐶, 𝑅 = 𝑉̃ gives 

𝑃𝑖
𝜇

𝐶𝑇(𝑁𝑖
𝜇

)−1 = ((𝑃𝑖
𝜇

)−1 + 𝐶𝑇𝑉̃−1𝐶)−1𝐶𝑇𝑉̃−1. (36) 

Since 𝑃𝑖+1
𝜇

≤ 𝑃𝑖
𝜇

, then 
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((𝑃𝑖
𝜇

)−1 + 𝐶𝑇𝑉̃−1𝐶)−1 ≥ ((𝑃𝑖+1
𝜇

)−1 + 𝐶𝑇𝑉̃−1𝐶)−1 (37) 

that implies (31). 

2. Let 's present 𝐾𝑖
𝑡𝑟,𝜇

 in the following equivalent form [58, 

Lemma 5.2, p.145] 

 𝐾𝑖
𝑡𝑟,𝜇

= 𝐴𝑖𝐻𝑖
𝜇

𝐶𝑇𝑁𝑖
−1, (38) 

Where 𝐴𝑖 = 𝐴 − 𝐴𝑆𝑖𝐶
𝑇 𝑁𝑖

−1𝐶 , 𝑁𝑖 = 𝐶𝑆𝑖𝐶𝑇 + 𝑉̃. Using the 

identity 

 𝐼 − 𝐻(𝑅 + 𝑃𝐻)−1𝑃 = (𝐼 + 𝐻𝑅−1𝑃)−1 (39) 

for 𝐻 = 𝑆𝑖𝐶
𝑇 , 𝑅 = 𝑉̃, 𝑃 = 𝐶 and taking into account that 

𝑑𝑒𝑡 𝐴 ≠ 0, we establish that  

 𝐼𝑛 − 𝑆𝑖𝐶𝑇𝑁𝑖
−1𝐶 = (𝐼𝑛 + 𝑆𝑖𝐶𝑇𝑉̃−1𝐶)−1. (40) 

And 𝐴𝑖 is nonsingular if 𝑑𝑒𝑡 𝐴 ≠ 0. We have  

𝐾𝑖
𝑡𝑟,𝜇

= 𝐴𝑖𝐻𝑖
𝜇

𝐶𝑇𝑁𝑖
−1

= 𝑅𝑖+1(𝑀𝑖+1
𝜇

)−1𝑅𝑖+1
𝑇 𝐴𝑖

−𝑇𝐶𝑇𝑁𝑖
−1, (41) 

Where 

 𝑀𝑖+1
𝜇

= 𝑀𝑖
𝜇

+ 𝑅𝑖
𝑇𝐶𝑇 𝑁𝑖

−1𝐶𝑅𝑖 , 𝑀0 = 𝜇𝐼𝑛 . (42) 

We find from (40) 

𝐴𝑖
−𝑇𝐶𝑇𝑁𝑖

−1 = 𝐴−𝑇(𝐼𝑛 + 𝐶𝑇𝑉̃−1𝐶𝑆𝑖)𝐶𝑇𝑁𝑖
−1

= 𝐴−𝑇𝐶𝑇𝑉̃−1. (43) 

Substituting this expression in (41) gives 

𝐾𝑖
𝑡𝑟,𝜇

= 𝑅𝑖+1(𝑀𝑖+1
𝜇

)−1𝑅𝑖+1
𝑇 𝐴−𝑇𝐶𝑇𝑉̃−1

= 𝐻𝑖+1
𝜇

𝐴−𝑇𝐶𝑇𝑉̃−1. (44) 

Since 𝐻𝑖+1
𝜇

≤ 𝐻𝑖
𝜇

 then it follows from this (33).  

3. The assertion follows from (32), (38), (14). 

Comment 2.1. It follows from (16) that 

𝑙𝑖𝑚𝑖→∞ 𝐾𝑖
𝜇

= 𝑃̄𝐶𝑇(𝐶𝑃̄𝐶𝑇 + 𝑉̃)−1, 

𝑙𝑖𝑚𝑖→∞ 𝐾𝑖
𝑡𝑟,𝜇

= 0. 
(45) 

Comment 2.2. The requirement 𝑑𝑒𝑡 𝐴 ≠ 0 does not seem 

too strict since as an example all linear discrete systems 

obtained from continuous systems satisfy this condition. 

