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Abstract— This study was based on the dynamic modeling 

and parameter characterization of the one-link robot arm 

driven by pneumatic artificial muscles. This work discusses an 

date-to-up  control design based on the notion of a conventional 

and optimal backstepping controller for regulating a one-link 

robot arm with conflicting biceps and triceps positions supplied 

by pneumatic artificial muscles. The main problems found in 

systems that utilize pneumatic artificial muscle as actuators are 

primarily the large uncertainties, non-linearities, and time-

varying features that severely impede movement performance 

in tracking control. In consideration of the uncertainty, high 

nonlinearity, and external disturbances that can exist during the 

motion. Lyapunov-based backstepping control technique was 

utilized to assure the stability of the system with improved 

dynamic performance. The bat algorithm optimization method 

is utilized in order to modify the variables used in the design of 

the controller to enhance the efficiency of the suggested 

controller. According to the conclusions, a quantitative 

comparison of the response in the PAM actuated the arm model 

in the current study and earlier investigations with the 

Backstepping controlled system revealed fair agreement with a 

variation of 37.5% from the optimal classical synergetic 

controller. In addition, computer simulations were utilized in 

order to compare the effectiveness of the proposed conventional 

controls and the optimal background. It has been proven that 

an optimal controller can control the uncertainties and maintain 

the controlled system’s stability. 

Keywords—Pneumatic artificial muscle; Backstepping 

control; Bat algorithm. 

I. INTRODUCTION 

Pneumatic artificial muscles (PAMs) appear to hold a lot 

of promise in industrial applications for innovative robot and 

manipulator models[1]. PAMs are used in contemporary 

robotic systems because they typically provide high-speed 

action skills, an uncomplicated working mechanism, and 

safety operations. The power produced by PAM actuators 

doesn’t rely just upon pressure yet in addition on the 

condition of expansion, which adds one more wellspring of 

the spring-like way of behaving [2]. Since multilayer 

structures are the central component of these actuators, these 

PAMs that mimic human muscle movement are lightweight.  

[3], [4] 

Biomechanics, bio-advanced mechanics, mechanical 

technology, and counterfeit appendage substitution have all 

utilized PAM actuators. Further, the PAMs are noiseless 

gadgets, they can be utilized in emergency clinic medicines 

to clamor delicate patients [5]. Due to their powerful/volume 

proportions, PAMs don't need a stuff framework to help 

power when contrasted with engine actuators. PAMs are 

exceptional-lightweight natural responsiveness, excellent 

specific work, elasticity [6], and are valuable for the regular 

recurrence of biped motion because of their gracefulness [7], 

[8] 

PAMs have numerous disadvantages that characterize 

them. The PAMs combative structure is one disadvantage 

that can be addressed as compared to other actuators. Another 

major issue is the failure to control PAMs due to their high 

time-varying, nonlinear, and uncertain parameter structure 

[9], [10] 

This is a result of the mechanics of the system containing 

several uncertain, non-linear, and unknown factors that 

prevent the development of an effective actuator tracking 

controller [11]. Additionally, they are quite sensitive. The 

operational ranges of  the PAM systems are severely restricted 

by parameters affecting the systems such as viscosity, 

temperature, and supply pressure [12], [13]. 

Due to the importance of the operation of PAMs and as 

they mimic real muscles, PAM is a useful device for 

implementing the humanoid [14]. The control of pneumatic 

muscles is difficult because the physical parameters are 

nonlinear and time-varying [15]. 

To address difficulties related to the control of mechanical 

systems driven by aerobic muscles, several researchers have 

put forward various control solutions. Where PAM-actuated 

devices employ the most recent control methodologies. 

Lilly [16] recommended sliding-mode adaptive controller 

for planar pneumatic muscle-powered robot arm. The actual 

configurations of the nonlinear functions, including the 

system mechanical parameters, such as link weights, lengths, 

and inertias, are required by this adaptive controller. In 

addition, their wide operating range has been significantly 

restricted due to their extreme sensitivity to parameters 

affecting the operation of PAM systems, like the temperature, 

viscosity, and applied pressure. 

Scaff et al. [17] proposed a McKibben PAM-actuated 

with  the regular Proportional-Integral-Derivative (PID) 

controller, position control of a one-degree-of-freedom (1-

DOF) system. The Simulated Optimization Algorithm (SOA) 

is used to modify the PID controller's parameters in the 
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enhancement of the PID-controlled system's dynamic 

performance. The idea that optimization is performed offline, 

with no online response or effort made to counteract 

parameter fluctuations is a typical control issue. On the 

opposite side, simply put, the suspended block displaced by 

PAMs provides the system powered by the PAM. 

Choi et al. [12] A method for controlling PAM-powered 

robots has been introduced that would replace the 

proportional pressure regulator (PPR) with a control unit 

consisting of several micro encoders and pressure switches to 

address capacitance problems associated with PPR. new 

controller may be able to reduce capacity requirements, but 

at the sacrifice of accuracy, according to the results of the trial 

evaluation. The controller is only there to save storage and 

relies on an on-off mechanism while ignoring the 

unpredictability in the system parameters. 

