
Journal of Robotics and Control (JRC)

Volume 3, Issue 6, November 2022

ISSN: 2715-5072, DOI: 10.18196/jrc.v3i6.16298 779

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Fleet Management System for an Industry

Environment

Jakub Hažík 1, Martin Dekan 2, Peter Beňo 3, František Duchoň 4*
1,2,4 Institute of Robitics and Cybernetics, Faculty of Electrical Engineeringand Information Technology, Slovak University of

Technology, Bratislava, Slovak Republic
3 Photoneo s.r.o., Bratislava, Slovak Republic

Email: 1 hazik.jakub@gmail.com, 2 martin.dekan@stuba.sk, 3 beno@photoneo.com, 4* frantisek.duchon@stuba.sk

*Corresponding Author

Abstract — The article deals with the management of a fleet

of AMR robots that perform logistics in production. The entire

system design is implemented in the ROS environment - state of

the art for the development in robotics. Four already available

solutions for fleet management in ROSe are analyzed in detail

in the article. These solutions fail when there is a need to change

the route plan in a dynamically changing environment.

Likewise, some did not sufficiently synchronize the movement of

the robots and collisions occurred or, with a larger number of

robots, represented an enormous computational load. Our

solution was designed to be as simple and reliable as possible for

industrial use. It is based on a combination of semi-autonomous

and centralized approach. A hybrid map is used for planning

the movement of the robot fleet, which provides the advantages

of both a metric and a topological map. This route map for a

fleet of robots can be easily drawn in readily available CAD

software. Synchronization of robots was designed on the

principle of semaphore or mutex, which enabled the use of

bidirectional paths. The results are verified in simulations and

were aimed at verifying the proposed robot synchronization. It

was confirmed that the proposed synchronization slows down

the robots, but there were no collision situations. By separating

route planning from synchronization, we simplified the entire

fleet management process and thus created a very efficient

system for network and hardware resources. In addition, the

system is easily expandable.

Keywords— Fleet management; ROS; Path; Mobile robot

I. INTRODUCTION

Automatic vehicles have been used in the industrial

environment for several decades. However, their deployment

is often problematic and unprofitable. Therefore, these

vehicles must be replaced by smarter AGVs [14], able to

move even in an environment that can be changed

dynamically. It is assumed that such robots will move into the

factory, according to the Industry 4.0 model. These robots

must move along common paths and share critical

information such as their location and environment map. Due

to the industrial environment's safety requirements, this fleet

must be controlled by a superior system - a supervisor.

In the context of Industry 4.0, new innovative approaches

to the operation of AGV robots are beginning to take shape,

which promises higher efficiency, higher adaptability, and

much more. A new type of industrial robot called AMR is

starting to emerge [15]. The first difference between AGV

and AMR follows from the name (Fig. 1). The AGV is a

guided vehicle, i. e., it needs a built-in support guidance

system, mostly in magnetic strips in the floor or various signs

in the environment. The advantage of the AMR robot is that

it does not need anything like that. Thanks to this, its

deployment or change of environment is much faster and

cheaper. AMR is a robot with a certain degree of autonomy.

The path planning between point A and point B is left

exclusively to localization and navigation algorithms located

directly in the robot or the master computer [16]. Almost all

AGV systems are designed to operate without hindrance and

out of reach of people. In the event of an obstacle, they will

stop immediately for safety reasons. In contrast, most AMRs

are designed to interact with the environment as much as

possible. For example, if the robot detects an obstacle, and

there is enough space to avoid it, it will bypass the obstacle

to optimize its cycle time.

Fig. 1. AGV from company CEIT (left) and AMR from company Photoneo

(right)

Most AGVs operate independently and must be manually

programmed to avoid collisions. The AMR robot fleet should

resolve mutual collisions directly in their essence, without the

integrator having to program and handle all collision

situations. Although AMR robots are far superior to AGV

robots, their algorithms are still evolving and still need a lot

of attention to compete with conventional AGVs in terms of

reliability and safety.

In a distributed system such as the AMR robot fleet [17],

the supervisor, or other words, the superior system, has also

significant mission. It should play the role of monitoring

other robots (subsystems) and should also provide higher-

level control for all the robots. In practice, this can mean

distributing necessary information for robots, such as an

environment map, the location of workplace and charging

stations, the required tasks, and the implementation of

operational interventions by the operator. As a running

process, the supervisor must also guarantee the safe operation

of the entire system. For this reason, and especially from the

Journal of Robotics and Control (JRC) ISSN: 2715-5072 780

Jakub Hažík, Fleet Management System for an Industry Environment

supervisor's nature, it is essential that it does the work on a

dedicated computing resource (PC) and not on one of the

robots.

The research contribution is a novel approach to the fleet

management system. Compared to existing solutions, this

system is simple, reliable and easily expandable. Compared

to other solutions, which are analyzed in detail in Section III,

our system separated the planning process from the

synchronization. Thanks to this, it is not so complex and is

much more flexible in the event of a need to trigger a change

in the route plan. The system designed in this way can also be

used for a larger number of robots, because it is not

demanding on hardware and communication networks. The

entire framework of our solution is described in detail in part

IV. Subsequently, further improvements, which resulted from

the experiments, are described in detail in Section V. Finally,

there is a section describing the results that demonstrate the

high efficiency and reliability of our approach.

