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Abstract — The article deals with the management of a fleet 

of AMR robots that perform logistics in production. The entire 

system design is implemented in the ROS environment - state of 

the art for the development in robotics. Four already available 

solutions for fleet management in ROSe are analyzed in detail 

in the article. These solutions fail when there is a need to change 

the route plan in a dynamically changing environment. 

Likewise, some did not sufficiently synchronize the movement of 

the robots and collisions occurred or, with a larger number of 

robots, represented an enormous computational load. Our 

solution was designed to be as simple and reliable as possible for 

industrial use. It is based on a combination of semi-autonomous 

and centralized approach. A hybrid map is used for planning 

the movement of the robot fleet, which provides the advantages 

of both a metric and a topological map. This route map for a 

fleet of robots can be easily drawn in readily available CAD 

software. Synchronization of robots was designed on the 

principle of semaphore or mutex, which enabled the use of 

bidirectional paths. The results are verified in simulations and 

were aimed at verifying the proposed robot synchronization. It 

was confirmed that the proposed synchronization slows down 

the robots, but there were no collision situations. By separating 

route planning from synchronization, we simplified the entire 

fleet management process and thus created a very efficient 

system for network and hardware resources. In addition, the 

system is easily expandable. 
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I. INTRODUCTION 

Automatic vehicles have been used in the industrial 

environment for several decades. However, their deployment 

is often problematic and unprofitable. Therefore, these 

vehicles must be replaced by smarter AGVs [14], able to 

move even in an environment that can be changed 

dynamically. It is assumed that such robots will move into the 

factory, according to the Industry 4.0 model. These robots 

must move along common paths and share critical 

information such as their location and environment map. Due 

to the industrial environment's safety requirements, this fleet 

must be controlled by a superior system - a supervisor. 

In the context of Industry 4.0, new innovative approaches 

to the operation of AGV robots are beginning to take shape, 

which promises higher efficiency, higher adaptability, and 

much more. A new type of industrial robot called AMR is 

starting to emerge [15]. The first difference between AGV 

and AMR follows from the name (Fig. 1). The AGV is a 

guided vehicle, i. e., it needs a built-in support guidance 

system, mostly in magnetic strips in the floor or various signs 

in the environment. The advantage of the AMR robot is that 

it does not need anything like that. Thanks to this, its 

deployment or change of environment is much faster and 

cheaper. AMR is a robot with a certain degree of autonomy. 

The path planning between point A and point B is left 

exclusively to localization and navigation algorithms located 

directly in the robot or the master computer [16]. Almost all 

AGV systems are designed to operate without hindrance and 

out of reach of people. In the event of an obstacle, they will 

stop immediately for safety reasons. In contrast, most AMRs 

are designed to interact with the environment as much as 

possible. For example, if the robot detects an obstacle, and 

there is enough space to avoid it, it will bypass the obstacle 

to optimize its cycle time. 

 

Fig. 1. AGV from company CEIT (left) and AMR from company Photoneo 

(right) 

Most AGVs operate independently and must be manually 

programmed to avoid collisions. The AMR robot fleet should 

resolve mutual collisions directly in their essence, without the 

integrator having to program and handle all collision 

situations. Although AMR robots are far superior to AGV 

robots, their algorithms are still evolving and still need a lot 

of attention to compete with conventional AGVs in terms of 

reliability and safety. 

In a distributed system such as the AMR robot fleet [17], 

the supervisor, or other words, the superior system, has also 

significant mission. It should play the role of monitoring 

other robots (subsystems) and should also provide higher-

level control for all the robots. In practice, this can mean 

distributing necessary information for robots, such as an 

environment map, the location of workplace and charging 

stations, the required tasks, and the implementation of 

operational interventions by the operator. As a running 

process, the supervisor must also guarantee the safe operation 

of the entire system. For this reason, and especially from the 
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supervisor's nature, it is essential that it does the work on a 

dedicated computing resource (PC) and not on one of the 

robots.  

The research contribution is a novel approach to the fleet 

management system. Compared to existing solutions, this 

system is simple, reliable and easily expandable. Compared 

to other solutions, which are analyzed in detail in Section III, 

our system separated the planning process from the 

synchronization. Thanks to this, it is not so complex and is 

much more flexible in the event of a need to trigger a change 

in the route plan. The system designed in this way can also be 

used for a larger number of robots, because it is not 

demanding on hardware and communication networks. The 

entire framework of our solution is described in detail in part 

IV. Subsequently, further improvements, which resulted from 

the experiments, are described in detail in Section V. Finally, 

there is a section describing the results that demonstrate the 

high efficiency and reliability of our approach.  