Enzevaee et al. [18] proposed Active Force Control 

(AFC) system based upon Fuzzy Logic (FL) controllers to 

track the control of a single-link robotic arm. This outcome 

from simulation and experimentation was used to evaluate 

the proposed control method's sustainability and reliability in 

calming the interruptions that it was subjected to. The 

primary conclusion that has been presented is that input-

output gain has been used to mimic the robot arm's dynamics. 

Furthermore, the tracking controller's use of a PID controller 

was unable to offset the system parameter uncertainty. 

Al-Jodah and Khames [19] described a 1st order and 2nd 

order sliding mode control (SMC) to track the angular 

displacement of a single-link robotic arm powered by two 

PAMs. The ability of the presented controllers for reducing 

chattering in associated control outputs as well as their 

robustness against uncertainties in the system variables have 

been investigated. However, mainly concentrated on finding 

a solution to the chattering problem commonly associated 

with SMC architecture. 

Medrano-Cerda et al. [20] designed a bi-muscular 

pneumatic muscle activator system, adaptive controller. 

Adaptive pole-placement control has been used to construct 

the PAM system's control strategy. The suggested adaptive 

scheme has been based upon indirect control strategies, 

where mathematical model and system variables are 

estimated based on on-line input and output data collected 

using the suggested model architecture, although the 

controller can provide viable accuracy and result in a high 

ratio of power to weight. 

Boudoua et al. [21] To control the PAM-operated robotic 

arms and decrease the chattering in the signal out of the 

control, an NN-based Twisting Sliding Mode Controller 

(TSMC) was introduced. This study utilized two methods 

two-layer Neural networks (NN) and on-line adaptive 

learning in order to simulate nonlinear and unidentified robot 

dynamics. The present work was unable to totally eradicate 

chattering in the output signal from the control, and using NN 

structures up to approximation may reduce a controller's 

performance except if the required quantity and kind of 

activation functions are applied. 

Jahanabadi [22] studied the implementation of an 

integrated regulator for the trajectory tracking of a PAM-

actuated 2-planar link manipulator based upon Active Force 

Control and FL (AFCFL).  The FL, is controlled by an outer 

loop PID controller and is used to choose the optimal 

structure of the inertial matrix requested for the AFC 

mechanism for the robot arm. In addition, the principal 

tracking controller was a PID controller and a fixed gain has 

been used in order to simulate the dynamic model, which is 

significantly different from the original model. 

Previous research has shown that, despite significant 

advancements in PAM's development and various control 

strategies, there is still considerable work to be completed. 

The earlier research employed FL, NN, control based on 

optimization, nonlinear control based on SMC, or hybrid 

nonlinear control, which are all examples of advanced control 

systems. However, these controllers could not solve all major 

issue such as  the uncertainty, non-linearity, and the chattering 

that appear in the output signal of the system. 

It is worth mentioning that the PAM-actuated 

manipulator's architecture varies between studies.  In contrast 

to earlier research. the Backstepping Control (BSC) 

technique is used in this study to develop a controller for 

tracing and  controlling of the PAM--actuated one-link robot 

arm movement. The BSC theory is based on space-state  

theories, that are used in the development and management 

of extremely complicated and interconnected nonlinear 

systems. The BSC method is based upon a control approach 

that is suitable for a specific class of non-linear systems. 

To deal with all these paramount problems, an adaptive 

control strategy is suggested for controlling the PAM-

actuated one-link robot arm, which can transact effectively 

with the impact generated by parametric uncertainties in 

actuating muscles 

The dynamic performance of this controllable system is 

directly impacted by the BSC's design variables. The Bat 

Algorithm has been used in order to enhance the systems with 

uncertainties in actuation muscles of PAM modeling, 

reduction of the chattering, and modify those parameters 

because the trial-and-error approach for calculating those 

components is challenging, time-consuming, and does not 

produce the optimal dynamic stability response, it is 

necessary for improving the dynamic performance regulation 

and detection. Bats served as the inspiration for this 

echolocation algorithm, which was originally created by 

Yang [23]. 

This research aims to develop BSC to maintain and 

coordinate the tracking of desired motion while reducing 

chattering, non-linearity, and uncertainty, in the manipulator 

arm that is operated by PAM in the system to maintain the 

stability of the system. 

This paper's contribution is to develop a control strategy 

based on BSC theory for tracing the motion of a single-link 

robot arm actuated by pneumatic artificial muscles while 

taking into account parameter uncertainties in the muscles. 

The suggested technique is tenacious and capable of 

preventing chattering while also compensating for the 

parametric uncertainties. 

Using the bat algorithm with the proposed controller 

design parameters to make progress in implementation can be 
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considered another contribution that can also be computed 

since it has never been dealt with in the literature on these 

PAM systems. 

This paper will contain the following sections in a 

sequence: 

• The dynamics and control model contains the derivation 

of the mathematical model of one link arm actuated by 

PAMs with suggestion BSC. 

• The optimization of the system using the bat algorithm. 

• Results and discussion show the simulation results and 

discussion of the control system and model response.  

• Finally, the Conclusion section concludes the paper. 

      The methodology of this paper is described in the block 

diagram that is shown in Fig. 1. and it shows the sequence of 

portraying the contents of this research. 