II. FRAMEWORK

The proposed algorithms are implemented using ROS

tools and libraries. ROS [3] provides communication

interfaces and tools that greatly simplify the writing of

software for robots. A control system is arranged in ROS

nodes and communication channels, where the ROS node

represents a process that can communicate with other

equivalent processes via communication interfaces. It also

contains useful tools for visualizing, monitoring, and

debugging the programs.

A hybrid map [18] was used to represent the environment

(a combination of metric and topological maps). This takes

advantage of both representations. With a metric (grid

occupancy) map, a very detailed model of the environment

can be achieved. The robots can map well and then locate

themselves in space using rangefinders. However, due to the

required computational power to work with such a map, it

turns out that a metric map is not so ideal for planning,

especially in the case of large environments. Therefore, a

topological representation will also be used. Such a model has

the form of a graph and is more suitable for searching for

possible routes.

Concerning mobile robots, it is necessary to consider the

use of a wireless communication network primarily [19].

When monitoring and controlling AMR robots' fleet by some

superior system, building a quality network in a given

environment is required. The industrial network [4], in

contrast to the conventional one, must meet high

requirements in several parameters such as coverage,

reliability, security, durability, scalability, and fast response.

Several network architectures and industrial protocols are

currently being developed, including Wi-Fi, ZigBee,

Bluetooth, RFID, and other proprietary protocols. In

industrial mobile robotics, Wi-Fi technology represents the

vast majority, thanks to the sufficiently fast data flow,

acceptable price, and long-range. Although Wi-Fi was not

designed for industrial purposes, it can meet industrial

requirements due to protocol and device-level modifications.

One of the network's critical parameters for controlling

mobile robots is the response speed, mainly due to strict

safety certifications. Table 1 shows the maximum allowed

network latencies for individual actions with the mobile

robot. For example, to use a given network to control the

robot's movement in real-time, it is necessary to ensure a

latency lower than 1 ms.

TABLE I. INDUSTRIAL NETWORK REQUIREMENTS FOR SOME MOBILE

ROBOT OPERATIONS [10]

Operation Latency (end-to-end) Message size

Monitoring system 50 ms – 1 s 40 – 250 bytes

Control <10 ms 40 – 250 bytes

Positioning < 1ms 40 – 250 bytes

III. ANALYSIS OF AVAILABLE SOLUTIONS

Even before creating our solution, the necessary analysis

of available solutions for fleet management was performed.

The following is a summary analysis of these solutions.

A. Tuw_multi_robot [1]

Tuw_multi_robot is a package of the ROS that was

developed on the Vienna University of Technology premises.

It is a set of algorithms that can control a fleet of robots from

the initials to the target stations in any map without collisions.

In the first step, a graph is generated based on a metric map

using a Voronoi diagram [21], or the graph is directly defined

by the user. Subsequently, the robots' target positions are

selected, and synchronized routes through the graph's vertices

are planned. Route synchronization consists in the fact that,

for example, robot A is allowed to reach a given node if robot

B has successfully passed this node, as it is shown in Fig. 2.

More details can be found in [20].

Fig. 2. Deadlock solution: UP - Initial and required robot positions

representing the problem DOWN - Solving the problem by avoiding.

Addressing specific situations like this makes the package

a potent tool in route planning for a robot fleet in

environments where these situations occur. It is necessary to

address them at the planning level. On the other hand, there

is an issue in the result of the scheduler, which has to generate

one synchronized route plan for all robots at the same time.

If one of the robots reached the target and wanted to continue

to the new target while the other robots are still moving, there

are only two options. A new route plan could be created and

immediately implemented, or the robot would have to wait

for all the other robots to reach their goals. In both cases,

however, we encounter side effects. After successfully

running the simulation, we discovered issues where the route

synchronization was not correct, and the robots collided. We

Journal of Robotics and Control (JRC) ISSN: 2715-5072 781

Jakub Hažík, Fleet Management System for an Industry Environment

also analyzed the source code in more depth, and we judged

that implementing any modifications will be extremely

challenging.

B. Multi_robot_collision_avoidance [2]

Another important project is the work of scientists from

the Dutch University Maastricht University, which has also

grown into an available ROS package. This project seeks to

solve the problem of mutual collisions between robots in real-

time. The basis of the solution (Fig. 3) consists of known

robot positions due to the AMCL localization in conjunction

with modified methods ClearPath and Optimal Reciprocal

Collision Avoidance. More details can be found in [22].

Fig. 3. A real example of the use of dynamic collision avoidance [2]

C. LibMultiRobotPlanning [5]

It is a C ++ library, and the primary purpose is to provide

search algorithms for systems with the navigation of one or

more robots. The individual algorithms are based on several

different scientific methods, such as A *, A * epsilon, SIPP,

CBS, ECBS, CBS-TA, ECBS-TA, etc. However, similar to

tuw_multi_robot, one synchronized route plan is created for

all robots when using multiple robots at once. Modifying the

scheduler to generate a path for one robot without disrupting

other robots' currently performed paths is not an easy task.

More details can be found in [23].

D. Coordination_oru [7]

This research project, which was created at the Swedish

University Örerbo University in the Multi-Robot Planning

and Control Lab, represents an entirely different planning

approach than in previous cases. To control the fleet of

robots, it uses the so-called online planning, thanks to which

the individual routes are synchronously independent of each

other. So, if one of the robots requests a new path, the

consequence of its creation is not so drastically invasive for

the paths of the other robots. Part of the project is creating a

usable ROS package with decent documentation and

simulation tools. Despite efforts to achieve a reliable robot

control system [6], it is an online control tool that poses

particular risks in a planning or communication system's

failure. It also places exceptionally high demands on the

communication network, and the use of a large number of

robots can lead to an unbearable situation. More details can

be found in [24].