Theorem 3. Let 𝑑𝑒𝑡 𝐴 ≠ 0 and 𝑑𝑒𝑡 𝑉̃ ≠ 0. Then  

 𝐻𝑖 ≤ 𝐻̄𝑖 = 𝐴𝑖𝑀̄𝑖
−1(𝐴𝑖)𝑇,  𝑖 ≥ 𝑁*, (46) 

where 

 𝑀̄𝑖+1 = 𝑀̄𝑖 + (𝐴𝑖)𝑇𝐶𝑇𝑉̃−1𝐶𝐴𝑖 ,   𝑀̄0 = 0. (47) 

Proof. We find from (8) 

 

                     

 
𝑅𝑖 = 𝐴𝑖−1𝐴𝑖−2. . . 𝐴, 𝑖 = 2,3, . . ., 

𝑅0 = 𝐼𝑛 , 𝑅1 = 𝐴 
(48) 

and since 𝑑𝑒𝑡 𝐴𝑖 ≠ 0 then 

 
𝐻𝑖 = 𝑅𝑖𝑀𝑖

+𝑅𝑖
𝑇 = (∑ 𝑅𝑖

−𝑇

𝑖−1

𝑗=0

𝑅𝑗
𝑇𝐶𝑇𝑁𝑗

−1𝐶𝑅𝑗𝑅𝑖
−1)−1. 

= (∑ 𝐽𝑗
𝑖−1
𝑗=0 )−1, 𝑖 ≥ 𝑁*. 

 

It follows from (48) and (40) 

 
𝑅1

−1 = 𝐴−1,  𝑅𝑖
−1 = 𝐴−1𝐴1

−1. . . 𝐴𝑖−1
−1 ,  𝑖 = 2,3, . . ., 

𝑅𝑗𝑅𝑖
−1 = 𝐴𝑗

−1𝐴𝑗+1
−1 . . 𝐴𝑖−1

−1  
(49) 

= (𝐼𝑛 + 𝑆𝑗𝐶𝑇𝑉̃−1𝐶)𝐴−1(𝐼𝑛 + 𝑆𝑗+1𝐶𝑇𝑉̃−1𝐶)𝐴−1−1
 

. . . . (𝐼𝑛 + 𝑆𝑖−1𝐶𝑇𝑉̃−1𝐶)𝐴, 𝑖 = 2,3, . . . . 
(50) 

Taking in account that 𝑆0 = 0 and 

𝑅𝑖
−𝑇𝑅𝑗

𝑇𝐶𝑇𝑁𝑗
−1𝐶𝑅𝑗𝑅𝑖

−1 ≥ (𝐴𝑗−𝑖)𝑇(𝐼𝑛 + 𝐶𝑇𝑉̃−1𝐶𝑆𝑗)𝑗−𝑖 

*𝐶𝑇𝑁𝑗
−1𝐶(𝐼𝑛 + 𝑆𝑗𝐶𝑇𝑉̃−1𝐶)𝐴  𝑖 = 2,3, . . . , 

(𝐼𝑛 + 𝐶𝑇𝑉̃−1𝐶𝑆𝑗)𝐶𝑇𝑁𝑗
−1 

= 𝐶𝑇(𝐼𝑛 + 𝑉̃−1𝐶𝑆𝑗𝐶𝑇)𝑁𝑗
−1 

= 𝐶𝑇𝑉̃−1, 

 

we successively find 

𝐽𝑗 = ∑ 𝑅𝑖
−𝑇

𝑖−1

𝑗=0

𝑅𝑗
𝑇𝐶𝑇𝑁𝑗

−1𝐶𝑅𝑗𝑅𝑖
−1 = 

= 𝐶𝑇𝑉̃−1𝐶 + ∑ 𝑅𝑖
−𝑇

𝑖−1

𝑗=1

𝑅𝑗
𝑇𝐶𝑇𝑁𝑗

−1𝐶𝑅𝑗𝑅𝑖
−1 

≥ 𝐶𝑇𝑉̃−1𝐶 + ∑(𝐴𝑗−𝑖)𝑇(𝐼𝑛 + 𝐶𝑇𝑉̃−1𝐶𝑆𝑗)𝑗−𝑖

𝑖−1

𝑗=1

 

*𝐶𝑇𝑁𝑗
−1𝐶(𝐼𝑛 + 𝑆𝑗𝐶𝑇𝑉̃−1𝐶)𝐴 

= ∑(𝐴𝑗−𝑖)𝑇𝐶𝑇𝑉̃−1𝐶𝐴𝑗−𝑖 .

𝑖−1

𝑗=0

 

 

Thus 

 

𝐻𝑖 ≤ (∑(𝐴𝑇)𝑗−𝑖𝐶𝑇 . 𝑉̃−1𝐶𝐴𝑗−𝑖

𝑖−1

𝑗=0

)−1 

= 𝐴𝑖(∑(𝐴𝑇)𝑗𝐶𝑇 . 𝑉̃−1𝐶𝐴𝑗

𝑖−1

𝑗=0

)−1(𝐴𝑖)𝑇 . 

 

Theorem 4. Let the following conditions are fulfilled: 

(a)  𝑉̃ > 0, 
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(b)  𝑑𝑒𝑡( 𝐴) ≠ 0, 

(c)  |𝜆𝑠(𝐴)| ≤ 1, where 𝜆𝑠(𝐴), 𝑠 = 1,2, . . . , 𝑛 are 

eigenvalues of 𝐴, 

(d)  the pair of matrices [𝐴, 𝐶] is observable, 

(e)  for any 𝑛 dimensional vector 𝑧 ≠ 0 

 𝐽𝑖 = ∑ 𝑧𝑇(𝐴−𝑗−1)𝑇𝐶𝑇𝐶𝐴−𝑗−1𝑧 → ∞

𝑖−1

𝑗=0

 (51) 

as 𝑖 → ∞ then 𝐻̄𝑖 → 0 as 𝑖 → ∞.  