 

Fig. 1. Block diagram of the methodology. 

II. DYNAMICS AND CONTROL MODEL 

Fig. 1 shows a model of a PAM type and dimensions of 

the fluidic muscle that this study will concentrate on the 

fluidic muscle (DMSP-20-100N-RM-CM) from the FESTO 

Company. Because it responds more quickly than other types 

and movements like a natural muscle, its work efficiency is 

up to 50% closer to the biological muscles. Theoretical 

Fluidic Muscle force at maximum operating pressure is 

1500N, the mode of operation is single-acting mode and 

pulling mode, and the maximum working load freely 

suspended is 80Kg. The operating pressure of this kind is 

between 0 MPa and 0.6 MPa [24]. 

Fig. 2 shows the two dimensions (2D) of the fluidic 

muscle type DMSP-20-100N-RM-CM.  Also,  the table1 

illustrated the values of the dimensions. 

 

Fig. 2. Dimensions of the fluidic muscle type DMSP-20-100N-RM-CM 

[24] 

TABLE I.  DIMENSIONS VALUES [24] 

Dimensions value 

SW1 17mm 

SW2 10mm 

SW4 13mm 

L1 15mm 

L2 36mm 

L3 26mm 

L4 15mm 

L7 19mm 

L8 142mm 

LN 80mm 

DO 22mm 

 

Before starting the design control for the system utilizing 

PAM, it is required to 1st develop a mathematical model of 

the system that accurately reflects real muscle demeanor. The 

PAM system is able to be examined and its connected 

controller is designed to suit the implementation 

prerequisites. 

 

Fig. 3. PAM Single-Link Robot Arm 

Fig. 3 shows a mass with PAMs actuated by arm positions 

of the triceps and biceps. The wrist moves as the PAMs 

expand and compress while the upper arm stays fixed. The 

upper arms and endpoints of the PMs are attached to a fixed 

reference point. where m denotes mass in (kg), 𝑔 represents 

gravitational acceleration (m/s2), 𝑟 represents pulley radius 

(m), 𝑥𝑡 represents pneumatic muscle extension (m), and 𝑥𝑏  

represents the muscle contraction (m). The PMs are attached 

to elbow at point 𝐴, which is 𝑎 rotational axis away from the 

joint. 𝐿 is distance between joint and the load's center of mass.  

The extent to which pneumatic muscles extend 𝑥𝑡 and 

muscles contract 𝑥𝑏 can be represented respectively by Eq. 

(1) and (2) [16], [25] 

 𝑥𝑏 = 𝑎(1 − 𝑐𝑜𝑠 𝜃) (1) 

 𝑥𝑡 = 𝑎(1 + 𝑐𝑜𝑠 𝜃 ) (2) 

The movement of the wrist shown an angle 𝛼 =
 𝑠𝑖𝑛−1(𝑟/𝑎) with the triceps corps. Within the same angle 𝜃, 

the wrist is authorized to twist. The angle 𝜃 = 0 corresponds 

to the wrist in a descending position, whereas angle 𝜃 = 𝜋 

represents a case that the wrist is positioned extremely 
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upwards. The wrist's biceps muscle produces a clock - wise 

torque that is provided by [26]: 

 𝜏𝑐𝑤 = 𝐹𝑏(. )𝑎 𝑠𝑖𝑛𝜃 (3) 

in which the triceps muscle's counterclockwise torque is 

represented as: 

 𝜏𝑐𝑐𝑤 = 𝐹𝑡(. )𝑟 (4) 

where 𝐹𝑡(. ) and 𝐹𝑏(. ) represent developed forces from 

triceps and bicep of the PAMs, respectively, and r represents 

the radius of the pulley. The produced 𝐹𝑡(. ) and 𝐹𝑏(. ) may 

be described by the following dynamic PAM model [16], 

[25]: 

 𝐹𝑏(. ) = 𝐹(𝑃𝑏) − 𝐾(𝑃𝑏)𝑥𝑏 − 𝐵(𝑃𝑏)𝑥𝑏  (5) 

 𝐹𝑏(. ) = 𝐹(𝑃𝑏) − 𝐾(𝑃𝑏)𝑥𝑏 − 𝐵(𝑃𝑏)𝑥𝑏  (6) 

Where bicep coefficients of viscous friction is 𝐵(𝑃𝑏), the 𝐿 

represents distance of the arms between the mass's centroid 

and joint, 𝐵(𝑃𝑡) represents triceps coefficients of viscous 

friction, 𝐾(𝑃𝑏) denotes bicep spring coefficients (N/m), 

𝐾(𝑃𝑡) denotes triceps spring coefficients (N/m). 𝐹(𝑃𝑏) 

represents the force that is exerted by PAM in bicep case, 

𝐹(𝑃𝑡) denotes force that has been exerted by PAM in triceps 

situations, a represents distance between joint axis of rotation 

and PAMs attached point (A), 𝐹(𝑃𝑏), 𝐾(𝑃𝑏) and 𝐵(𝑃𝑏) 

represent bicep PAM force, spring and viscosity coefficients, 

respectively, and those can be expressed in the following 

form: 

