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Abstract—Linear Parameter Varying models-based Model Pre-
dictive Control (LPV-MPC) has stood out in manipulator robots
because it presents well-rejection to dynamic uncertainties in
flexible joints. However, it has become too weak when the MPC’s
optimization problem does not include kinematic constraints-based
conditions. This paper uses dynamic confined space of velocities
(DCSV) to include these conditions as a recursive polytopiccon-
straint, guaranteeing optimal dependency on a simplex scheduling
parameter. To this end, the local frame’s velocities and torque/force
preload of joints (related to violation of kinematic constraints)
are associated with different time scale dynamics such thatDCSV
correlates them as a polytope. So, a classical LPV-MPC will be
updated using a dynamic programming approach according to the
DCSV-based polytope. As a result, one lemma about DCSV-based
recursive polytope and a five-step procedure for two decoupled
close-loop schemes with different time scales compose the LPV-
MPC proposed method. Numerical validation shows that even
for relevant flexibility situations, trajectory tracking p erformance
is improved by tuning finite horizons and optimization problem
constraints regarding DCSV’s behavior.

Keywords—Model Predictive Control; Flexibility; Manipulators;
Dynamic confined space of velocities; Dynamic programming.

I. I NTRODUCTION

Flexibility in manipulator robots is commonly related to joint
motions when bearings and teeth in the gears are worn out,
allowing then the violation of the kinematic constraints [1],
[2], [2]–[6]. Usually, these motions are modeled as torsional
springs with low stiffness, so dynamic models require two
time-scales, one for the generalized velocities, usually known
as slow variables, and another to represent the violation of
the kinematic constraints, usually known as fast variableson
singular perturbation approaches [7]–[11].

Mathematically, when kinematic constraints are satisfied for
any trajectory inC-space, motions required in the joint space
do not need more degrees of freedom. In that context, gen-
eralized velocities are a linear combination of vector fields
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represented by the columns of Jacobian, also known as 1-
form distributions. Assuming rigid motions, only the orthogonal
complement of Jacobian, also known as 1-form co-distribution,
is responsible for the evolution of the kinematic constraints.
Nevertheless, with flexibility, generalized velocities depend on
both distribution and co-distribution; and kinematic constraints
are defined by a symmetric operator acting on the fast variables
[12], [13]. Considering this operator is necessary to avoid
low manipulability in any control scheme [12], [14]–[16].
Although a good calculus of the Jacobian implies a coherent
manipulability for trajectories inC-space, even using a rigid
version of the system, the lack of fast variables will induce
small transversal and longitudinal motions in the joint space
that violate the kinematic constraints.

However, some researchers still assume rigid bodies in the
topology of the kinematic configuration and overall dynamic
due to the difficulty of controlling joints with small disturbance
motions and not because rigidity is technically attractive[7]–
[9], [17]–[23]. From that viewpoint, these approaches become
rather impracticable in avoiding accidental collisions for track-
ing tasks and weak tolerance ranges for effort controllers [24]–
[26]. In recent years, linearizing control methods have been
used to mitigate flexibility effects in trajectory trackingtasks
or disturbance (small) motions in the joint space. However,it
is well-known that linearization methods are more efficientfor
approaches based on only one time scale, one fact that needs
improvement for two different nature dynamics or singular
perturbations-based frameworks [27]–[35]. Although the same
problem is partially solved by using optimal programming
methods on robust control frameworks or adaptive outer loops,
the controller’s performance of these approaches gets compro-
mised when the end-effector’s velocity increases [27], [29],
[30], [36], [37], [37]–[42].

In contrast, integrator backstepping control, supported by
sliding manifolds and LQR’s methods, consider flexibility as
a L2 disturbance, highlighting that LQR offers better rejection
to disturbances, low oscillations, and avoids the chattering
phenomenon [8], [33], [42], [43], [43]–[49]. Nevertheless, LQR
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needs to offer a suitable rise time and setting time for two
timescales, specifically for velocity changing, where relevant
flexibility situations cause motion inaccuracy. Therefore, there
must be careful with fast variables whose transients with small
time responses are undetectable for most known observers and
enough to violate the kinematic constraints.