Proof. We find from (46) 

 
𝐻̄𝑖

−1 = (𝐴−𝑖)𝑇𝑀̄𝑖𝐴
−𝑖 

= ∑ (𝐴−𝑗−1)𝑇𝐶𝑇𝑉̃−1𝐶𝐴−𝑗−1𝑖−1
𝑗=0 = 𝐽𝑖, 𝑖 ≥ 𝑁*. 

(52) 

If |𝜆𝑠(𝐴)| < 1, 𝑠 = 1,2, . . . , 𝑛 then the theorem assertion is 

obvious. Let 𝑧 be in the root subspace of eigenvalues 

𝜆𝑠
−1(𝐴) of such that |𝜆𝑠(𝐴)| = 1. If 𝜆𝑠(𝐴) correspond 

elementary divisors then 

 𝐴−1𝑧 = 𝜆𝑠
−1(𝐴)𝑧, 𝑧𝑇𝐽𝑖𝑧 = 𝑖||𝐶𝑇𝑧||2.  

Since 𝑉̃ > 0, 𝑑𝑒𝑡( 𝑀̄𝑖) ≠ 0 for 𝑖 ∈ [𝑁*, 𝑁] and the pair of 

matrices [𝐴, 𝐶] is observable then there are no eigenvectors 

𝐴 orthogonal to columns of 𝐶𝑇and 𝑧𝑇𝐽𝑖𝑧 → ∞ as 𝑖 → ∞. 

This implies 𝐻̄𝑖 → 0 as 𝑖 → ∞.  

      Let now 𝜆𝑠
−1(𝐴), |𝜆𝑠(𝐴)| = 1 correspond multiply 

divisors and 𝑧 belongs to the root subspace of eigenvalues 

𝜆𝑠
−1(𝐴) with the basis 𝑏1, . . . , 𝑏𝑘 which determines any 

Jourdan block of the dimension 𝑘 × 𝑘 

 
𝐴−1𝑏1 = 𝜆𝑠

−1(𝐴)𝑏1, 𝐴−1𝑏𝑖 = 𝜆𝑠
−1(𝐴)𝑏𝑖 − 𝑏𝑖−1, 𝑖 =

1,2, . . . , 𝑘. 
 

It is known that for any basis vector 𝑏𝑘 

𝐴−𝑖−1𝑏𝑘 = 𝛼1𝑏𝑘 + 𝛼2𝑏𝑘−1+. . . +𝛼𝑘𝑏1 

= (𝑖 + 1)𝑘/𝑘! [(𝜆𝑠
−1(𝐴))𝑖−𝑘+1𝑏1 + 𝑜(1/𝑖)] as 

𝑖 → ∞, 

(53) 

Where 

 

𝛼1 = (𝜆𝑠
−1(𝐴))𝑖+1, 𝛼2 = (𝜆𝑠

−1(𝐴))𝑖𝑖, 

𝛼𝑘 = (
𝑖 + 1

𝑠
) (𝜆𝑠

−1(𝐴))𝑖−𝑘+1. 
(54) 

Since 𝛼𝑖 > 0, 𝑏1 is eigenvalue of 𝐴−1 and  

 ∑ (𝑗 + 1)2𝑘𝑏1
𝑇𝐶𝑇𝑉̃−1𝐶𝑏1

𝑖−1
𝑗=0 → ∞ as 𝑖 → ∞  

then 𝐻̄𝑖 → 0 as𝑖 → ∞. 

IV.   ADAPTIVE FIR FILTER WITH  ABRUPT CHANGE 

DETECTION  

 Our approach to development of the adaptive FIR filter 

(the ARHOFIR filter) is based on the residuals analysis of 

the RHOFIR filter and an adaptive adjustment of its filter 

gain. The principal possibility to solve this problem using 

the RHOFIR filter follows from the statement that the filter 

gain 𝐾𝑖 and the EECM are the monotonically nonincreasing 

matrix functions proved in the previous section. In order to 

capture abrupt changes, in this study, we utilize the chi-

square statistics that is widely used in different applications 

[61, 62] as a detector of such changes.  