 𝐹(𝑃𝑏) =  𝐹𝑜  +  𝐹1𝑃𝑏

𝐾(𝑃𝑏) =  𝐾𝑜  +  𝐾1𝑃𝑏

𝐵(𝑃𝑏) =  𝐵𝑜  +  𝐵1𝑃𝑏

} (7) 

As well, 𝐹(𝑃𝑡), 𝐾(𝑃𝑡), and 𝐵(𝑃𝑡) characterizes triceps of 

the PAM force, spring, and viscosity coefficients, so that the 

associated formulas explain them: 

 𝐹(𝑃𝑡) =  𝐹𝑜  +  𝐹1𝑃𝑡

𝐾(𝑃𝑡) =  𝐾𝑜  +  𝐾1𝑃𝑡

𝐵(𝑃𝑡) =  𝐵𝑜  +  𝐵1𝑃𝑡

} (8) 

It is important to point out that coefficient 𝐵 relying on 

whether a muscle is already in compressed mode or stretched 

mode, which is, one have varied coefficients of the triceps 

and bicep 𝐵(𝑃𝑡) and 𝐵(𝑃𝑏). Therefore, by combining the 

torques described by Eq. (3) and Eq. (4), one can find the 

dynamics motion equation: 

 𝐼𝜃̈ = 𝐹𝑏(. )𝑎 𝑠𝑖𝑛 𝜃 − 𝐹𝑡(. )𝑟 − 𝑀𝑔𝐿 𝑠𝑖𝑛 𝜃 (9) 

where 𝐼 = 𝑀𝐿2 describes the moment of mass inertia about 

the elbow and latest term (𝑀 ∗ 𝑔 ∗ 𝐿 ∗ 𝑠𝑖𝑛𝜃) has been 

adjusted to take into consideration the mass gravity's 

counterclockwise torque on forearm. So can achieve the 

following by substituting Eq. (5) & Eq. (6) into Eq. (9): 

 (𝐹 (𝑃𝑏) − 𝐾 (𝑃𝑏) 𝑥𝑏 − 𝐵𝑏 (𝑃𝑏) 𝑥̇𝑏) 𝑎 𝑠𝑖𝑛 𝜃 −
(𝐹(𝑃𝑡) − 𝐾(𝑃𝑡) 𝑥𝑡 −  𝐵𝑡(𝑃𝑡) 𝑥̇𝑡) 𝑟 − 𝑀𝑔𝐿 𝑠𝑖𝑛 𝜃     

(10) 

It is provided time derivatives of PM extension 𝑥𝑡 and 

contraction 𝑥𝑏 may be described, respectively, as: 

 𝑥̇𝑏 = 𝑎 (𝑠𝑖𝑛 𝜃) 𝜃̇ (11) 

 𝑥̇𝑡 = − 𝑎 (𝑠𝑖𝑛 𝜃) 𝜃̇ (12) 

Using Eq. (10) and (12), one can get 

𝐼𝜃̈ = (𝐹 (𝑃𝑏) − 𝐾 (𝑃𝑏) 𝑥𝑏 − 𝐵𝑏 (𝑃𝑏) 𝑥̇𝑏) 𝑎 𝑠𝑖𝑛 𝜃
− (𝐹(𝑃𝑡) − 𝐾(𝑃𝑡) 𝑥𝑡

−  𝐵𝑡(𝑃𝑡) 𝑥̇𝑡) 𝑟 − 𝑀 𝑔 𝐿 𝑠𝑖𝑛 𝜃 

(13) 

The following is the triceps and biceps PAM pressure: 

 𝑃𝑏 = 𝑃𝑜𝑏  +  ∆𝑃 (14) 

 𝑃𝑡 =  𝑃𝑜𝑡 −  ∆𝑃 (15) 

where 𝑃0𝑡, 𝑃0𝑏 represent primary pressure of triceps and 

biceps, respectively, ∆𝑃 is designated as system's control 

input, and it displays how much pressure exists between both 

the triceps and biceps. Then combined the Eq. (14) and (16), 

to produce: 

 𝐼𝜃̈ = [(𝑎 𝐹0 + 𝑎 𝐹1 𝑃0𝑏 − 𝑀 𝑔 𝐿) 𝑠𝑖𝑛 𝜃
+ 𝑎2( 𝐾0 +  𝐾1 𝑃0𝑏) 𝑠𝑖𝑛 𝜃 (𝑐𝑜𝑠 𝜃
− 1)

− 𝑎2 (𝐵0𝑏 + 𝐵1𝑏𝑃0𝑏) 𝑠𝑖𝑛2𝜃. 𝜃̇
+ 𝑎 𝑟 (𝐾0 + 𝐾1𝑃0𝑡) (1 + 𝑐𝑜𝑠 𝜃)

− 𝑎 𝑟 (𝐵0𝑡 + 𝐵1𝑡𝑃0𝑡) 𝑠𝑖𝑛 𝜃 . 𝜃̇
− 𝑟 (𝐹0 + 𝐹1𝑃0𝑡)] + [𝑎 𝐹1 𝑠𝑖𝑛 𝜃
+ 𝑎2 𝐾1 𝑠𝑖𝑛 𝜃 (𝑐𝑜𝑠 𝜃 − 1)