IV. CONCEPT AND METHODOLOGY

The standard V-model (Fig. 4) was applied for the

development phase of the entire solution. The requirements

for fleet management were defined as the creation of a simple

and reliable system capable of running in real time so that the

movement of robots is as efficient as possible and at the same

time without any collisions. Subsequently, the available

architectures in the ROS environment were analyzed (Section

III) and it was found that none of these approaches meets the

defined requirements. For this reason, a new approach was

designed (Section IV). Based on tests in various scenarios,

the shortcomings of the proposed approach were revealed.

Based on these experiments, improvements were proposed

(Section V) that created a system meeting the defined

requirements (Section VI).

Fig. 4. V-model diagram [13]

The primary task for each of the robots is to get from point

A to point B. When achieving this goal, it is necessary to plan

routes so that there is no collision with the environment and

other robots.

The simplest approach is that each robot will have its own

planner to calculate the given robot's route without collisions

with the environment [25]. Any conflicts with other robots

would be resolved locally. In this case, the supervisor has a

monitoring task and would not interfere in planning the

movement or resolving the collisions. This can work without

significant issues when a set of paths on which the robot can

move and their ordered motion direction are introduced. It is

also necessary to define mutual rules at intersections so that

robots can operatively resolve collisions. This solution is

relatively simple and easy to use in cases where there is a

possibility to define only one-way paths. Contrarywise, this

solution is inapplicable when the robots must move in a

narrow corridor in both directions.

The second (semi-autonomous) approach differs from the

previous one in that the planning task is taken over by a

superior system (supervisor) [26]. The primary motivation

for assigning this supervisor is to optimize the movement of

robots between stations. As the supervisor has information on

all robots and their paths, it may plan more suitable routes

with this data. The planning algorithm can also consider the

statistics of the time delay on individual routes and thus adjust

the route planning so that it is at least suboptimal. In the semi-

autonomous supervisor, the solving of local conflicts, e. g.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 782

Jakub Hažík, Fleet Management System for an Industry Environment

synchronization at intersections, is the task of the individual

robots. The described method of control, like the previous

one, requires a network of clearly defined one-way paths.

However, with certain modifications in the supervisor and the

warranty of sufficiently large space at intersections, it is

possible to use bi-directional paths. Thanks to the possibility

of optimizing the arrival of robots to the target station, this

planning method has an advantage in certain situations. This

is especially true in environments where collision objects

often enter the robot's workspace, due to which, for safety

reasons, the robots have to stop and wait for them to be

removed.

The third (centralized) approach [8] [9] combines the

logic of route planning and synchronization, similar to the

solution of tuw_multi_robot3. This means that the robots are

not creating individual route plans, but (one) central planner

makes them for all robots at once [27]. It would not be

necessary to deal with robot conflicts and collisions while

performing paths, as the plan itself already resolves them.

The advantage of this solution is that the paths do not have to

be fixed. This is because the deadlock can be solved by the

planner with a suitable synchronized route plan. As a result,

it is possible to cover more complicated cases, which makes

the solution more robust. It is also possible to achieve a higher

efficiency of robot movement because permissible paths are

more extensive. The problem that makes implementing this

control method more difficult is when one of the robots

reaches the target station and asks for a new route. If the other

robots are moving and still realizing their routes, a non-

moving robot must wait, or the entire plan must be

recalculated from the beginning. There are several solutions

to how to create a collision-free path for a waiting robot. For

example, the robot will wait for the other robots to reach the

target station before a new route plan is generated for all

robots. Collision-free operation is achieved, and at the same

time, it is not necessary to adjust the route of other robots. It

is a straightforward solution, but it is not very efficient.

Another possibility is to request a new path and then generate

and immediately implement a new route plan for all robots.

But again, many other problems should be algorithmically

solved so that the intervention in the actual movement of

robots is as small as possible. Deployment of such a planning

structure is also inappropriate when collision objects often

enter the robot workspace. Every encounter requires stopping

the robot and waiting for the obstacle to be removed for safety

reasons. As a result, this has the effect of breaking the

interconnected synchronization of all robots' paths.

We decided to proceed further with the development of

algorithms for robot fleet management in a form that will be

simple, to begin with, but with the potential to expand. The

main simplification prerequisite will be introducing one-way

paths in an environment defined in advance by the user.

Simultaneously, it is the standard principle of operation of

classic AGV robots in factories, from which comes the largest

percentage of demand for such robots. Thanks to this

simplistic assumption, we will focus on verifying and

debugging individual algorithms to achieve a stable and

reliable system. It will combine the control mentioned above

structures' advantages, namely a semi-autonomous and

centralized approach.

The role of the robot is to perform tasks coming from the

superior system [11] [12]. This will be defined as a request to

move to a point in space, while the supervisor system will

also send the path itself. If a dynamic obstacle enters the path,

the robot will respond by stopping and wait until the obstacle

is removed. For safety reasons, such stopping should be

solved using a control system directly on the robot.

Therefore, the proposed fleet management control will not

deal with dynamic obstacles in the environment. When

dealing with the intersections, the robot will communicate

with the superior system because the supervisor knows all the

robots' current positions. Therefore, if the robot locates itself

in front of the intersection zone, it will ask the superior

system for information on whether another robot is in the

given area. If so, the robot will wait in the current location

and enter this zone only when it is free.