Let's express the method of the ARHOFIR constructing 

filter step by step. Firstly, the maximum value of the 

horizon size 𝑁𝑚𝑎𝑥  is estimated off-line. Consider the EECM 

trace of the RHOFIR filter 𝑡𝑟(𝑃𝑖) for the nominal system 

(1), (2). We have shown that EECM defined by (13) can be 

approximated by the one-parameter family of matrix 

functions 𝑃𝑖
𝜇

 which are monotonically nonincreasing and 

have the finite limit 𝑃̄ for 𝑖 → ∞. Taking this into view, let 

us set acceptable values of 𝑃𝑖  in a vicinity of the steady-state 

value using the inequality 

 
maxmin )( pPPtrр i − , (55) 

Where р
𝑚𝑖𝑛

, 𝑝𝑚𝑎𝑥  are selected parameters by a user. It 

follows from this an upper bound 𝑁max for acceptable 

values of the horizon size [𝑁min, 𝑁max], where 𝑁* ≤ 𝑁min <
𝑁max. Instead of 𝑡𝑟(𝑃𝑖) any diagonal element of 𝑃𝑖  maybe 

also used. Note that if 𝑁𝑚𝑎𝑥  is chosen too small, then this 

may reduce the accuracy of the estimate. 

However, if 𝑁𝑚𝑎𝑥  is too large then then additional 

computing resources will be required. 

      Secondly, the moment of the appearance of the 

disturbance is estimated on-line. Let us introduce sliding 

windows [𝑡 + Δ𝑡 , 𝑡 + 𝑁max] of the variable length 𝑁𝑡 =
𝑁max − Δ𝑡 ≥ 𝑁min, 𝑡 = 0,1, . . ., and the normalized 

innovation squared defined on them 

)/( max
1max

t

Nt

t
ii

T
it NJ

t

−=
+

+

−   

),/()ˆ()ˆ( max
1max

t

Nt

t
iii

T
ii NxCyxCy

t

−−−=
+

+

−
 

(56) 

Where Δ𝑡 is an integer sequence, Σ𝑖 = 𝐶𝑃𝑖𝐶
𝑇 + 𝑉̃. Under 

the hypothesis that the RHOFIR filter is consistent and the 

noises 𝑤𝑡 , 𝜉𝑡 in (1), (2) are Gaussian variables 𝐽𝑡𝑚𝜈𝑡 has a 

chi-square distribution with  𝜈𝑡 = (𝑁max − ∆𝑡 + 1) degrees 

of freedom. Chi − squared test is determined as follows:  

 if 𝐽𝑡 > 𝜂𝑡 = 𝐹−1(1 − 𝛼|𝜈𝑡) (57) 

in the case when there is a disturbance on the interval [𝑡 +
Δ𝑡 , 𝑡 + 𝑁𝑚𝑎𝑥, where 𝐹(𝑥|𝜈) is Chi-square distribution with 

𝜈 degrees of freedom, 𝛼 is probability of a false alarm. Let 

us note the singal-run test as a special case of (56) seting 

𝐽𝑡+𝑁𝑚𝑎𝑥
= 𝜐𝑡+𝑁max

𝑇 Σ𝑡+𝑁max
−1 𝜐𝑡+𝑁max

 . 

    Thirdly, the horizon size 𝑁𝑡 is determined on-line. It is 

proposed the following adaptive procedure of the horizon 

size selection: 

 𝑁𝑡 = 𝑁𝑡max + ∆𝑡, 𝑡 = 0,1, . . ., (58) 
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 Δ𝑡 = Δ𝑡−1 + 𝜏𝑡 ,    Δ0 ∈ [𝑁min, 𝑁max] (59) 

where 𝜏𝑡 is is any integer sequence satisfing conditioons 

 


 −+

=
−

else, ,0

, and  if  0 minmax1 NNJ tttt
t


  (60) 

 𝜏𝑡 = {
≤ 0  if 𝐽𝑡 ≤ 𝜂𝑡  and Δ𝑡−1 + 𝜏𝑡 ≥ 𝑁𝑚𝑖𝑛

0, else.
 (61) 

The flowchart of the proposed adaptive FIR filter is shown 

in Fig. 1.   

   
The ARHOFIR Filter 

Data: 𝑦𝑡, 𝑁𝑚𝑎𝑥, 𝑁𝑚𝑖𝑛, 𝛼, Δ0, 𝑡𝑓𝑖𝑛𝑎𝑙 

Result: 𝑥𝑖 

1.  𝑁0 = 𝑁𝑚𝑎𝑥 + ∆0 

2.  for 𝑡 = 1: 𝑡𝑓𝑖𝑛𝑎𝑙 − 𝑁𝑚𝑎𝑥 do 

3.  𝑗 = 0, 𝐽 = 0, 𝑖𝑖 = 0 

4.  Δ𝑡 = Δ𝑡−1 + 𝜏𝑡 

5.  for 𝑖 = 𝑡 + Δ𝑡: 𝑡 + 𝑁𝑚𝑎𝑥 do 

6.  𝑁𝑖 = 𝐶𝑆𝑖𝐶𝑇 + 𝑉̃ 

7.  𝐴𝑖 = 𝐴 − 𝐴𝑆𝑖𝐶𝑇 𝑁𝑖
−1𝐶 

8.  𝐾𝑖
𝑠 = 𝐴𝑖𝑆𝑖𝐶𝑖

𝑇𝑁𝑖
−1                             

9.  𝐾𝑖
𝑡𝑟 = 𝐴1𝑖𝑅𝑖𝑀𝑖+1

+ 𝑅𝑖
𝑇𝐶𝑇 𝑁𝑖

−1         

10.  𝐾𝑖 = 𝐾𝑖
𝑠 + 𝐾𝑖

𝑡𝑟     

11.  𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐾𝑖(𝑦𝑖 − 𝐶𝑥𝑖)     