− 𝑎2 𝐵1𝑏  𝑠𝑖𝑛2𝜃. 𝜃̇

− 𝑎  𝑟 𝐾1(1 + 𝑐𝑜𝑠 𝜃)

+ 𝑎 𝑟 𝐵1𝑡  𝑠𝑖𝑛 𝜃 . 𝜃̇ + 𝑟 𝐹1]∆𝑃 

(16) 

Eq. (16) could be expressed more succinctly as follows: 

 𝜃̈ = 𝑓(𝜃, 𝜃̇) + 𝑏(𝜃, 𝜃̇)∆𝑃 (17) 

Where is 𝑓(𝜃, 𝜃̇) and 𝑏(𝜃, 𝜃̇) are described by 

 

𝑓(𝜃, 𝜃̇) = ∑ 𝑓𝑖 𝑍𝑖

6

1

 (𝜃, 𝜃̇)  (18) 

 

𝑏(𝜃, 𝜃̇) = ∑  𝑏𝑖  𝑍𝑖

6

1

(𝜃, 𝜃̇)      (19) 

where 𝑖 = 1, 2, … , 6. The classification of coefficients' 

factors 𝑓𝑖, 𝑍𝑖 and  𝑏𝑖  have been listed in Table 2. The 

difference between the pressures is the ∆P and given in Eq. 

(14) is characterized as a control signal; that is 𝑢 = ∆𝑃. 

additionally, if state variable 𝑥1 is assigned to angular 

position 𝜃 and state variable 𝑥2 denotes angular velocity 𝜃, 

then the following describes a state space representation: Eq. 

(20) [27]: 

 𝑥1 = 𝜃, 

𝑥̇1 = 𝜃̇ = 𝑥2 

𝑥̇2 = 𝜃̈ = 𝑥̈1 = 𝑓(𝜃, 𝜃̇) + 𝑏(𝜃, 𝜃̇) 

𝑢 = 𝑓 (𝑥1, 𝑥2) + 𝑏 (𝑥1, 𝑥2)𝑢 

(20) 

Fig. 4 presents the MATLAB/SIMULINK /R2019a for 

the PAM actuated arm. The simulation of PAM actuated arm; 

the model representation is  by using Equation (20). Table 3 

displays the values of the PAM model's actuated arm 

variables that were used in the simulations. 
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TABLE II.  CLASSIFICATIONS OF THE COEFFICIENT FACTORS 𝑓𝑖, 𝑍𝑖 AND 

𝑏𝑖 [25] 

𝒁𝒊 𝒇𝒊 𝒃𝒊 

𝑧1 = 𝑠𝑖𝑛 𝑥1 
𝑓1 = (𝑎 𝐹0 + 𝑎 𝐹1 𝑃0𝑏 − 𝑀 𝑔 𝐿)

/𝐼 
𝑏1 = 𝑎𝐹1/𝐼 

𝑧2

= 𝑠𝑖𝑛 𝑥1 (𝑐𝑜𝑠 𝑥1 − 1) 
𝑓2 = 𝑎2(𝑘𝑜 +  𝐾1𝑃𝑜𝑏)/𝐼 𝑏2 = 𝑎2𝐾1/𝐼 

𝑧3 = (𝑠𝑖𝑛2𝑥1)𝑥2 𝑓3 = −𝑎2 (𝐵0𝑏 + 𝐵1𝑏𝑃𝑜𝑏)/𝐼 
𝑏3

= −𝑎2 𝐵1𝑏/𝐼 

𝑧4 = 1 + 𝑐𝑜𝑠 𝑥1 𝑓4 = 𝑎 𝑟 (𝑘𝑜 + 𝐾1𝑃0𝑡)/𝐼 𝑏4 = −𝑎 𝑟 𝐾1/𝐼 

𝑧5 = (𝑠𝑖𝑛 𝑥1)𝑥2 𝑓5 = −𝑎 𝑟 (𝐵0𝑡 + 𝐵1𝑡𝑃0𝑡)/𝐼 𝑏4 = −𝑎𝑟𝐾1/𝐼 

𝑧6 = 1 𝑓6 = (−𝑟 𝐹0 −  𝑟 𝐹1𝑃0𝑡  )/𝐼 𝑏6 = 𝑟𝐹1/𝐼 

 

 

Fig. 4. Open loop PAM manipulator arm system represented by MATLAB 

SIMULINK. 

The system as well as controller have both been modelled 

using the MATLAB/SIMULINK software suite. The outputs 

of the open loop position and velocity are shown in Fig. 5. 

The PAM's motion is the main issue since it is unstable and 

unmanageable due to the lack of speed control, which in turn 

results in undesirable movement that needs to be regulated. 

Fig. 5. shows that the open loop system is unstable. In order 

to stabilize the PAM and move its states to the equilibrium 

point area, the Backstepping controller is used. 