The Gazebo simulation environment was chosen to verify

the solution. A pre-prepared environment with Kobuki robots

was used [28][29]. A differentially driven chassis

characterizes these robots. IMU sensors and buffer switches

are also used. For the needs of robot control, the platform was

enhanced by a simple lidar (RPL Lidar). An individual

platform's control is a simple position controller, which can

receive commands from positioning and implement the

corresponding action with feedback control. This controller

is described in the following pseudo-code.

Algorithm 1 Position controller

Input: CurrentPose pc, RequiredPose pr

Output: angularSpeed, linearSpeed

1: errorAngle, errorDistance := GetError(pc, pr)

2: angularSpeed := Kp,rotation ∗ errorAngle

3: angularSpeed :=

AcceptMaxAcceleration(angularSpeed)

4: angularSpeed := Saturation(angularSpeed). Výpočet

akčného zásahu - translácia

5: linearSpeed := Kp,translation ∗ errorDistance

6: linearSpeed := linearSpeed− abs(angularSpeed)

∗speedsBalanceCoefficient

7: linearSpeed := AcceptMaxAcceleration(linearSpeed)

8: linearSpeed := Saturation(linearSpeed)

1: function GetError(pc, pr)

2: errorDistance := sqrt((pc.x − pr.x)2 + (pc.y − pr.y)2)

3: goalAngle := atan2(pr.y − pc.y, pr.x − pc.x)

4: robotAngle := pc.theta

5: if HasTheSameSigns(robotAngle, goalAngle) then

6: return {goalAngle − robotAngle, distanceError}

7: end if

8: if robotAngle > 0 then

9: errorAngle := −1 ∗ abs(goalAngle) + abs(robotAngle)

10: if errorAngle < −π then

11: errorAngle := errorAngle + 2π

12: end if

13: else

14: errorAngle := abs(goalAngle) + abs(robotAngle)

15: if errorAngle > π then

16: errorAngle := errorAngle − 2π

17: end if

18: end if

19: return {errorAngle, errorDistance}

20: end function

Journal of Robotics and Control (JRC) ISSN: 2715-5072 783

Jakub Hažík, Fleet Management System for an Industry Environment

Existing CAD software tools were used to create paths in

the environment (Fig. 5). There are a few rules to follow

when drawing the paths. Only lines and curves (Arc) should

be used, and a color-coded arrow defines the direction of

individual paths. The arrow, together with the appropriate

line or curve, is inserted into the block named path_X. The

network of roads created in this way is saved in the

standardized .dxf format. The output is an oriented graph

(Fig. 6). Each node of the graph contains these attributes: ID

- unique identifier of the node and [X, Y] - Cartesian

coordinates of the position in the 2D map. The edges of the

graph also contain an attribute - the distance between the

vertices. The A * algorithm is used for path planning [30].

Fig. 5. Defining paths using AutoCAD software

Fig. 6. Oriented graph generated based on pre-drawn paths (Rviz)

After the first tests, the movement of the robots was

recorded. The problems were identified at road intersections

(crossroads) and in the case of different robot speeds. The

proposed implementation does not take such conditions into

account, and collisions between robots occur. Thus, it is

necessary to create a motion synchronization system that will

ensure the smooth and safe movement of robots on dedicated

roads. The paths are represented in a graph, and each of them

is marked with a unique identifier, which allows the

allocation of individual vertices for a given robot. So, the

robot cannot enter vertices already allocated for another

robot. Such functionality is very similar to a general principle

of semaphore or mutex [31]. This semaphore is represented

as a separate ROS node running on a supervisor. The

individual robots ask for a single ROS service to allocate the

node that the robot wants to reach. If the server returns a

successful allocation response, the robot can directly move to

that node. Otherwise, if another robot already allocates this

node, the server returns a failed allocation message, the robot

stops and resubmits after some time. The number of nodes

allocated for each of the robots is defined by a configurable

parameter set by the user concerning the physical length of a

particular robot. It is also possible to consider the connected

carts in this parameter. Since the configuration defines the

maximum number of vertices, it is not necessary to deallocate

redundant vertices. This is done automatically by the

algorithm after exceeding the limit. Fig. 7 shows a specific

situation in which a collision is avoided thanks to the used

semaphore. The color-coded dots (purple and yellow)

represent the robots' allocated dots, with the robot standing to

the left waiting for the freeing of the intersection.

Fig. 7. Solution of a collision of the robots

Successful usage of AMR robots also needs to define the

starting and target points and some other conditions.

However, moving from point A to point B may not be the

only task that the robot must perform from a practical

perspective. After reaching the target station, the robot does

not leave it immediately with a new target. The robot must

remain in the station to load or unload the material, and only

then it can move to the new target station. This defines a new

task for the robot: "wait for the operator to confirm the

loading/ unloading." But also, other tasks such as "park in the

charging dock," "let yourself be controlled remotely," or "do

nothing, wait for new tasks" must be defined in the fleet

management control. Two ROS nodes were created to

achieve the required behavior reasonably, one of which is part

of the server - it stores and distributes tasks for individual

robots. The second ROS node runs on individual robots - it

receives the assigned tasks from the server and then assigns

them to the robot's control elements.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 784

Jakub Hažík, Fleet Management System for an Industry Environment

The fleet management control must also provide some

necessary control actions over the entire system or even

individual robots. Such activities can be useful in debugging

system configuration and security risks analysis or

unexpected situations. ROS itself offers a CLI interface

[32][33] for calling ROS services and topics, with which the

required actions in the system are performed. Nevertheless,

even a seemingly simple action can be a set of large calls to

various processes in a multi-robot system. Therefore, some

necessary control actions were implemented in the GUI (Fig.