II. FRAMEWORK 

The proposed algorithms are implemented using ROS 

tools and libraries. ROS [3] provides communication 

interfaces and tools that greatly simplify the writing of 

software for robots. A control system is arranged in ROS 

nodes and communication channels, where the ROS node 

represents a process that can communicate with other 

equivalent processes via communication interfaces. It also 

contains useful tools for visualizing, monitoring, and 

debugging the programs. 

A hybrid map [18] was used to represent the environment 

(a combination of metric and topological maps). This takes 

advantage of both representations. With a metric (grid 

occupancy) map, a very detailed model of the environment 

can be achieved. The robots can map well and then locate 

themselves in space using rangefinders. However, due to the 

required computational power to work with such a map, it 

turns out that a metric map is not so ideal for planning, 

especially in the case of large environments. Therefore, a 

topological representation will also be used. Such a model has 

the form of a graph and is more suitable for searching for 

possible routes. 

Concerning mobile robots, it is necessary to consider the 

use of a wireless communication network primarily [19]. 

When monitoring and controlling AMR robots' fleet by some 

superior system, building a quality network in a given 

environment is required. The industrial network [4], in 

contrast to the conventional one, must meet high 

requirements in several parameters such as coverage, 

reliability, security, durability, scalability, and fast response. 

Several network architectures and industrial protocols are 

currently being developed, including Wi-Fi, ZigBee, 

Bluetooth, RFID, and other proprietary protocols. In 

industrial mobile robotics, Wi-Fi technology represents the 

vast majority, thanks to the sufficiently fast data flow, 

acceptable price, and long-range. Although Wi-Fi was not 

designed for industrial purposes, it can meet industrial 

requirements due to protocol and device-level modifications. 

One of the network's critical parameters for controlling 

mobile robots is the response speed, mainly due to strict 

safety certifications. Table 1 shows the maximum allowed 

network latencies for individual actions with the mobile 

robot. For example, to use a given network to control the 

robot's movement in real-time, it is necessary to ensure a 

latency lower than 1 ms. 

TABLE I.  INDUSTRIAL NETWORK REQUIREMENTS FOR SOME MOBILE 

ROBOT OPERATIONS [10] 

Operation Latency (end-to-end) Message size 

Monitoring system 50 ms – 1 s 40 – 250 bytes 

Control <10 ms 40 – 250 bytes 

Positioning < 1ms 40 – 250 bytes 

 

III. ANALYSIS OF AVAILABLE SOLUTIONS 

Even before creating our solution, the necessary analysis 

of available solutions for fleet management was performed. 

The following is a summary analysis of these solutions. 

A. Tuw_multi_robot [1] 

Tuw_multi_robot is a package of the ROS that was 

developed on the Vienna University of Technology premises. 

It is a set of algorithms that can control a fleet of robots from 

the initials to the target stations in any map without collisions. 

In the first step, a graph is generated based on a metric map 

using a Voronoi diagram [21], or the graph is directly defined 

by the user. Subsequently, the robots' target positions are 

selected, and synchronized routes through the graph's vertices 

are planned. Route synchronization consists in the fact that, 

for example, robot A is allowed to reach a given node if robot 

B has successfully passed this node, as it is shown in Fig. 2. 

More details can be found in [20]. 

 

Fig. 2. Deadlock solution: UP - Initial and required robot positions 

representing the problem DOWN - Solving the problem by avoiding. 

Addressing specific situations like this makes the package 

a potent tool in route planning for a robot fleet in 

environments where these situations occur. It is necessary to 

address them at the planning level. On the other hand, there 

is an issue in the result of the scheduler, which has to generate 

one synchronized route plan for all robots at the same time. 

If one of the robots reached the target and wanted to continue 

to the new target while the other robots are still moving, there 

are only two options. A new route plan could be created and 

immediately implemented, or the robot would have to wait 

for all the other robots to reach their goals. In both cases, 

however, we encounter side effects. After successfully 

running the simulation, we discovered issues where the route 

synchronization was not correct, and the robots collided. We 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 781 

 

Jakub Hažík, Fleet Management System for an Industry Environment 

also analyzed the source code in more depth, and we judged 

that implementing any modifications will be extremely 

challenging.  