Table 3 lists the mathematical values for both PAM-

actuated Single Arm Manipulators in the bicep/triceps 

positions  

TABLE III.  NUMERICAL SYSTEM PARAMETER VALUES [25] 

Coefficient Descriptions Values 

The nominal force that has been exerted by PAM 

(𝐹0) 
0.986 × 102 N 

Variation in a force exerted by PAM (𝐹1) 0.803𝑁 

Bicep /variation in viscosity coefficient (𝐵1𝑏) 
4.66 × 10−3N. s

/m 

Bicep /nominal viscosity coefficient (𝐵0𝑏) 1.35N. s/m 

Nominal spring coefficient (𝑘0) 6.51N/m 

Triceps /nominal viscosity coefficient (𝐵0𝑡) 
4.03 × 10−1N. s

/m 

Triceps /variation in viscosity coefficient (𝐵1𝑡) 
12.0 × 10−4N. s

/m 

Nominal bicep pressure (𝑃𝑜𝑏) 510.4KPa 

Variation in spring coefficient (𝑘1) 2.12 × 10−2N/m 

The distance from the mass center to the joint (𝐿) 0.46m 

Nominal triceps pressure (𝑃𝑜𝑡) 400Pa 

Mass (M) 20g 

Pulley radius (𝑟) 0.0508m 

Distance from PAM attached point to the joint axis 

(𝑎) 
0.0762m 

Gravity Acceleration (𝑔) 9.8m/s2 

 

 
Position of the single-arm robot 

 
Velocity of the single-arm robot 

Fig. 5. Open-loop response of Single Arm PAM-Actuated Robot. 

III. BACKSTEPPING CONTROL DESIGN (BSC) 

The control methods for analyzing the control design for 

the movement of the PAM robot arm have been developed in 

this section. A BSC approach is used to develop the control 

design [28][29]. The backstepping controller's design 

variables directly affect how dynamically responsive the 

controlled system is [30]. Follow the steps mentioned to 

establish the BSC algorithm for a Single Arm PAM-Actuated 

Robot system [31]. 

Let the variation between actual angle position 𝑥1 = 𝜃 

and needed trajectory 𝑥1𝑑 = 𝜃𝑑 be the 𝑒 as the follow [30], 

[32][33] is: 

 𝑒1 = 𝑥1 − 𝑥1𝑑   (21) 

The error's time derivative, can be written as follows in 

Eq. (21): 

  𝑒1̇ = 𝑥̇1 − 𝑥̇1𝑑 (22) 

Defining the first virtual control 𝛼1 = 𝑥2 and sub in Eq. 

(22) to get: 

    𝑒1̇ = 𝛼1 − 𝑥̇1𝑑  (23) 

    The Lyapunov function is a positive function and the 

function derivative [34]: 

 
𝑉1 =

1

2
𝑒1

2 (24) 

 𝑉1̇ = 𝑒1𝑒1̇ (25) 

as following, going to substitute Eq. (23) in the Eq. (25) 

to get the function of Lyapunov, which can be written as 

follows: 

   𝑉1̇  = 𝑒1(𝛼1 − 𝑥̇1𝑑) (26) 
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A virtual control (𝛼1 = −𝑐1𝑒1 + 𝑥̇1𝑑) is generated and 

sub into Eq. (26) then: 

   𝑉̇1 = −𝑐1𝑒2
1 (27) 

This implies 𝑉1< 0 Let the error 𝑒2, between actual state 

x2and the first virtual control 𝛼1 described by taking time 

derivative of Eq. (28) and utilizing Eq. (20) to get: 

   𝑒2 = 𝑥2 − 𝛼1 (28) 

 𝑒2̇ = 𝑥2̇ − 𝛼1̇ (29) 

 𝑒2̇ = 𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝛼1̇ (30) 

The second Lyapunov function is: 

 
𝑉2 =

1

2
𝑒1

2 +
1

2
𝑒2

2 (31) 

Utilizing time derivative of Lyapunov function 

 𝑉2̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇   (32) 

 𝑉2̇ = −𝑐1𝑒2
1 + 𝑒2(𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝛼1̇) (33) 

Choosing the control law: 

 
𝑢 =

−𝑐2𝑒2 + 𝑒1 + 𝑓(𝑥1, 𝑥2) + 𝑐1𝑒1̇ − 𝑥̈1𝑑

𝑏(𝑥1, 𝑥2)
 (34) 

The result of the Lyapunov function's derivative is: 

 𝑉2̇ = −𝑐1𝑒2
1 − 𝑐2𝑒2

2 (35) 

where, 𝑐1 and 𝑐2 represent positive constant that is to be 

determined with the use of the Bat algorithm and 𝑉2 < 0 are 

negative definite [35][36]. 

Fig. 6 display graphical design of backstepping control 

for PAM - actuated robot arm and shows the control law that 

controls t he actuated-PAM  robot arm  

 

Fig. 6. Schematic diagram of the proposed BSC for PAM. 