8), thanks to which the operator can relatively easily and

comfortably perform basic operations in the system. From the

available ROS packages, Gmapping [35][36] and AMCL

[37][38] were used for the self-localization of individual

robots in space.

Fig. 8. Simple control interface (GUI)

V. IMPROVEMENTS IN THE CONCEPT

After several experiments, a weakness in our solution was

identified in using one-way paths, due to which robots are

unable to reach some parts of the environment. For example,

if a narrow place in the environment does not allow to create

of two one-way paths next to each other, the area behind such

a location will not be reachable. Fig. 9 shows this situation. It

is evident that it is possible to get to the target point, but if

this path is one-way, the robot will not get back. This may be

a real case when the robot must transport material closer to a

line or machine where the possibility of maneuvering is

reduced.

Fig. 9. A situation in which the target station is unreachable due to the

narrow space

This issue was solved by introducing bidirectional paths.

Still, it will need a completely different planner type because

a simple search for the shortest path in the graph is not enough

to find the right combinations of paths. So that the robots do

not get into collisions and deadlocks. This has been done by

not using bidirectional paths on the whole map but only

where necessary (Fig. 10). The correct individual paths

without collisions were achieved by the synchronization

using the semaphore. The messages used for the

communication and graphical interface were also modified.

Fig. 10. Graphical representation of bidirectional paths in a graph

The sync semaphore has a crucial role in our approach. It

coordinates the execution of individual paths so that they are

without any collisions, even in bidirectional paths. It also

ensures that the robots do not block each other in areas with

bidirectional paths. To prevent two robots from meeting each

other on one road, we must ensure that there is always only

one robot on a bidirectional path at a given moment.

Therefore, if the robot requests to lock a node from the

bidirectional path, all other vertices lying on that path will be

locked automatically. So, another robot will not be able to

enter these nodes. However, in order not to unnecessarily

prevent the movement of robots that are aimed in the same

direction, we gradually unlock the nodes that have already

been reached by the given robot. This principle is shown in

Fig. 11 (where the robot, due to its physical dimensions,

permanently maintains two locked nodes). Suppose the

robot's path does not point through a bidirectional path but

only passes through a node that is part of a bidirectional path.

In that case, all nodes belonging to the bidirectional path do

not unnecessarily lock (only the node through which the robot

passes is locked).

The way of locking the nodes, where two robots could

meet each other, does not occur. But there are different

critical situations. For example, such a problem arises when

all the bidirectional nodes from one path are locked, even

those on which the robot is not currently located. Then it may

happen the second robot, whose path does not lead through a

bidirectional path, needs to enter one of the blocked nodes

(Fig. 12, blue robot). Because his next node is blocked and

not allowed to enter, it must wait for the red robot to pass

through. Therefore, unless the red robot is immediately in

front of the node, the blue robot will lock this node. At this

point, the one who requested the lock last will have the right

to enter it. Thanks to this, the blue robot can enter this critical

section. If necessary, the red robot waits until the blue leaves.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 785

Jakub Hažík, Fleet Management System for an Industry Environment

Fig. 11. The principle of locking the nodes on bidirectional paths (small red

dotes are blocked nodes)

Fig. 12. The principle of locking the nodes on bidirectional paths in a

situation with two robots

However, there is another critical situation. If a

bidirectional path leads to a closed circle path, after the

meeting of several robots, a deadlock can occur in the given

area (Fig. 13)

Fig. 13. Dead-lock of robots in the area, which was created by the

introduction of bidirectional paths

A new framework in the semaphore was created to avoid

this situation. It evaluates the locking of nodes within defined

areas. The user specifies the area through the configuration

file by naming the nodes belonging to the area and the

maximum number of robots allowed in the area. It is also

possible to generate such a configuration by a suitable

algorithm based on the generated graph. If the maximum

number of robots occupies a given area and another of the

robots requests the node's locking belonging to this area, this

locking will be rejected. So, the robot will have to wait until

the number of robots in the area decreases.

Generally, by introducing bidirectional paths, the fleet's

operation is more effective, and above all, it allows to move

robots through narrow corridors and into dead ends.

However, it should be noted that a significant part of the

graph should be formed from one-way paths, and the

bidirectional paths should be used only in necessary cases.

Suppose the individual robots in the system have different

speeds, for example, because they are fully loaded with

material or empty. In that case, situations arise where the

slower robot gets ahead of, the faster one. The side effect of

this situation is that the faster robot must slow down to the

slower one's speed. As a result, the overall possible usability

of the system also decreases. The faster robot will allocate a

longer part of the path in front of it to eliminate this effect.

Consequently, the probability that a slower robot will get

in front of a faster robot is reduced. The data variable storing

the path length that the robot can allocate in front of it is easily

parameterizable. It can be changed during operation

according to the current speed of the robot.

Finally, the principles of creating the routes for the fleet

management are summarized as follows:

• Bidirectional paths should only be used when necessary.

And if they are used, they should be as short as possible.

This is because there are extensive downtimes in front of

bidirectional paths, where the robot waits for the other

robot to leave this path.