12.  𝑆𝑖+1 = 𝐴𝑆𝑖𝐴𝑇 − 𝐴𝑆𝑖𝐶𝑇 𝑁𝑖
−1𝐶𝑆𝑖𝐴 + 𝑄̃ 

13.  𝑅𝑖+1 = 𝐴1𝑖𝑅𝑖 

14.  𝑀𝑖+1 = 𝑀𝑖 + 𝑅𝑖
𝑇𝐶𝑇 𝑁𝑖

−1𝐶𝑅𝑖 

15.  𝑗 = 𝑗 + 1 

16.  if 𝑗 ≥ 𝑁𝑚𝑖𝑛 then 

17.  𝑃𝑖+1 = 𝑆𝑖+1 + 𝑅+1𝑀𝑖+1
+ 𝑅𝑖+1

𝑇  

18.  𝑆𝑖𝑔𝑚𝑎 = 𝐶𝑃𝑖+1𝐶𝑇 + 𝑉̃ 

19.  𝐽 = 𝐽 + (𝑦𝑖 − 𝐶𝑥𝑖)𝑇𝑆𝑖𝑔𝑚𝑎−1(𝑦𝑖 − 𝐶𝑥𝑖) 

20.  𝑖𝑖 = 𝑖𝑖 + 1 

21.  end 

22.  𝐽 = 𝐽/𝑖𝑖/2 

23.  𝜂 = 𝑐ℎ𝑖2𝑖𝑛𝑣(1 − 𝛼, 𝑖𝑖)      

24.  if  (𝐽 > 𝜂)&(Δ𝑡 < 𝑁𝑚𝑖𝑛𝑚𝑎𝑥 then 

25.  Δ𝑡 = Δ𝑡−1 + 𝜏𝑡  (note𝜏𝑡 ≥ 0) 

26.  𝑁𝑡 = 𝑁𝑚𝑎𝑥 + ∆𝑖 

27.  end for  

28.  if  (𝐽 ≤ 𝜂)&(Δ𝑡 ≥ 𝑁𝑚𝑖𝑛  then 

29.  Δ𝑡 = Δ𝑡−1 + 𝜏𝑡  (note𝜏𝑡 ≤ 0) 

30.  𝑁𝑡 = 𝑁𝑖𝑚𝑎𝑥 + ∆𝑖  

31.  end    
32.  end for 

Fig. 1. The flowchart of the proposed adaptive FIR filter 

  
  Let us present some additional results and considerations 

concerning the properties of the ARHOFIR filter. Firstly, 

we show how the filter gain of the RHOFIR coefficients can 

be used to estimate 𝑁𝑚𝑎𝑥  off-line. Consider the filter gain of 

the RHOFIR filter which is defined by (4) – (6) 

 𝐾𝑖 = 𝐴𝑖𝑆𝑖𝐶𝑖
𝑇𝑁𝑖

−1 + 𝐴1𝑖𝑅𝑖𝑀𝑖+1
+ 𝑅𝑖

𝑇𝐶𝑇 𝑁𝑖
−1  

and the one-parameter family of matrix functions 𝐾𝑖
𝜇

. It 

follows from Theorem 2 that 

 

𝑡𝑟(𝐾𝑖
𝜇

(𝐾𝑖
𝜇

)𝑇) ≥ 𝑡𝑟(𝐾𝑖+1
𝜇

(𝐾𝑖+1
𝜇

)𝑇) 

𝑖 ∈ 𝑇* = [𝑁*, 𝑁], 𝜇 ≥ 𝜇*, 

𝐾𝑖
𝜇

→ 𝐾 = 𝑃̄𝐶𝑇(𝐶𝑃̄𝐶𝑇 + 𝑉̃)−1, 𝜇 → ∞. 

 

Taking this into view, let us set acceptable values of 𝐾𝑖 in a 

vicinity of the steady-state value using the inequality 

 𝑘min ≤ 𝑡𝑟 (𝐾𝑖
𝜇

(𝐾𝑖
𝜇

))
𝑇

− 𝐾𝐾𝑇 ≤ 𝑘max,  

Where 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 are selected parameters by a user. It 

follows from this an upper bound 𝑁𝑚𝑎𝑥  
for acceptable 

values of the horizon size [𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥]. 