Model predictive control (MPC) has also become a suitable
control strategy for handling constrained manipulator robots
with input constraints that aim for reasonable behavior forecasts
[50]–[54]. However, although MPC performs better than LQR
due to its moving time horizon window, in robotic systems,
its numeric complexity is increased when two time-scales and
parameter varying related to links’ guidance are considered [6],
[38], [55]. Currently, some techniques suggest a lower computa-
tional effort using polytopic representations of the input/output
constraints on dynamic programming (DP) methods for linear
parameter varying (LPV) [52], [55], [56]. But, although DP’s
methods reduce the computational cost, this approach is poor
for velocity changing.

In [14], [15], Dynamic Confined Space of Velocities (DCSV)
was introduced to measure the interrelation between the small
transversal and longitudinal motions in joint space and thelocal
velocity of the mobile system. Three components structure the
DCSV:

1. Inverse of the norm of the longitudinal violator components
of the kinematic constraints;

2. inverse of the norm of the transversal violator components
of the kinematic constraints; and

3. norm of the local frame’s velocity related to generalized
velocities.

In this approach, a set of points with random behavior repre-
sents the evolution of the three above components. If these
points remain inner to space defined by the DCSV, it is
possible to guarantee satisfactory performance of the kinematic
constraints [14], [15]. Considering the DCSV from a control
viewpoint, recent works show concern about the small violating
motions in the joint space but ignore the low manipulability
[57]–[62].

The research contribution of this paper is a hybrid LPV-MPC
scheme that reduces the impact of flexibility in manipulator
robots according to conditions imposed by DCSV and the
kinematic constraints. To this end, the classical computedtorque
technique is applied to linearize the system, being an outer
loop that sets static state feedback for slow variables and an
inner loop based on the auxiliary control law defined by [14].
Nevertheless, this inner loop will be adapted to a polytopicrep-
resentation of the DCSV, aiming to compute explicit solutions
to the constrained finite-time optimal problem using a DP-based
method. This method will include DCSV’s parameters in the
cost function, and all time-varying parameters will be assumed
as accessible online. Finally, instead of solving a constrained

finite-time optimal control problem at each sampling, the op-
timal inputs are precalculated and stored in a lookup table at
the same time that suitable velocities at the end-effector of the
manipulator robot are assigned.

This paper is organized as follows: Section II presents a
generic theoretical framework about robots with two time-scales
when linearized by classical CT technique. Sections III and
IV detail the formulation of the LPV approach subject to a
DCSV-based recursive polytope and a constrained finite-time
optimal problem based on the DP technique. Section V presents
results on the UR5 robot using CoppeliaSim (V-REP) and free
framework YALMIP. Finally, Section VI will make the close
remarks.

II. BACKGROUND

Let us consider an-joint manipulator robot whose configura-
tion C-space can be fully described by the vector of generalized
coordinatesq = [q1 q2 . . . qn]

T
∈ Dq ⊂ IRn where qj , for

j = 1, . . . , n, represents the angle or displacement of thej-th
joint. Furthermore, let us consider the following statements:

i. There arek holonomic/nonholonomic velocity constraints
represented byA(q) ∈ IRn×k such thatAT (q)q̇ = 0. In
this way, the linear sensitivity of the end-effector twist
[Vb] ∈ se(3)1 to the joint velocityq̇ can be expressed as
q̇ = Sb(q)Vb, whereSb(q) ∈ IRn×6 is the body Jacobian
matrix.

ii. By considering flexible joints,AT (q)q̇ 6= 0 and q̇ 6∈
cols(S(q)). Thus, q̇ = Sb(q)Vb +A(q)εµ, whereµ ∈ IRk

is a vector associated with the violation of the kinematic
constraints andε > 0 is a scale factor that represents the
flexibility [14], [15]. Moreover, sinceA(q)ST

b (q) = 0 then
AT (q)q̇ = AT (q)A(q)εµ.

iii. The end-effector trajectory is indicated by(X,Vb), where
X ∈ SE(3) is the current configuration onC-space such
that [Vb] = X−1Ẋ.

iv. Since the pseudo-inverse(ST
b Sb)

−1ST
b provides the op-

timal twist V∗
b when q̇ 6∈ cols(S(q)) then Sb(q)V

∗
b cor-

responds to the projection oḟq on the spanned space
by the columns ofSb(q). So, let Sp = Sb(S

T
b Sb)

−1ST
b

be that projection. Knowing thatA(q)ST
b (q) = 0 and

(In − Sp)Sp = 0, the kinematic constraints associated to
the configurationX and end-effector can be represented by

A(q) = (In − Sb(S
T
b Sb)

−1ST
b )Sb(S

T
b Sb)

−1 ∈ IRn×6.