• It is vital to avoid logical errors, such as the wrong

combination of road directions at an intersection. Suppose

the robot must remain for some time in the station,

necessary for loading or unloading material. In that case,

it is required to place this station off the main path. By

creating a detached edge for the station, the standing robot

will not block other robots that do not need to stop at this

station.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 786

Jakub Hažík, Fleet Management System for an Industry Environment

VI. RESULTS

The proposed solution should be compared with other

available solutions for robot fleet management. However,

because the solution is unique, it is impossible to compare it

directly quantitatively with another. Therefore, we will try to

evaluate the system based on a series of simulation tests. For

this reason, the experimental environment was created. In the

map, bidirectional paths, one-way paths, areas with

condensed intersections, and fewer crossings were created.

We tried to place the stations on the map so that the paths'

usability was evenly distributed. In Fig. 14, the stations are

shown by white circles. The robots do not stay in the stations

in the simulation setting, but after reaching them, the robot

immediately points to the next station.

Fig. 14. Map of simulation environment with paths and stations (width 7.8

m, length 9.8 m, the total length of roads 71.81 m, the total number of
nodes in graph 110, max. length of graph edge 0.7 m, number of

stations 10)

In the first test, path synchronization was turned off, and the

supervisor system was limited only to path planning and task

assignment. Collisions between robots begin to occur, so

their effects in the physical model were turned off. Although

such a setting is not very informative about the system's final

performance, it will nevertheless serve as a useful reference

for comparison with other results. This test will also show a

kind of "ideal state," where there are no unnecessary

downtimes, and the potential usability of individual robots is

up to 100 percent. Since we also want to evaluate the impact

of improvements that consider the speed of robots, the speed

limit to divide the robots into two groups was used: faster and

slower. The Table 2 shows a list of system parameters for

each simulation.

TABLE II. SIMULATION PARAMETERS

Simulation No. 1 No. 2 No. 3

Number of robots 5/5 5/5 5/5

Maximal speed (m/s) 0.2/0.5 0.2/0.5 0.2/0.5

Sync semaphore Off On On
Length of allocated path (m) - 0.7/0.7 0.7/0.25

The results for the individual simulations can be found in

Figs. 15 and 16. The graphs show the monitored variables in

the time range of 30 minutes. As logically expected, the

introduction of path synchronization led to a decrease in robot

mobility, and thus a reduction of overall utilization is

observed. This decrease is approximately 25 to 29 percent in

the specific map used.

On the other hand, 266 mutual collisions of robots were

averted. Let's compare experiments 2 and 3 (Table 2).

Another impressive result is that the improvement in

allocating a longer section of path ahead, with respect to the

speed of the robot, did not have any significant effect on the

system's usability. Improved functionality does not bring the

desired result because the faster robot gets priority at the

intersections, but the slower one has to stop and wait for the

faster robot. In the worst case, if there is another robot behind

the slower robot, suddenly we have two standing robots,

which results in an even worse result than in the case without

this improvement.

Series of experiments were performed, increasing the

speed difference between a fast and a slow group of robots.

For the quicker group, the speed limit to 0.7 m/s was set, and

all other parameters were at the previous values. Although a

slight improvement over the last series of experiments can be

seen, it has again been shown that this improvement has no

dramatic effect on system usability. In the case of

environments where long roads predominate over areas with

intersections, a more considerable difference in the system’s

usability can be observed. This is because situations where a

faster robot is blocked, prevail over situations where a slower

robot is waiting at an intersection.

Fig. 15. Monitored variables in the experiments

Journal of Robotics and Control (JRC) ISSN: 2715-5072 787

Jakub Hažík, Fleet Management System for an Industry Environment

Fig. 16. Average values of robot speeds, reachability of nodes, and

reachability of stations

During the development of the entire system, the burden

on the communication network has been minimized. The

unnecessary transfer of transformations (ticopic/tf) between

the robots and the server was reduced. To clarify: ROS topic

is peer-to-peer communication [34]. If individual robots send

their status information on the topic and to servers, two

processes (monitoring and task manager) need to take care of

that message. Thus, this creates identical two data flows

through the network. This redundancy was prevented by

using the topic_tools/relay tool, which runs on the server,

reads the requested topic sent from the robots, and forwards

it to another topic with an identical message type. Forwarding

already takes place within the server, so it does not load the

network in any way. We performed four measurements, using

1, 3, 5, and 10 robots in the same map as in the previous case,

and we used the same maximum speed of 0.5 m/s for all

robots. The data flow was measured using Wireshark

software, the simulated robots were run on a different

computer than the server (Fig. 17 and 18).

Fig. 17. Data flow between the server and the robots over time for different

numbers of used robots

Based on the results, it can be stated that no large data is

sent between the robots and the server. Likewise, the number

of packets is tolerable for lower categories of network

elements. Another useful fact is that the gradual addition of

robots to the system does not increase the data flow

exponentially. A higher increase in flow can be observed at

the start of the system because a map intended for localization

is distributed between the robots. Moreover, initialization

calls are also made. We also tried to simulate a connection

failure between the robot and the server by hard

disconnecting and reconnecting the network connection. The

system managed it without any problems. After

disconnecting the network connection, the robot reached the

allocated part of the path, stopped, and waited for the server's

connection and permission to allocate another part of the path

in front of it. After reconnection, communication was

restored (thanks to the ROS communication's correct design),

and the system could continue to run. The only re-

establishment criterion is to preserve the original use of IP

addresses for the server and robots

Journal of Robotics and Control (JRC) ISSN: 2715-5072 788

Jakub Hažík, Fleet Management System for an Industry Environment

Fig. 18. Average data flow depending on the number of robots

VII. CONCLUSION AND FUTURE WORK

Our research's main goal was to analyze and implement

fleet management for a group of robots. Although some

methods are available in the ROS environment, none of them

met our criteria for managing a fleet of robots. Each available

technique has its own limitations and different advantages.