     Secondly, let us now show how Theorems 3, 4 can be 

used to estimate the upper bound for 𝑁𝑚𝑎𝑥  in the case of 

incomplete or lack of information about noises intensity in 

(1), (2). We have from (13) and Theorems 3, 4 that 

 𝑃𝑖 = 𝑆𝑖 + 𝐻𝑖 ≤ 𝑆𝑖 + 𝐻̄𝑖 , (62) 

where 𝐻̄𝑖 → 0 as 𝑖 → ∞ and does not depend on the intensity 

of the dynamics noise 𝑄̄. It follows from this that for any 

𝜀 > 0there is such 𝑖* that ||𝐻̄𝑖|| ≤ 𝜀 and fulfillment of the 

condition (55) regardless of 𝑄̄ if 𝑖 ≥ 𝑖*. Thus, we can set 

𝑁*𝑚𝑎𝑥 = 𝑖*. 

     Thirdly, an estimate of the upper bound for 𝑁𝑚𝑎𝑥 can be 

obtained also using the same considarations for the transient 

components of the filter gain 𝐾𝑖
𝑡𝑟,𝜇

 and the inequolity  

 𝑡𝑟(𝐾𝑖
𝑡𝑟(𝐾𝑖

𝑡𝑟)𝑇) ≤ 𝑡𝑟(𝐾̄𝑖
𝑡𝑟(𝐾̄𝑖

𝑡𝑟)𝑇), (63) 

where 

 𝐾̄𝑖
𝑡𝑟 == 𝐻̄𝑖+1𝐴−𝑇𝐶𝑇𝑉̃−1. (64) 

Note that in the case of the scalar meassurement (or 𝑉̃ =
𝑞𝐼𝑚) 𝛾𝑖 = 𝑡𝑟(𝐾̄𝑖

𝑡𝑟(𝐾̄𝑖
𝑡𝑟)𝑇) does not depend on 𝑉̃. It is clear 

that this method leads to more cautious estimates of 𝑁𝑚𝑎𝑥  

compared to the two described above.  

      Let us give additional explanations and interpretation of 

the results presented in this section, compare and disccus,   

them with previous works. 

The ARHOFIR filter is an algorithm allowing reducing 

the impact of various kinds of disturbances acting for short 

periods of time or abrupt changes by varying adaptively the 

sliding window size. The possibility of this follows from the 

fact that the window size affects the filter characteristics in 

different ways. More precisely, it means that if the horizon 

size is too small then there is not enough information to 

obtain an acceptable accuracy estimate and if it is too large 

then it may not provide the acceptable filter transient 

characteristics. Taking in account this consideration, the 

ARHOFIR filter chooses a large  𝑁 in the absence of abrupt 

disturbances and a little 𝑁 during the time intervals of their 

action. A detailed description of the filter operation 

sequence in the form of the flowchart it is shown in the Fig. 

1. The proposed FIR filtering algorithm is based on the joint 

use of the receding horizon optimal RHOFIR filter (3)–(13), 

the abrupt change detector (57) and the adaptive mechanism 

for choosing the window size (58)–(61).  The RHOFIR filter 

evaluates the state of both nominal and perturbed systems. 

The detector analyzing the residues determines the presence 

or absence of disturbances. And finally, the recurrent 

adaptation mechanism sets the size of the sliding window in 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 843 

 

Boris Skorohod, Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications 

accordance with the incoming information from the 

detector.  The described adaptive size selection procedure 

differs considerably from those proposed earlier in the 

literature. Firstly, there is no need to set the size of the 

windows [59] and their number can be whatever. Secondly, 

the algorithm is given in iterative form but not in butch form 

and it is not required training cycle in the batch form to 

initialize such filter [59, 60]. Thirdly, test statistic is used for 

analysis of the innovation sequence but not for states 

comparison of the nominal and temporarily uncertain 

systems [59]. The ARHOFIR filter chooses a large horizon 

size in the absence of abrupt disturbances and a little during 

the time intervals of their action. Due to this, it has better 

transient characteristics compared to the KF and RHOFIR 

filter at intervals where there is temporary uncertainty and 

may provide the same accuracy of estimates as the KF in 

their absence. And finally, note also that the ARHOFIR 

filter with an adaptive horizon size selection mechanism 

unlike [13-24] does not require parametrization of the noise 

covariance matrix. 

V. SIMULATION 

We compare the performance of the proposed adaptive 

FIR algorithm (the ARHOFIR filter) with the Kalman filter 

(KF) and the fixed horizon optimal FIR filter (the RHOFIR 

filter) on monitoring of the F404 gas turbine aircraft engine 

model and on the elevation angle monitoring of the moving 

underwater object obtained with the help of video 

surveillance. 