A generic static state-feedback control for this system is
widely defined by

τ = B−1
τ (q)M(q)Sb(q)η + h(q, q̇), (1)

1Vb ∈ IR6 andse(3) is a Lie algebra of the special euclidean group related
to rigid-body motionsSE(3) .
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whereBτ (q) ∈ IRn×n is a full-rank matrix,M(q) ∈ IRn×n

is a symmetric positive-definite mass matrix,h(q, q̇) ∈ IRn

contains forces that lump together centripetal, coriolis,gravity
and friction terms that depends onq, or q̇. The vectorη ∈ IR6

is an auxiliary control law that ensures the conditionV̇b = η,
defined by

η = ĊX−1Xd
u+ CX−1Xd

u̇+KpX̃

+Ki

∫

X̃dt+KdCX−1Xd
u−KdVb (2)

being Xd ∈ SE(3) the target configuration of the end-
effector. The matricesKp, Kd, Ki ≥ 0 are real and positive
semidefinite matrices, the error configuratioñX must satisfy
[X̃] = log(X−1Xd) ∈ se(3) for all adjoint representations of
configurationX−1Xd, expressed by

CX−1Xd
=

[

RX−1Ẋd
0

⌊pX−1Ẋd
⌋RX−1Ẋd

RX−1Ẋd

]

for RX−1Ẋd
∈ SO(3), [pX−1Ẋd

] ∈ so(3). The vectoru ∈ IR6

represents the target twist on task-space.

By using (1) and applying the same method in [14], [15],
a well-known formulation for a robot on two time-scales,
associated with slow and fast variables, is given by























ẋ = Z0(q)Vb + [εZ1(q) + Z2(q)]µ

+ Z3(q)B
−1
τ (q)M(q)Sb(q)η + Z3(q)h(q, q̇),

εµ̇ = G0(q)Vb + [εG1(q) +G2(q)] µ

+G3(q)B
−1
τ (q)M(q)Sb(q)η +G3(q)h(q, q̇).

(3)

(4)

with x(0) = x0, µ(0) = µ0, wherex = [ q Vb ]
T ∈ IR6+n

is the state vector. In the context of singularly perturbed
systems,x andµ are associated with slow and fast variables,
respectively. The matricesZi, Gi (for i=0,1,2,3) have suitable
dimension and considered a split representation of the vector
fields Z(x, µ, ε, t) = [Zq(x, µ, ε, t) ZVb

(x, µ, ε, t)]
T

∈ IR6+n

andG(x, µ, ε, t) ∈ IRk, all of them continuously differentiable
on the parameters(x, µ, ε, t) ∈ Dx×Dµ× [0, ε0]× [0, t] being
Dx = Dq ∪ DVb

⊂ IR6+n and Dµ ⊂ IRk open and convex
sets. The vectorτ , τ(q,Vb, µ) ∈ IRn contains the torques at
motors.

III. PARAMETER VARYING AND RECURSIVE POLYTOPE

DCSV

Generally, for differentC-spaces, the varying parameters are
associated with any term that includes harmonic functions of
qi or q̇i. Thus, it will be assumed a vector parameter varying
depending onq and q̇ defined byθ , θ(q, q̇) ∈ IRnθ such that
the system (3)-(4) can be rewritten as

{

ẋ = A11(θ)x +A12(θ)εµ+Bx(θ)η + E1(θ)

εµ̇ = A21(θ)x +A22(θ)εµ+Bµ(θ)η + E2(θ),

(5)

(6)

(0, 0)

(0,Proj
Ω
ρT
k Cρk)

∣

∣

ρ3,k=V ∗

Ω

(Proj
Ω
ρT
k Cρk, 0)

∣

∣

ρ3,k=V ∗

(a)

ρ1,k

ρ2,k

ρ3,k

(b)

Fig. 1. (a) Vertices of the recursive polytopeΩ according to first integral in
(13) whenρ3,k = V ∗, and (b) representation inIR3 of the DCSV, where
red faces are associated with planesρ3,k = γ11ρ1,k + γ12ρ2,k, ρ3,k =
γ21ρ1,k +γ22ρ2,k , the yellow face represents the cutting at planeρ3,k = V ∗

while the gray faces are associated with first integral (13).