A. Optimal Backstepping Control Parameters 

     All control systems must operate accurately in both 

steady-state and transient conditions with a low error rate. 

there are plenty of methods to optimize the results and 

improve the control to get better outcomes such as particle 

swarm optimization (PSO) [37], chaotic particle swarm 

optimization (CPSO) [38], cuckoo search optimization 

(CSO) [39], modified chaotic invasive weed optimization 

(MCIWO) [40]and bat algorithm [41]. In this paper using bat 

algorithm to optimize the model control. The output and 

stability of the system are affected by the backstepping 

algorithm's parameters The objective of the present study is 

to select the optimal parameters control value for the PAM-

Actuated robot arm. These two design parameters are referred 

to as 𝑐1 and 𝑐2.  BAT is modeled after how common bats use 

active sonar to determine where to find food [42]. The Bat 

method is a popular met heuristic algorithm for resolving 

practical optimization issues. The Bat must be used by three 

principles: To begin started, all bats utilize the echolocation 

in order to measure their distance from a given spot. Second, 

bats fly in a predetermined direction at a predetermined speed 

at irregular intervals with a fixed frequency [43]. The volume 

and wavelength, however, can change. As a result, Bats 

immediately change their wave-lengths to match their target. 

Thirdly, the authors believed that the best approach to varying 

volume is to go from the loudest to the quietest [23]. Different 

algorithms can be developed inspired by bats, or called bat 

algorithms. For simplicity, now Using the following rough or 

idealistic guidelines: 

1) All the bats utilize echolocation to determine the range 

and somehow magically distinguish between background 

obstacles and food/prey 

2) In order to find prey, bats fly at random with a velocity of 

𝑣𝑖, a position of 𝑥𝑖, a fixed frequency of 𝑓𝑚𝑖𝑛 , a variable 

wave-length, and a loudness of 𝐴0. Depending on how 

close their target is, they can automatically modify pulses' 

wave-length (or frequency) and rate of emission (element 

𝑟 ∈ [0, 1]). 

3) Despite the fact that there are numerous ways in which 

the loudness can change, we suppose that it changed from 

a high (positive) 𝐴𝑜 to a minimal constant value 𝐴𝑚𝑖𝑛 

[44]. 

Additionally, to the previous principles, frequencies and 

wavelengths are typically set so that they closely reflect the 

size of the zone of interest. In practical applications, 

frequency and wavelengths occur within the ranges of 

[𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥] and [𝜆𝑚𝑖𝑛 , 𝜆𝑚𝑎𝑥] correspondingly. It is 

necessary to develop procedures to ascertain the positions 

and velocities of the virtual bats in d-dimensional study space 

in order to solve an optimization model using them. The new 

position 𝑋𝑖
𝑡 it and velocity 𝑉𝑖

𝑡 it are defined as follows at time 

step 𝑡: 

 𝑓𝑖 = 𝑓𝑚𝑖𝑛  + (𝑓𝑚𝑎𝑥 −  𝑓𝑚𝑖𝑛) (35) 

 𝑉𝑖
𝑡 = 𝑉𝑖

𝑡−1 + (𝑋𝑖
𝑡 − 𝑋∗)𝑓𝑖 (36) 

 𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝑉𝑖
𝑡 (37) 

here, the 𝛽 ∈ [0– 1] represents random vector that has 

been taken from uniformly distributed; 𝑋 ∗ represents current 

global best location (i.e., solution) as determined through the 

comparison of all of the solutions for all of the 𝑛 bats. 

A new solution is represented locally for each bat using 

random walk once a solution has been selected from among 

actually better possibilities for local research. 

 𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑+∈ 𝐴𝑡 (39) 

In the case where the bat locates a prey, the level of the 

sound drops and the pulse emission rate rises. The bat is 

heading to optimum solution based on: 
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 𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 , 𝑟𝑖
𝑡+1 = 𝑟𝑖

°[1 − 𝑒𝑖
−𝑦𝑡

] (40) 

here, 𝛼 and 𝛾 are constants (𝛼 = 𝛾 = 0.90), the initial 

emission rate is 𝑟𝑜 ∈ [0 − 1], and initial loudness is 𝐴𝑖 ∈
[0.1 − 0.9]. 

The [𝑐1, 𝑐2] variables of the suggested controller for a 

PAM-Actuated robot arm are tuned using BAT methods. The 

BSC determines and sets the optimized design variable at the 

algorithm's conclusion. The BA has set the size of the 

population at 40 and the maximum number of iterations at 

100. Mean Square Error (MSE), which may be calculated as 

follows, is chosen as the cost function which will be utilized 

in order to assess every one of the particles during the search 

for minimum. 

 
𝑀𝑆𝐸 =

1

𝑛
∑ 𝑒1(𝑖)2

𝑛

𝑡=1
 (41) 

where, 𝑒1 = 𝑥1 − 𝑥1𝑑  , 𝑛 represents sampling number [45] . 

Fig. 7 shows cost function's behavior as algorithm 

iteration function.  at the number of iterations of, 40 the cost 

stabilized. 

TABLE IV.  OPTIMUM AND TRIAL-AND-ERROR VALUES OF CONTROLLER 

DESIGN PARAMETERS 

parameters Values 

𝑐1 83.3419 

𝑐2 121.4274 

 

 

Fig. 7. Cost function's behavior as algorithm iteration function. 

Finally, the BSC sets those optimum values so as to 

achieve a system that is controlled by the optimal BSC. 