A. F404 Gas Turbine Aircraft Engine 

The F404 gas turbine aircraft engine model described by 

a linear discrete time-invariant model of the form (1), (2) 

[56, 59] where 

 

𝐴 = {
0.9305 0 0.1107
0.0077 0.982 −0.0173
0.0142 0 0.8953

} , 𝐵 = {
1
1
1

} 

𝐶 = {
1 0 0
0 1 0

} , 𝑉 = 𝐼2, 𝑄 = 0.25 

(65) 

It is used a perturbed model the same as in [59]: 

 

𝐴̅ = A − ∆𝐴, 𝐶̄ = 𝐶 − 𝛥𝐶, 

𝛥𝐴 = {

𝛿𝑖 0 0
0 𝛿𝑖 0
0 0 𝛿𝑖

} ,   𝛥𝐶 = {
0.1𝛿𝑖 0 0

0 0.1𝛿𝑖 0
},

    

𝛿𝑖 = {
0.05,  if 200 ≤ 𝑖 ≤ 250,

0   else.
} 

(66) 

 We begin with the filters covariance analysis, the 

selection of 𝑁𝑚𝑎𝑥  and the horizon size 𝑁 for the RHOFIR 

filter. Traces of error covariance matrixes and squared 

norms of filters gains are shown in Fig. 2. Here 𝑡𝑟𝑃𝑖 =
𝑡𝑟(𝑃𝑖), 𝑡𝑟𝑆𝑖 = 𝑡𝑟(𝑆𝑖), 𝑡𝑟𝐻𝑖 = 𝑡𝑟(𝐻𝑖), 𝑡𝑟𝐻𝐻𝑖 = 𝑡𝑟(𝐻̄𝑖), 

𝛼𝑖 = 𝑡𝑟(𝐾𝑖(𝐾𝑖)𝑇), 𝛽𝑖 = 𝑡𝑟(𝐾𝑖
𝑡𝑟(𝐾𝑖

𝑡𝑟)𝑇). It is seen that their 

behavior fully corresponds to the results established in 

Sections 3 (𝑃𝑖 ≥ 𝑃𝑖+1, 𝐻𝑖 ≥ 𝐻𝑖+1, 𝐻𝑖 ≤ 𝐻̄𝑖, 𝛼𝑖 ≥ 𝛼𝑖+1, 𝛽𝑖 ≥
𝛽𝑖+1). We set 𝑁𝑚𝑎𝑥 = 𝑁 = 20. 

 

 

Fig. 2. Variances and squared norms of filters gains 

       Estimations errors of the KF, the ARHOFIR, RHOFIR 

filters and horizon sizes obbtained with help of the 

ARHOFIR are shown in Fig. 3. Time averaged values of 

root mean square estimation errors for 50 simulations of the 

KF, the ARHOFIR and RHOFIR filters are: 19.9, 6.11 and 

8.9, respectively. The following input data were used: 

𝑁𝑚𝑎𝑥 = 20, Δ0 = 0, 𝑁𝑚𝑖𝑛 = 2, 𝜏𝑡 = 2 if (60) is fulfilment 

and 𝜏𝑡 = −3 if (61), 𝛼 = 0.01. Filters are developed for the 

nominal model (69) and inputs for them are outputs of the 

temporarily perturbed model (66). It is seen that proposed 

the ARHUFIR filter may have better transient 

characteristics compared to the KF and RHOFIR filter at 

intervals where there is uncertainty and provide the very 

close accuracy of estimates to the estimates of the KF filter 

in their absence (note, that the horizon size is fixed and 

equal to 19 for 𝑡 > 250).  

B. Elevation angle estimation of a moving underwater 

object 

We use experimental data collected with the help of a 

stand that is shown in Fig. 4. It allows simulating a 

workspace of an underwater robot and includes the 

analogues of the man-made underwater infrastructure 

objects. A pop-up cube of the brown color with the size of 3 

by 3 centimeters was considered as an object of the interest. 

The scene is observed by a monocular video camera with a 

sampling rate of 10 frames per second. The object is located 

at the distance of about 1.5 meters from the camera. The 

pixels belonging to the object are selected by color in each 

image and the smallest rectangle center is found.  

The cube movement includes three different modes 

accompanied by a collision with the plane, the motion along 

it and finally surfacing. Typical images screenshots in each 

mode are shown in Fig. 5. The motion trajectory in the 

image plane coordinates is shown in Fig. 6. 
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Fig. 3. Dependensies estimation errors for the model state and the horizon 

sizes on time 

 

Fig. 4. The image of the underwater robot work space  

   

 

 
 

 

 

Fig. 5. Images screenshots of the scene in three different modes of the cube 

movement 

 
Fig. 6. The movement trajectory of the cube center and three different 

modes in the image plane coordinates 

     If 𝑥𝑡 , 𝑦𝑡  are given then the elevation and bearing angles 

of the cube center can be determined by the relations [63], 

respectuvely,  

 𝛼𝑡 = 𝑡𝑎𝑛−1( 2 𝑡𝑎𝑛   (𝜙𝑣/2)/𝑁ℎ𝑦𝑡), (67) 

 𝛽𝑡 = 𝑡𝑎𝑛−1( 2 𝑡𝑎𝑛   (𝜙ℎ/2)/𝑁𝑣𝑥𝑡), (68) 

                   

Cube 
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Where 𝜙ℎ, 𝜙𝑣, 𝑁ℎ, 𝑁𝑣, 𝑥𝑡, 𝑦𝑡 are view angles, pixel numbers 

and the object coordinate in pixels horizontally and 

vertically, respectively. Due to the high accuracy of the 

video-based object detection, errors in determining 𝛼𝑡 and 

𝛽𝑡 can be expected to be negligible in many applications. 