whereA11(θ) , [ 0n×n Z0(q) ] is associated with Jacobian
matrix between the space of the actuators and the end-effector’s
twist, andA22(θ) , G1(q)+ε−1G2(q) has a strong relationship
with the kinematic constraints violation. The matricesA12(θ) ,
Z1(q) + ε−1Z2(q) andA21(θ) , [ 0n×n G0(q) ] are directly
responsible by coupling slow and fast variables [63]–[65].The
matricesBx(θ) , Z3(q)∆(q) andBµ(θ) , G3(q)∆(q), with
∆(q) , B−1

τ (q)M(q)Sb(q), are input matrices.

Since h(q, q̇) can be associated with unknown dynamics,
acceptable control performance of (1) depends on efficient
computing ofh(q, q̇). Although algorithms based on the inverse
dynamic method2, as well as corrective methods for systems
with fast and slow dynamics3, have been widely used to solve
this problem, the work reported here, likewise in [55], considers
thatE1(θ) , Z3(q)h(q, q̇) andE2(θ) , G3(q)h(q, q̇) admit a
polytopic representation.

Let us consider a discrete-time linear parameter-varying
system associated with the system (5)-(6) by using a suitable
transformation. In this way, it will denotedai,k as thei-th part
of the vectora andak+v|k will denote the predicted statea at
the time instantk + v, where the prediction will be calculated
at the sampling instantk.

Without loss of generality, by using the T. Kato’s method
[66], like in [55], the system (5)-(6) can be decoupled in two
time-scales, as follows:

zi,k+1 = Ai(θk)zi,k +Bi(θk)ηk + Ei(θk)υk, i = 1, 2 (7)

where

i. there arenθ elements inq varying along time that will
be considered as the scheduling parameter vectorθk =

[θ
[1]
k . . . θ

[nθ ]
k ]T . This parameter is measured online such

that its future values are barycentric coordinates of a

2Euler-lagrange approach by using forward and backward iterations.
3Poincaré-Lindstedt technique, neural networks, and backstepping.
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+

+ Two-time scales
system

System 

System 

optimization 
problem

optimization 
problem

discrete see [14], [55]

(3)-(4)

(7)

θk, ρk

θk, ρk

(21)

(21)

τkEq. (1)
η∗

k

η∗

1,k

η∗

2,k

z1,k

z2,k

Eq. (17)

Eq. (17)

for i = 1

for i = 2

z1,k = xk

+L2(θk)z2,k

z2,k = εµ + L1(θk)xk

for µ = Hε(xk, τk, ε)

Fig. 2. Control scheme based on an explicit parameter-dependent control law
(16) and recursive polytopeΩ. The coordinate transformation at item (viii )
allows to configure the classical approach based on (1) as thedecoupled system
(7). By including DCSV as a constraint into the optimal problem (17), the final
stepP5 in Algorithm 1 of the MPC approach will guarantee a suitable outer-
loop according to the finite horizonN and Pólya degreeNp.

standardnθ-simplexΘ, i.e.,

θk ∈ Θ , {θk ∈ IRnθ

+ |

nθ
∑

j=1

θ
[j]
k = 1} ⊂ Dq;

ii. ηk ∈ IRn is the new discrete input vector andzk =
[z1,k z2,k]

T
∈ IR6+n+k is the new discrete state vector,

beingz1,k associated with slow variables andz2,k associ-
ated with fast variables;

iii. Z andU are polytopes including the origin in its interior,
defined by

Z ,

{

zk ∈ IR6+n+k|Pzzk ≤ bz

}

, (8)

U ,
{

ηk ∈ IR6|Pηηk ≤ bη
}

, (9)

wherePz, Pη are real matrices of suitable dimensions and
b1, b2 are known vectors;

iv. there is an invariant manifoldµ = H(x, τ(x, ε), ε) such
that z1,k = xk + L2(θk)z2,k and z2,k = εµ + L1(θk)xk,
whereL1(θk) ∈ IRk×n and L2(θk) ∈ IRn×k satisfy the
T. Kato’s conditions [66], also used in [55];

v. Ai(θk): IR
nθ → IR(6+n+k)×(6+n+k) is the discrete version

of the state matrix, andBi(θk): IRnθ → IR(6+n+k)×n is
the discrete version of the input matrix; both considered as
parameter-varying matrices in the polytopes