V. SIMULATION RESULTS AND DISCUSSION 

        In this section describes a BSC designed for single-arm 
PAM-actuated robot stabilization, tracking, and regulatory 
control. Using MATLAB/SIMULINK/2019a simulation to 
analyze the performance of the BSC and evaluate the 
controller. The coefficient values affecting the system for a 
single-arm PAM-actuated robot are displayed in Table 3. 
Backstepping controllers based on the try-and-error approach 
and the Bat algorithm have been compared in terms of 
performance using the MSE as a performance measure. Table 
5. includes the controller design parameter's optimal and trial-
and-error values. 

The current BSC algorithm was validated against 

Humaidi et al. [46] A comparison was accomplished using 

the response of stability the position tracking for the PAM 

actuated arm moving. As mentioned previously that the BSC 

algorithm requires validation as well. The BSC scenario 

investigates the response of stability the position tracking 

when using the proposed BSC with bat algorithms scheme 

and optimal classical synergetic controller (CSC). The 

comparison has been performed with the use of the position 

tracking in the valve during PAM actuated arm moving. The 

time response for PAM actuated arm moving was obtained 

from the optimal classical synergetic controller (CSC) 

reaching its stable state at 4sec, whereas response as a result 

of the non-optimal CSC reaches the equilibrium at stable state 

at  6.5sec. but response of using the optimal BSC reaches its 

steady at 2.5 sec, while non-optimal reaches its steady-state 

at 6 sec. Backstepping controllers based on the try-and-error 

method and the Bat algorithm have been compared in terms 

of performance using the MSE as a performance measure. 

TABLE V.  OPTIMAL DESIGN PARAMETER VALUES 

Parameter Optimal values Assuming values 
𝑐1 83.3419 1 

𝑐2 121.4274 1 

 

Primary parameters determining performance of the PAM 

actuated arm include arm position and velocity. A series of 

the isolated time steps at different PAM actuated arm 

movements are shown in Figs. 8, 9, 10, 11, and 12 to present 

the performance of the PAM actuated arm under 

investigation. 

Fig. 8 shows the position's control signal using the BSC 

technique, the control signal tracking shows that at time 6 sec 

reaches its steady-state but the signal has chattering and not 

smooth. The error between the desired signal and the position 

with non-optimal BSC is 4 × 10−5. 

 

Fig. 8. Position trajectory for BSC. 

Fig. 9 shows the control signal for the position by 

applying the BAT algorithm with BSC. According to the 

figure, the system exhibits excellent convergence and high 

levels of stability in a limited time the signal reaches its 

steady-state at 0.5 sec and the chattering is smaller, and the 

signal is smoother. The error between the desired signal and 

optimal BSC position signal is 1.376 × 10−6. 

The position tracking results show how much better the 

proposed BSC with Bat algorithms method is than the BSC 

at tracking positions. Furthermore, the use of Bat algorithms 

minimized the tracking position error and the chattering that 

happened with the BSC tracking position signal. 
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Fig. 10 shows how the comparison between the optimal 

BSC, convolution BSC, and the desired trajectory. 

 

Fig. 9. Position trajectory for optimal with BSC. 

 

(a) 

(b) 

Fig. 10. Compare signals (a) compare between optimal and Convolution 

Backstepping control (b) compare optimal, Convolution, and 

desired trajectory signals. 

Figs. 8 and 9 shows how much smoother the position 

tracking is when using the proposed BSC with bat algorithms 

scheme than when using the Backstepping control. 

Additionally, the tracking position error was reduced 

significantly using bat algorithms. 

The BSC maximum tracking error for the position 

tracking trajectory is 0.4 percent at peak. Therefore, a careful 

analysis of the data reveals that the ideal BSC method reduces 

tracking errors for the position by a factor of 0.004%. 

Additionally, the velocity tracking errors presented in Fig. 10. 

show how much the tracking performance is improved by 

employing BSC in combination with bat algorithms. Figs. 11 

(a-b) show that bat algorithms have an increased tracking 

velocity for the desired trajectory.  

 

(a) 

 

(b) 

Fig. 11. Velocity trajectory (a)Velocity trajectory with convolution BSC, 

(b) the Velocity trajectory with optimal BSC. 
 

VI. CONCLUSION 

The PAM actuated arm was designed and developed in 

this research utilizing the Backstepping method, It involves 

modifying the system's equations to incorporate a new state. 

It is shown that the control law is in charge of providing 

precise monitoring of the required trajectory for the 

movements of the arm manipulator. By simulating the control 

scheme using MATLAB/2019/b. The Bat method is 

employed to determine the best design parameters for 

improved dynamic performance, which eliminates the 

requirement for a trial-and-error method of fine-tuning the 

design BSC. The accuracy of the simulation results was 

confirmed by comparing them to those published in previous 

works on Adaptive Synergetic Control Design. The 

comparison revealed that utilizing BSC reduces error and 

employing optimal BSC increases accuracy. As compared to 

backstepping control using try-and-error parameters the error 

is 0.4% however, according to the proposed BSC with BA 

conclusions, the PAM actuated arm has a position inaccuracy 

of 0.004%. 

The future work in this research will focus on a 

comparative study that can be achieved by utilizing an 

adaptive control strategy for the same control, robot 

configuration, the same conditions and same parameters, in 

addition to benefiting from the improvement of the bat 

method on the proposed adaptive control and comparing the 

results. 
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