B. Multi_robot_collision_avoidance [2] 

Another important project is the work of scientists from 

the Dutch University Maastricht University, which has also 

grown into an available ROS package. This project seeks to 

solve the problem of mutual collisions between robots in real-

time. The basis of the solution (Fig. 3) consists of known 

robot positions due to the AMCL localization in conjunction 

with modified methods ClearPath and Optimal Reciprocal 

Collision Avoidance. More details can be found in [22]. 

 

 

Fig. 3. A real example of the use of dynamic collision avoidance [2] 

C. LibMultiRobotPlanning [5] 

It is a C ++ library, and the primary purpose is to provide 

search algorithms for systems with the navigation of one or 

more robots. The individual algorithms are based on several 

different scientific methods, such as A *, A * epsilon, SIPP, 

CBS, ECBS, CBS-TA, ECBS-TA, etc. However, similar to 

tuw_multi_robot, one synchronized route plan is created for 

all robots when using multiple robots at once. Modifying the 

scheduler to generate a path for one robot without disrupting 

other robots' currently performed paths is not an easy task. 

More details can be found in [23].  

D. Coordination_oru [7] 

This research project, which was created at the Swedish 

University Örerbo University in the Multi-Robot Planning 

and Control Lab, represents an entirely different planning 

approach than in previous cases. To control the fleet of 

robots, it uses the so-called online planning, thanks to which 

the individual routes are synchronously independent of each 

other. So, if one of the robots requests a new path, the 

consequence of its creation is not so drastically invasive for 

the paths of the other robots. Part of the project is creating a 

usable ROS package with decent documentation and 

simulation tools. Despite efforts to achieve a reliable robot 

control system [6], it is an online control tool that poses 

particular risks in a planning or communication system's 

failure. It also places exceptionally high demands on the 

communication network, and the use of a large number of 

robots can lead to an unbearable situation. More details can 

be found in [24]. 

IV. CONCEPT AND METHODOLOGY 

The standard V-model (Fig. 4) was applied for the 

development phase of the entire solution. The requirements 

for fleet management were defined as the creation of a simple 

and reliable system capable of running in real time so that the 

movement of robots is as efficient as possible and at the same 

time without any collisions. Subsequently, the available 

architectures in the ROS environment were analyzed (Section 

III) and it was found that none of these approaches meets the 

defined requirements. For this reason, a new approach was 

designed (Section IV). Based on tests in various scenarios, 

the shortcomings of the proposed approach were revealed. 

Based on these experiments, improvements were proposed 

(Section V) that created a system meeting the defined 

requirements (Section VI). 

 

Fig. 4. V-model diagram [13] 

The primary task for each of the robots is to get from point 

A to point B. When achieving this goal, it is necessary to plan 

routes so that there is no collision with the environment and 

other robots.  

The simplest approach is that each robot will have its own 

planner to calculate the given robot's route without collisions 

with the environment [25]. Any conflicts with other robots 

would be resolved locally. In this case, the supervisor has a 

monitoring task and would not interfere in planning the 

movement or resolving the collisions. This can work without 

significant issues when a set of paths on which the robot can 

move and their ordered motion direction are introduced. It is 

also necessary to define mutual rules at intersections so that 

robots can operatively resolve collisions. This solution is 

relatively simple and easy to use in cases where there is a 

possibility to define only one-way paths. Contrarywise, this 

solution is inapplicable when the robots must move in a 

narrow corridor in both directions. 

The second (semi-autonomous) approach differs from the 

previous one in that the planning task is taken over by a 

superior system (supervisor) [26]. The primary motivation 

for assigning this supervisor is to optimize the movement of 

robots between stations. As the supervisor has information on 

all robots and their paths, it may plan more suitable routes 

with this data. The planning algorithm can also consider the 

statistics of the time delay on individual routes and thus adjust 

the route planning so that it is at least suboptimal. In the semi-

autonomous supervisor, the solving of local conflicts, e. g. 
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synchronization at intersections, is the task of the individual 

robots. The described method of control, like the previous 

one, requires a network of clearly defined one-way paths. 

However, with certain modifications in the supervisor and the 

warranty of sufficiently large space at intersections, it is 

possible to use bi-directional paths. Thanks to the possibility 

of optimizing the arrival of robots to the target station, this 

planning method has an advantage in certain situations. This 

is especially true in environments where collision objects 

often enter the robot's workspace, due to which, for safety 

reasons, the robots have to stop and wait for them to be 

removed. 