Ai(θk) =

nθ
∑

j=1

A
[j]
i θ

[j]
k , Bi(θk) =

nθ
∑

j=1

B
[j]
i θ

[j]
k ,

whereA[j]
i , B

[j]
i arej-th vertices.

vi. Ei(θk) : IRnθ → IR(6+n+k)×nυ can be associated to an
unknown dynamic whose behavior can be modeled like an
exogenous disturbance, only bounds on it are known, i.e.,
∃ υ ∈ U whereU ⊂ IRnυ is a polytope containing the
origin and defined byU = {υ : L′υ ≤ l}, for l andL′

known [55].

Although (7) represents a matrix-decoupled model, the pa-
rameter simplexΘ continues being the same for all matrices,
which is a common assumption in the framework of systems
with parameter varying (e.g., [52], [56]). For the problem
control makes sense, it will be assumed that the two time-scales
dynamic defined by (7) is controllable and observable for all
θk ∈ Θ.

In [14], [15] was shown that‖z2,k‖ (related to the fast
dynamicsµ) and variations of slipping/skidding (associated
with longitudinal/transversal small motions in flexible wheels)
converge simultaneously to a small neighborhood of the origin.
In manipulator roots, torsional motions can represent flexibil-
ity; each joint can be equivalent to a linear torsional spring
[17], [28], [29], [57], [67], [68]. Nevertheless, synthesizing a
control law becomes more difficult with this approach since
the end-effector’s twist is significantly affected by the slipping
associated with preload frictional forces and torques at each
joint. Both friction components usually are non-accessible but
compose the instrumental meaning ofz2,k and therefore, the
polytope (8) will be decomposed into two polytopes:

Z1 ,
{

z1,k ∈ IR6+n|Pz1z1,k ≤ bz,1
}

, and (10)

Z2 ,

{

z2,k ∈ IRk|Ptz2,τ,k + Pf z2,F,k ≤ bz,2

}

, (11)

wherePz = [Pz1 Pt Pf ], for k = t + f ; z2,τ,k is associated
with the friction torque preload,z2,F,k is associated with the
friction force preload andbz,1, bz,2 are known vectors.

A. DCSV-based recursive polytope

By using the same notation proposed in [14], [15], the
instrumental meaning ofz2,k can be used to build a dynamic
space known as DCSV as shown in Fig. 1(b), defined by two
planes at the first octant (ρ1,k = 0, ρ2,k = 0) such that

γ11ρ1,k + γ12ρ2,k ≤ ρ3,k ≤ γ21ρ1,k + γ22ρ2,k, (12)

whereρ1,k , ‖z2,F,k+1‖
−1, ρ2,k , ‖z2,τ,k+1‖

−1 and ρ3,k ,

‖Vb,k‖, beingγ11, γ12, γ21, γ22 > 0 known constants. As indi-
cated in [15],γ11, γ12, γ21 andγ22 have a direct correspondence
with the bounds of the control action, traction force, lateral and
longitudinal limits associated with the vector fieldsρ1 andρ2,
and the maximum value of local frame acceleration. However,
according to [14], there is an upper boundV ∗ > 0 such that
ρ3,k ≤ V ∗ guarantees asymptotic stability for suitable values of
ε ≤ ε∗, whereε∗ is formulated by Thikonov’s Theorem [14].

Until here, DCSV can be considered partially a polyhedron
in IR3, but defining a subsetΩ ⊆ IR2 such thatρk =

C. A. Peña Fernández, Control of Flexible Manipulator Robots Based on Dynamic Confined Space of Velocities: Dynamic
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[ρ1,k, ρ2,k]
T ∈ Ω, the constraintρ3,k ≤ V ∗ can be used to

project the DCSV onΩ by means afirst integral ρ3,k(ρk):

ρ3,k(ρk) = ρTkCρk ≤ V ∗, (13)

whereC = diag(a, b), for a, b > 0. Thus, even for situations
with a, b >> 0 the DCSV becomes a bounded space andΩ

becomes a polytope, see Fig. 1(a).