Due to the identified issues, we proposed own approach for

the fleet management. We decided to use a simple planner in

combination with the correct synchronization of path

execution. This is a significant advantage of our approach, as

it ensures a fast and reliable synchronization and at the same

time a collision-free solution for a group of robots. This was

achieved also thanks to the use of bidirectional paths in

critical areas, giving our solution a new dimension. Thanks to

this, we can cover almost all cases of using a group of robots

in real industrial environments. Unlike other existing

solutions, ours differs mainly in that it has a separate planning

process from synchronization – combination of semi-

autonomous and centralized approach. Thanks to this, we

avoided using too complex, inflexible algorithms for creating

synchronous plans. So our solution is not only easy to use,

but compared to other solutions, it also has low network and

hardware requirements. Moreover, another advantage of our

approach is its modularity and it can be modified and

enhanced in different ways (e.g., methods other than standard

A* can be used for local planning [39][41][42] or the solution

can be extended to 3D for the usage of drones in industrial

environment [40]).

Our next goal for future work is to verify this system in a

real industrial environment. However, it is still necessary to

complete many implementation details, which were not

included in this work. These are mainly the details of a more

friendly GUI, enabling convenient setting and control of

individual operator’s interventions and the entire system's

configuration options to adapt to a wide range of real control

requirements quickly. It would also be possible to improve

the planning process by adding additional data because

finding the shortest path at the same time does not mean that

this path is also the fastest.

ACKNOWLEDGMENT

This work was supported by company Photoneo and

research projects VEGA 1/0754/19, VEGA 1/0775/20, and

VEGA 1/0599/20.

REFERENCES

[1] B. Binder, “Spatio-temporal prioritized planning,” in Ph.D. Thesis,

Wien, 2017.

[2] D. Claes et al., “Collision avoidance under bounded localization
uncertainty,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 1192-1198, 2012.

[3] W. Guan, S. Chen, S. Wen, Z. Tan, H. Song and W. Hou, "High-

Accuracy Robot Indoor Localization Scheme Based on Robot

Operating System Using Visible Light Positioning," in IEEE

Photonics Journal, vol. 12, no. 2, pp. 1-16, April 2020, Art no.

7901716, doi: 10.1109/JPHOT.2020.2981485.

[4] X. Li et al., “A review of industrial wireless networks in the context

of industry 4.0,” in Wireless networks, pp. 23-41, 2017.

[5] Library with search algorithms for task and path planning for multi

robot/agent systems. [online]. Available on:

https://github.com/whoenig/libMultiRobotPlanning.

[6] A. Mannucci et al., “Provably safe multi-robot coordination with

unreliable communication,” in IEEE Robotics and Automation

Letters, pp. 3232-3239, 2019.

[7] F. Pecora et al., “A Loosely-Coupled Approach for Multi-Robot

Coordination, Motion Planning and Control,” in ICAPS, pp. 485-493,

2018.

[8] V. Vavrík et al., “The design of manufacturing line configurations

with multi-agent logistics system,” Transportation Research Procedia,

pp. 1224-1230, 2019.

[9] Hajduk et al., “Developing new behavior strategies of robot soccer

team SjF TUKE Robotics: Category MiroSot,” in International

Journal of Advanced Robotic Systems, 2016, doi:

10.1177/1729881416663670.

[10] M. C., Lucas-Estan, “Emerging trends in hybrid wireless

communication and data management for the industry 4.0,” in

Electronics, 2018, doi: 10.3390/electronics7120400.

[11] R. Jánoš and M. Sukop, “Modular robots on multiagent principe,” in

Глобальне управління та економіка, pp. 57-60, 2015.

[12] A. Janota et al., “Functional Behavior of Traffic Control Systems

Learned Through Multiagent Systems,” in International Workshop on

the Educational Uses of Multi-Agent Systems (EduMAS), 2009.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 789

Jakub Hažík, Fleet Management System for an Industry Environment

[13] J. Adam, “What is the V-model approach to software development
and testing?” [online]. Available on: https://kruschecompany.com/v-

model-software-development-methodology/

[14] E. A. Oyekanlu et al., “A review of recent advances in automated
guided vehicle technologies: Integration challenges and research areas

for 5G-based smart manufacturing applications,” in IEEE access, pp.

202312-202353, 2020, doi: 10.1109/ACCESS.2020.3035729.

[15] G. Fragapane et al., “Planning and control of autonomous mobile

robots for intralogistics: Literature review and research agenda,” in

European Journal of Operational Research, pp. 405-426, 2021, doi:

10.1016/j.ejor.2021.01.019.

[16] A. Liaqat et al., “Autonomous mobile robots in manufacturing:

Highway Code development, simulation, and testing,” in The
International Journal of Advanced Manufacturing Technology, pp.

4617-4628, 2019, doi: 10.1007/s00170-019-04257-1

[17] A. Singhal et al., “Managing a fleet of autonomous mobile robots
(AMR) using cloud robotics platform,” in European Conference on

Mobile Robots (ECMR), pp. 1-6, 2017, doi:

10.1109/ECMR.2017.8098721.

[18] B. Kuipers et al., “Local metrical and global topological maps in the

hybrid spatial semantic hierarchy,” in IEEE International Conference

on Robotics and Automation, pp. 4845-4851, 2004, doi:

10.1109/ROBOT.2004.1302485.