The third (centralized) approach [8] [9] combines the 

logic of route planning and synchronization, similar to the 

solution of tuw_multi_robot3. This means that the robots are 

not creating individual route plans, but (one) central planner 

makes them for all robots at once [27]. It would not be 

necessary to deal with robot conflicts and collisions while 

performing paths, as the plan itself already resolves them. 

The advantage of this solution is that the paths do not have to 

be fixed. This is because the deadlock can be solved by the 

planner with a suitable synchronized route plan. As a result, 

it is possible to cover more complicated cases, which makes 

the solution more robust. It is also possible to achieve a higher 

efficiency of robot movement because permissible paths are 

more extensive. The problem that makes implementing this 

control method more difficult is when one of the robots 

reaches the target station and asks for a new route. If the other 

robots are moving and still realizing their routes, a non-

moving robot must wait, or the entire plan must be 

recalculated from the beginning. There are several solutions 

to how to create a collision-free path for a waiting robot. For 

example, the robot will wait for the other robots to reach the 

target station before a new route plan is generated for all 

robots. Collision-free operation is achieved, and at the same 

time, it is not necessary to adjust the route of other robots. It 

is a straightforward solution, but it is not very efficient. 

Another possibility is to request a new path and then generate 

and immediately implement a new route plan for all robots. 

But again, many other problems should be algorithmically 

solved so that the intervention in the actual movement of 

robots is as small as possible. Deployment of such a planning 

structure is also inappropriate when collision objects often 

enter the robot workspace. Every encounter requires stopping 

the robot and waiting for the obstacle to be removed for safety 

reasons. As a result, this has the effect of breaking the 

interconnected synchronization of all robots' paths. 

We decided to proceed further with the development of 

algorithms for robot fleet management in a form that will be 

simple, to begin with, but with the potential to expand. The 

main simplification prerequisite will be introducing one-way 

paths in an environment defined in advance by the user. 

Simultaneously, it is the standard principle of operation of 

classic AGV robots in factories, from which comes the largest 

percentage of demand for such robots. Thanks to this 

simplistic assumption, we will focus on verifying and 

debugging individual algorithms to achieve a stable and 

reliable system. It will combine the control mentioned above 

structures' advantages, namely a semi-autonomous and 

centralized approach. 

The role of the robot is to perform tasks coming from the 

superior system [11] [12]. This will be defined as a request to 

move to a point in space, while the supervisor system will 

also send the path itself. If a dynamic obstacle enters the path, 

the robot will respond by stopping and wait until the obstacle 

is removed. For safety reasons, such stopping should be 

solved using a control system directly on the robot. 

Therefore, the proposed fleet management control will not 

deal with dynamic obstacles in the environment. When 

dealing with the intersections, the robot will communicate 

with the superior system because the supervisor knows all the 

robots' current positions. Therefore, if the robot locates itself 

in front of the intersection zone, it will ask the superior 

system for information on whether another robot is in the 

given area. If so, the robot will wait in the current location 

and enter this zone only when it is free. 

The Gazebo simulation environment was chosen to verify 

the solution. A pre-prepared environment with Kobuki robots 

was used [28][29]. A differentially driven chassis 

characterizes these robots. IMU sensors and buffer switches 

are also used. For the needs of robot control, the platform was 

enhanced by a simple lidar (RPL Lidar). An individual 

platform's control is a simple position controller, which can 

receive commands from positioning and implement the 

corresponding action with feedback control. This controller 

is described in the following pseudo-code. 

Algorithm 1 Position controller 

Input: CurrentPose pc, RequiredPose pr 

Output: angularSpeed, linearSpeed 

1: errorAngle, errorDistance := GetError(pc, pr ) 

2: angularSpeed := Kp,rotation ∗ errorAngle 

3: angularSpeed := 

AcceptMaxAcceleration(angularSpeed) 

4:  angularSpeed := Saturation(angularSpeed). Výpočet 

akčného zásahu - translácia 

5: linearSpeed := Kp,translation ∗ errorDistance 

6: linearSpeed := linearSpeed− abs(angularSpeed) 

∗speedsBalanceCoefficient 

7:   linearSpeed := AcceptMaxAcceleration(linearSpeed) 