Really, the workspace size of the underwater robot is 

usually assigned and the maximum linear pixels sizes can be 

determined. So for 2 meters, they are approximately equal to 

0.6 mm if 

 
𝜙ℎ = 51.13𝑜, 𝜙𝑣 = 35.14𝑜 (in the water), 

𝑁ℎ = 1920px, 𝑁𝑣 = 1200px. 
 

and the error in determining the center of the cube is about 

1-2 pixels. At the same time, changes during one sampling 

period 𝑦𝑡  can vary significantly within 20-25 px. Taking 

these considerations into account, we would like to develop 

one step prediction for 𝑦𝑡 . Taking into account the existence 

of the abrupt changes in the process of the movement object, 

we will apply for 𝑦𝑡 prediction the ARHOFIR filter with the 

adaptive horizon selection proposed in this work and for a 

comparison the KF and the RHOFIR filter with fixed 

horizon size. 

Assume that the cube centers motion is described along 

the vertical axe by the kinematic model with a nearly 

constant velocity  

 𝑦𝑡+1 = 𝑦𝑡 + 𝛥𝑣𝑡 + 𝛥2/2𝑤𝑡, 𝑣𝑡+1 = 𝑣𝑡 + 𝛥𝑤𝑡, (69) 

 𝑧𝑡 = 𝑦𝑡 + 𝜉𝑡 , (70) 

where 𝑣𝑡 is the object velocity projection on the vertical axe, 

𝑤𝑡 , 𝜉𝑡 are the acceleration projection and the measurements 

noise (the centered uncorrelated white noises with the 

variances 𝜎𝑤
2 , 𝜎𝜉

2, respectively), 𝛥 is the sampling period. 

The input data for the simulation of the nominal model are 

the following: 𝛥 = 0.1s, 𝜎𝑤 = 2 px/𝑠2, 𝜎𝜉 = 1px.   

     As in the previous example, we begin with the filters 

covariance analysis, the selection of 𝑁𝑚𝑎𝑥  and the horizon 

size 𝑁 for the RHOFIR filter. Traces of error covariance 

matrixes and squared norms of filters gains are shown in 

Fig. 7. It is seen that the variances behavior fully 

corresponds to the results established in Section 3. We set 

𝑁𝑚𝑎𝑥 = 𝑁 = 10. A similar conclusion is also true with 

respect to squared norms of filters gains. 

    The one-step prediction estimation errors of the KF, the 

ARHOFIR, RHOFIR filters and horizon sizes obbtained 

with help of the ARHOFIR are shown in Fig. 8. The root 

mean square estimation errors for the KF, the ARHOFIR 

and RHOFIR filters are: 19.9, 6.5, 11.9 respectively. The 

following input data were used: 𝑁𝑚𝑎𝑥 = 10, Δ0 = 7, 
𝑁𝑚𝑖𝑛 = 2, Δ0 = 7, 𝜏𝑡 = 1 if (60) is fulfilment and 𝜏𝑡 = −1 

if (61), 𝛼 = 0.01 and the single-run test was used. Filters 

are developed for the nominal model (69), (70). It is seen 

that proposed the ARHUFIR filter may have better transient 

characteristics compared to the KF and RHOFIR filter. 

Finally, we note that within each mode, the errors of the 

ARHOFIR filter do not exceed 5-6 pixels. 

 

 

 
Fig. 7. Variances values and squared norms of filters gains  

 

 

 
Fig. 8. Dependencies the one-step prediction estimation errors for the 
model state and the horizon sizes on time 

VI. CONCLUSION 

     In this paper, the new FIR filtering algorithm with the 

adaptive horizon size selection based on the joint use of the 

receding horizon optimal FIR filter and abrupt change 

detectors has been developed. The filter chooses a large 

horizon size in the absence of abrupt disturbances and a 

little during the time intervals of their action. Due to this, it 

has better transient characteristics compared to the KF and 

RHOFIR filter at intervals where there is temporary 

uncertainty and may provide the same accuracy of estimates 

as the KF in their absence. Besides, in contrast to known 

analogs there is no need to set the size of the windows and 

their number can be whatever; the algorithm is given in 

iterative form but not in butch form and it is not required 

training cycle in the batch form to initialize such filter. As a 

direction for further research, we note the improvement and 

research of the adaptation horizon size selection mechanism. 
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The limitation of the proposed approach is the time 

invariance of the nominal system. 
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