[19] P. Neher et al., “Identification and Classification of the

Communication Data of Automated Guided Vehicles and
Autonomous Mobile Robots,” in 8th International Conference on

Automation, Robotics and Applications, pp. 68-75, 2022, doi:

10.1109/ICARA55094.2022.9738572.

[20] B. Binder et al., “Multi robot route planning (MRRP): Extended

spatial-temporal prioritized planning,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 4133-

4139, 2019, doi: 10.1109/IROS40897.2019.8968465.

[21] H. Dong et al., “The path planning for mobile robot based on Voronoi

diagram,” in Third International Conference on Intelligent Networks
and Intelligent Systems, pp. 446-449, 2010, doi:

10.1109/ICINIS.2010.105.

[22] D. Hennes et al., “Multi-robot collision avoidance with localization

uncertainty,” in AAMAS, pp. 147-154, 2012.

[23] H. Ma et al., “Overview: A hierarchical framework for plan generation

and execution in multirobot systems,” in IEEE Intelligent Systems,

pp. 6-12, 2017, doi: 10.1109/MIS.2017.4531217.

[24] F. Pecora et al., “A loosely-coupled approach for multi-robot

coordination, motion planning and control,” in Twenty-eighth

international conference on automated planning and scheduling, 2018.

[25] J. Conesa-Muñoz et al., “Distributed multi-level supervision to

effectively monitor the operations of a fleet of autonomous vehicles
in agricultural tasks,” in Sensors, pp. 5402-5428, 2015, doi:

10.3390/s150305402.

[26] P. Forte et al., “Online task assignment and coordination in multi-

robot fleets,” in IEEE Robotics and Automation Letters, pp. 4584-

4591, 2021, doi: 10.1109/LRA.2021.3068918.

[27] M. Berndt et al., “Centralized Robotic Fleet Coordination and

Control,” in Mobile Communication-Technologies and Applications;

25th ITG-Symposium, pp. 1-8, 2021.

[28] A. Renawi et al., “ROS validation for non-holonomic differential
robot modeling and control: Case study: Kobuki robot trajectory

tracking controller,” in 7th International Conference on Modeling,

Simulation, and Applied Optimization (ICMSAO), pp. 1-5, 2017, doi:

10.1109/ICMSAO.2017.7934880.

[29] N. Gallardo et al., “Formation control implementation using kobuki

turtlebots and parrot bebop drone,” in World Automation Congress

(WAC), pp. 1-6, 2016, doi: 10.1109/WAC.2016.7582996.

[30] F. Duchoň et al., “Path planning with modified a star algorithm for a

mobile robot,” in Procedia Engineering, pp. 59-69, 2014, doi:

10.1016/j.proeng.2014.12.098.

[31] C. Iordache et al., “Smart Pointers and Shared Memory

Synchronisation for Efficient Inter-process Communication in ROS
on an Autonomous Vehicle,” inIEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 6441-6448, 2021, doi:

10.1109/IROS51168.2021.9636018.

[32] B. Dieber et al., “Penetration testing ROS,” in Robot operating system

(ROS), pp. 183-225, 2020, doi: 10.1007/978-3-030-20190-6_8.

[33] S. Adam and U.P. Schultz, “Towards interactive, incremental

programming of ros nodes,” in arXiv preprint arXiv:1412.4714, 2014.

[34] M. Quigley et al., “ROS: an open-source Robot Operating System,”

in ICRA workshop on open source software, pp. 1-6, 2009.

[35] Y. Abdelrasoul et al., “A quantitative study of tuning ROS gmapping

parameters and their effect on performing indoor 2D SLAM,” in 2nd

IEEE international symposium on robotics and manufacturing
automation (ROMA), pp. 1-6, 2016, doi:

10.1109/ROMA.2016.7847825.

[36] R. K. Megalingam et al., “ROS based autonomous indoor navigation
simulation using SLAM algorithm,” in International Journal of Pure

and Applied Mathematics, pp. 199-205, 2018.

[37] W. P. N. D. Reis et al., “An extended analysis on tuning the
parameters of Adaptive Monte Carlo Localization ROS package in an

automated guided vehicle,” in The International Journal of Advanced

Manufacturing Technology, pp. 1975-1995, 2021, doi:

0.1007/s00170-021-07437-0.

[38] W. P. N. D. Reis et al., “A quantitative study of tuning ros adaptive

monte carlo localization parameters and their effect on an agv
localization,” in 19th International Conference on Advanced Robotics

(ICAR), pp. 302-307, 2019, doi: 10.1109/ICAR46387.2019.8981601.

[39] I. Hassani et al., “Turning Point and Free Segments Strategies for
Navigation of Wheeled Mobile Robot,” in International Journal of

Robotics and Control Systems, pp. 172-186, 2022, doi:

10.31763/ijrcs.v2i1.586.

[40] X. Wei-hong et al., “Review of Aerial Manipulator and its Control,”

in International Journal of Robotics and Control Systems, pp. 308-

325, 2021, doi: 10.31763/ijrcs.v1i3.363.

[41] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots:

A review,” in international journal of physical sciences, pp. 1314-

1320, 2012, doi: 10.5897/IJPS11.1745.

[42] M. N. Zafar and J. C. Mohanta, “Methodology for path planning and

optimization of mobile robots: A review,” in Procedia computer

science, pp. 141-152, 2018, doi: 10.1016/j.procs.2018.07.01.