8:  linearSpeed := Saturation(linearSpeed) 

1: function GetError(pc, pr ) 

2:  errorDistance := sqrt((pc.x − pr.x)2 + (pc.y − pr.y)2) 

3:  goalAngle := atan2(pr.y − pc.y, pr.x − pc.x) 

4:  robotAngle := pc.theta 

5:   if HasTheSameSigns(robotAngle, goalAngle) then  

6:   return {goalAngle − robotAngle, distanceError}  

7:   end if 

8:   if robotAngle > 0 then 

9:    errorAngle := −1 ∗ abs(goalAngle) + abs(robotAngle) 

10:  if errorAngle < −π then 

11:  errorAngle := errorAngle + 2π 

12:  end if 

13:  else 

14:   errorAngle := abs(goalAngle) + abs(robotAngle) 

15:   if errorAngle > π then 

16:   errorAngle := errorAngle − 2π 

17:   end if 

18:   end if 

19:   return {errorAngle, errorDistance} 

20: end function 
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Existing CAD software tools were used to create paths in 

the environment (Fig. 5). There are a few rules to follow 

when drawing the paths. Only lines and curves (Arc) should 

be used, and a color-coded arrow defines the direction of 

individual paths. The arrow, together with the appropriate 

line or curve, is inserted into the block named path_X. The 

network of roads created in this way is saved in the 

standardized .dxf format. The output is an oriented graph 

(Fig. 6). Each node of the graph contains these attributes: ID 

- unique identifier of the node and [X, Y] - Cartesian 

coordinates of the position in the 2D map. The edges of the 

graph also contain an attribute - the distance between the 

vertices. The A * algorithm is used for path planning [30]. 

 

Fig. 5. Defining paths using AutoCAD software 

 

Fig. 6. Oriented graph generated based on pre-drawn paths (Rviz) 

After the first tests, the movement of the robots was 

recorded. The problems were identified at road intersections 

(crossroads) and in the case of different robot speeds. The 

proposed implementation does not take such conditions into 

account, and collisions between robots occur. Thus, it is 

necessary to create a motion synchronization system that will 

ensure the smooth and safe movement of robots on dedicated 

roads. The paths are represented in a graph, and each of them 

is marked with a unique identifier, which allows the 

allocation of individual vertices for a given robot. So, the 

robot cannot enter vertices already allocated for another 

robot. Such functionality is very similar to a general principle 

of semaphore or mutex [31]. This semaphore is represented 

as a separate ROS node running on a supervisor. The 

individual robots ask for a single ROS service to allocate the 

node that the robot wants to reach. If the server returns a 

successful allocation response, the robot can directly move to 

that node. Otherwise, if another robot already allocates this 

node, the server returns a failed allocation message, the robot 

stops and resubmits after some time. The number of nodes 

allocated for each of the robots is defined by a configurable 

parameter set by the user concerning the physical length of a 

particular robot. It is also possible to consider the connected 

carts in this parameter. Since the configuration defines the 

maximum number of vertices, it is not necessary to deallocate 

redundant vertices. This is done automatically by the 

algorithm after exceeding the limit. Fig. 7 shows a specific 

situation in which a collision is avoided thanks to the used 

semaphore. The color-coded dots (purple and yellow) 

represent the robots' allocated dots, with the robot standing to 

the left waiting for the freeing of the intersection. 

 

Fig. 7. Solution of a collision of the robots 

Successful usage of AMR robots also needs to define the 

starting and target points and some other conditions. 

However, moving from point A to point B may not be the 

only task that the robot must perform from a practical 

perspective. After reaching the target station, the robot does 

not leave it immediately with a new target. The robot must 

remain in the station to load or unload the material, and only 

then it can move to the new target station. This defines a new 

task for the robot: "wait for the operator to confirm the 

loading/ unloading." But also, other tasks such as "park in the 

charging dock," "let yourself be controlled remotely," or "do 

nothing, wait for new tasks" must be defined in the fleet 

management control. Two ROS nodes were created to 

achieve the required behavior reasonably, one of which is part 

of the server - it stores and distributes tasks for individual 

robots. The second ROS node runs on individual robots - it 

receives the assigned tasks from the server and then assigns 

them to the robot's control elements. 
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The fleet management control must also provide some 

necessary control actions over the entire system or even 

individual robots. Such activities can be useful in debugging 

system configuration and security risks analysis or 

unexpected situations. ROS itself offers a CLI interface 

[32][33] for calling ROS services and topics, with which the 

required actions in the system are performed. Nevertheless, 

even a seemingly simple action can be a set of large calls to 

various processes in a multi-robot system. Therefore, some 

necessary control actions were implemented in the GUI (Fig. 

8), thanks to which the operator can relatively easily and 

comfortably perform basic operations in the system. From the 

available ROS packages, Gmapping [35][36] and AMCL 

[37][38] were used for the self-localization of individual 

robots in space. 

 

Fig. 8. Simple control interface (GUI) 

V. IMPROVEMENTS IN THE CONCEPT  

After several experiments, a weakness in our solution was 

identified in using one-way paths, due to which robots are 

unable to reach some parts of the environment. For example, 

if a narrow place in the environment does not allow to create 

of two one-way paths next to each other, the area behind such 

a location will not be reachable. Fig. 9 shows this situation. It 

is evident that it is possible to get to the target point, but if 

this path is one-way, the robot will not get back. This may be 

a real case when the robot must transport material closer to a 

line or machine where the possibility of maneuvering is 

reduced. 

 

Fig. 9. A situation in which the target station is unreachable due to the 

narrow space 

This issue was solved by introducing bidirectional paths. 

Still, it will need a completely different planner type because 

a simple search for the shortest path in the graph is not enough 

to find the right combinations of paths. So that the robots do 

not get into collisions and deadlocks. This has been done by 

not using bidirectional paths on the whole map but only 

where necessary (Fig. 10). The correct individual paths 

without collisions were achieved by the synchronization 

using the semaphore. The messages used for the 

communication and graphical interface were also modified. 

 

Fig. 10. Graphical representation of bidirectional paths in a graph  

The sync semaphore has a crucial role in our approach. It 

coordinates the execution of individual paths so that they are 

without any collisions, even in bidirectional paths. It also 

ensures that the robots do not block each other in areas with 

bidirectional paths. To prevent two robots from meeting each 

other on one road, we must ensure that there is always only 

one robot on a bidirectional path at a given moment. 

Therefore, if the robot requests to lock a node from the 

bidirectional path, all other vertices lying on that path will be 

locked automatically. So, another robot will not be able to 

enter these nodes. However, in order not to unnecessarily 

prevent the movement of robots that are aimed in the same 

direction, we gradually unlock the nodes that have already 

been reached by the given robot. This principle is shown in 

Fig. 11 (where the robot, due to its physical dimensions, 

permanently maintains two locked nodes). Suppose the 

robot's path does not point through a bidirectional path but 

only passes through a node that is part of a bidirectional path. 

In that case, all nodes belonging to the bidirectional path do 

not unnecessarily lock (only the node through which the robot 

passes is locked). 

The way of locking the nodes, where two robots could 

meet each other, does not occur. But there are different 

critical situations. For example, such a problem arises when 

all the bidirectional nodes from one path are locked, even 

those on which the robot is not currently located. Then it may 

happen the second robot, whose path does not lead through a 

bidirectional path, needs to enter one of the blocked nodes 

(Fig. 12, blue robot). Because his next node is blocked and 

not allowed to enter, it must wait for the red robot to pass 

through. Therefore, unless the red robot is immediately in 

front of the node, the blue robot will lock this node. At this 

point, the one who requested the lock last will have the right 

to enter it. Thanks to this, the blue robot can enter this critical 

section. If necessary, the red robot waits until the blue leaves. 
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Fig. 11. The principle of locking the nodes on bidirectional paths (small red 

dotes are blocked nodes) 

 

 

Fig. 12. The principle of locking the nodes on bidirectional paths in a 

situation with two robots  

However, there is another critical situation. If a 

bidirectional path leads to a closed circle path, after the 

meeting of several robots, a deadlock can occur in the given 

area (Fig. 13) 

 

Fig. 13. Dead-lock of robots in the area, which was created by the 

introduction of bidirectional paths  

A new framework in the semaphore was created to avoid 

this situation. It evaluates the locking of nodes within defined 

areas. The user specifies the area through the configuration 

file by naming the nodes belonging to the area and the 

maximum number of robots allowed in the area. It is also 

possible to generate such a configuration by a suitable 

algorithm based on the generated graph. If the maximum 

number of robots occupies a given area and another of the 

robots requests the node's locking belonging to this area, this 

locking will be rejected. So, the robot will have to wait until 

the number of robots in the area decreases.  

Generally, by introducing bidirectional paths, the fleet's 

operation is more effective, and above all, it allows to move 

robots through narrow corridors and into dead ends. 

However, it should be noted that a significant part of the 

graph should be formed from one-way paths, and the 

bidirectional paths should be used only in necessary cases. 

Suppose the individual robots in the system have different 

speeds, for example, because they are fully loaded with 

material or empty. In that case, situations arise where the 

slower robot gets ahead of, the faster one. The side effect of 

this situation is that the faster robot must slow down to the 

slower one's speed. As a result, the overall possible usability 

of the system also decreases. The faster robot will allocate a 

longer part of the path in front of it to eliminate this effect. 

Consequently, the probability that a slower robot will get 

in front of a faster robot is reduced. The data variable storing 

the path length that the robot can allocate in front of it is easily 

parameterizable. It can be changed during operation 

according to the current speed of the robot.  

Finally, the principles of creating the routes for the fleet 

management are summarized as follows:  

• Bidirectional paths should only be used when necessary. 

And if they are used, they should be as short as possible. 

This is because there are extensive downtimes in front of 

bidirectional paths, where the robot waits for the other 

robot to leave this path.  

• It is vital to avoid logical errors, such as the wrong 

combination of road directions at an intersection. Suppose 

the robot must remain for some time in the station, 

necessary for loading or unloading material. In that case, 

it is required to place this station off the main path. By 

creating a detached edge for the station, the standing robot 

will not block other robots that do not need to stop at this 

station. 
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VI. RESULTS 

The proposed solution should be compared with other 

available solutions for robot fleet management. However, 

because the solution is unique, it is impossible to compare it 

directly quantitatively with another. Therefore, we will try to 

evaluate the system based on a series of simulation tests. For 

this reason, the experimental environment was created. In the 

map, bidirectional paths, one-way paths, areas with 

condensed intersections, and fewer crossings were created. 

We tried to place the stations on the map so that the paths' 

usability was evenly distributed. In Fig. 14, the stations are 

shown by white circles. The robots do not stay in the stations 

in the simulation setting, but after reaching them, the robot 

immediately points to the next station. 

 

Fig. 14.  Map of simulation environment with paths and stations (width 7.8 

m, length 9.8 m, the total length of roads 71.81 m, the total number of 
nodes in graph 110, max. length of graph edge 0.7 m, number of 

stations 10) 

In the first test, path synchronization was turned off, and the 

supervisor system was limited only to path planning and task 

assignment. Collisions between robots begin to occur, so 

their effects in the physical model were turned off. Although 

such a setting is not very informative about the system's final 

performance, it will nevertheless serve as a useful reference 

for comparison with other results. This test will also show a 

kind of "ideal state," where there are no unnecessary 

downtimes, and the potential usability of individual robots is 

up to 100 percent. Since we also want to evaluate the impact 

of improvements that consider the speed of robots, the speed 

limit to divide the robots into two groups was used: faster and 

slower. The Table 2 shows a list of system parameters for 

each simulation. 

TABLE II.  SIMULATION PARAMETERS 

Simulation No. 1 No. 2 No. 3 

Number of robots 5/5 5/5 5/5 

Maximal speed (m/s) 0.2/0.5 0.2/0.5 0.2/0.5 

Sync semaphore Off On On 
Length of allocated path (m) - 0.7/0.7 0.7/0.25 

 

The results for the individual simulations can be found in 

Figs. 15 and 16. The graphs show the monitored variables in 

the time range of 30 minutes. As logically expected, the 

introduction of path synchronization led to a decrease in robot 

mobility, and thus a reduction of overall utilization is 

observed. This decrease is approximately 25 to 29 percent in 

the specific map used. 

On the other hand, 266 mutual collisions of robots were 

averted. Let's compare experiments 2 and 3 (Table 2). 

Another impressive result is that the improvement in 

allocating a longer section of path ahead, with respect to the 

speed of the robot, did not have any significant effect on the 

system's usability. Improved functionality does not bring the 

desired result because the faster robot gets priority at the 

intersections, but the slower one has to stop and wait for the 

faster robot. In the worst case, if there is another robot behind 

the slower robot, suddenly we have two standing robots, 

which results in an even worse result than in the case without 

this improvement. 

Series of experiments were performed, increasing the 

speed difference between a fast and a slow group of robots. 

For the quicker group, the speed limit to 0.7 m/s was set, and 

all other parameters were at the previous values. Although a 

slight improvement over the last series of experiments can be 

seen, it has again been shown that this improvement has no 

dramatic effect on system usability. In the case of 

environments where long roads predominate over areas with 

intersections, a more considerable difference in the system’s 

usability can be observed. This is because situations where a 

faster robot is blocked, prevail over situations where a slower 

robot is waiting at an intersection. 

 
 

 

Fig. 15. Monitored variables in the experiments  
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Fig. 16. Average values of robot speeds, reachability of nodes, and 

reachability of stations  

During the development of the entire system, the burden 

on the communication network has been minimized. The 

unnecessary transfer of transformations (ticopic/tf) between 

the robots and the server was reduced. To clarify: ROS topic 

is peer-to-peer communication [34]. If individual robots send 

their status information on the topic and to servers, two 

processes (monitoring and task manager) need to take care of 

that message. Thus, this creates identical two data flows 

through the network. This redundancy was prevented by 

using the topic_tools/relay tool, which runs on the server, 

reads the requested topic sent from the robots, and forwards 

it to another topic with an identical message type. Forwarding 

already takes place within the server, so it does not load the 

network in any way. We performed four measurements, using 

1, 3, 5, and 10 robots in the same map as in the previous case, 

and we used the same maximum speed of 0.5 m/s for all 

robots. The data flow was measured using Wireshark 

software, the simulated robots were run on a different 

computer than the server (Fig. 17 and 18). 

 

Fig. 17. Data flow between the server and the robots over time for different 

numbers of used robots  

Based on the results, it can be stated that no large data is 

sent between the robots and the server. Likewise, the number 

of packets is tolerable for lower categories of network 

elements. Another useful fact is that the gradual addition of 

robots to the system does not increase the data flow 

exponentially. A higher increase in flow can be observed at 

the start of the system because a map intended for localization 

is distributed between the robots. Moreover, initialization 

calls are also made. We also tried to simulate a connection 

failure between the robot and the server by hard 

disconnecting and reconnecting the network connection. The 

system managed it without any problems. After 

disconnecting the network connection, the robot reached the 

allocated part of the path, stopped, and waited for the server's 

connection and permission to allocate another part of the path 

in front of it. After reconnection, communication was 

restored (thanks to the ROS communication's correct design), 

and the system could continue to run. The only re-

establishment criterion is to preserve the original use of IP 

addresses for the server and robots 
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Fig. 18.  Average data flow depending on the number of robots  

VII. CONCLUSION AND FUTURE WORK  

Our research's main goal was to analyze and implement 

fleet management for a group of robots. Although some 

methods are available in the ROS environment, none of them 

met our criteria for managing a fleet of robots. Each available 

technique has its own limitations and different advantages. 

Due to the identified issues, we proposed own approach for 

the fleet management. We decided to use a simple planner in 

combination with the correct synchronization of path 

execution. This is a significant advantage of our approach, as 

it ensures a fast and reliable synchronization and at the same 

time a collision-free solution for a group of robots. This was 

achieved also thanks to the use of bidirectional paths in 

critical areas, giving our solution a new dimension. Thanks to 

this, we can cover almost all cases of using a group of robots 

in real industrial environments. Unlike other existing 

solutions, ours differs mainly in that it has a separate planning 

process from synchronization – combination of semi-

autonomous and centralized approach. Thanks to this, we 

avoided using too complex, inflexible algorithms for creating 

synchronous plans. So our solution is not only easy to use, 

but compared to other solutions, it also has low network and 

hardware requirements. Moreover, another advantage of our 

approach is its modularity and it can be modified and 

enhanced in different ways (e.g., methods other than standard 

A* can be used for local planning [39][41][42] or the solution 

can be extended to 3D for the usage of drones in industrial 

environment [40]).  

Our next goal for future work is to verify this system in a 

real industrial environment. However, it is still necessary to 

complete many implementation details, which were not 

included in this work. These are mainly the details of a more 

friendly GUI, enabling convenient setting and control of 

individual operator’s interventions and the entire system's 

configuration options to adapt to a wide range of real control 

requirements quickly. It would also be possible to improve 

the planning process by adding additional data because 

finding the shortest path at the same time does not mean that 

this path is also the fastest. 
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