Lemma 1 (Recursive polytopeΩ). For an-joint robot based on
control law (1) whose decoupled form is defined by (7), if (12)
and (13) are satisfied then there existsp > 1 andc = γ12−γ22
such that

Ω =

{

ρk ∈ IR2 |
c

p
〈σk−1 [ 11 ] , ρk〉

+ ρTk

[

a c
1−p
2p

c
1−p
2p

b

]

ρk ≤ V ∗

}

(14)

whereσk = ‖A2(θk)‖1/(‖z2,k+1‖1 − ‖A2(θk)‖1‖z2,k‖1).

Proof. See Appendix.

While ρk satisfies (12),ρk remains inΩ, and the control law
acquires better performance to mitigate the flexibility. Based on
this last one, the proposal reported here will use this polytope to
compute an explicit parameter-dependent control law, as shown
in Fig. 2, which guarantees good performance of the polytope
Ω for each instantk.

Since (1) guaranteeṡVb = η, by using the trapezoidal rule for
a sample timeTs, the end-effector’s twistVb can be calculated
by Vb,k = 0.5Ts(2

∑k−1
j≥1 ηj+η0+ηk), whereηk = 0 for k < 0,

for k-th sample. Therefore, the termηk in (2) can be rewritten
as

ηk = α1,kuk − α2,kuk−1 − dk (15)

where

dk = KpX̃k + TsKi

k−1
∑

j≥1

X̃j + 0.5TsKi(X̃0 + X̃k)−KdVb,k

α1,k = (2T−1
s +Kd)CX−1Xd,k − T−1

s CX−1Xd,k−1

α2,k = T−1
s CX−1Xd,k.

Nevertheless, according to [14], the control law (15) can be
improved by including a weighting function that guarantees
better tracking error performance for flexible cases. So, let us
consider a discrete version of the weighting function in [14],
as follows:

hk = ‖z2,F,k+1‖+ ‖z2,τ,k+1‖ = ρ−1
1,k(z2,k, θk)+ ρ−1

2,k(z2,k, θk),

such that (15) can be rewritten as

η′k = hkηk + (hk − hk−1)Vb,k,

or even, by substituting the weighting functionhk, the auxiliary

law ηk in (15) andVb,k, as

η′k(zk, θk) = f(uk, z1,k)

2
∑

r=1

ρ−1
r,k(z2,k, θk) (16)

+ g(uk, z1,k)

2
∑

r=1

ρ−1
r,k−1(z2,k, θk), for∀ ρk ∈ Ω,

where

f(uk, z1,k) =
1

2

(

3α1,kuk − 3α2,kuk−1 + 2

k−1
∑

p≥1

α1,pup

+ 2

k−1
∑

p≥1

α2,pup−1 + 3dk + d0 + 2

k−1
∑

p≥1

dp

)

,

g(uk, z1,k) =
1

2

(

α2,kuk−1 − α1,kuk − 2
k−1
∑

p≥1

α1,pup

− 2

k−1
∑

p≥1

α2,pup−1 + d0 − dk − 2

k−1
∑

p≥1

dp

)

,

beingd0 = α1,0u0 −KdVb,0 +KpX̃0 + TsKiX̃0.

For k-th instant, the termdk is related to solving the forward
kinematic problem because the end-effector trajectory(X,Vb)
changes according to the generalized coordinatesq (see item
(iii)). Hence, sinceq belongs to slow variables inz1,k, the
functionsf andg will be denoted asf(uk, z1,k) andg(uk, z1,k)
to denote the slow part control, i.e., parameter-dependenton
z1,k.

For this class of systems, it is hoped to find an explicit
state-feedback control law dependent onθk both slow and fast
parts. However, since well-performance of the slow variables
decreases when the violation of kinematic constraints becomes
notorious, it will be assumed parameter-dependency onθk
only in fast variables, i.e.,ρ−1

r,k(z2,k, θk). So, the standard
optimization problem for MPC related toη′k minimizes the cost
function that implicitly includesρ−1

r,k(z2,k, θk), guaranteeing an
optimal version of (16) and improving the performance of the
slow variables.

IV. DP-BASED MPC ON POLYTOPEΩ

The polynomial dependency ofρ−1
r,k(z2,k, θk) on the schedul-

ing parameter has been defined affine on the basisPr,k =
{[ρ−1

r,k]
1, [ρ−1

r,k]
2, . . . , [ρ−1

r,k]
nθ}:

ρ−1
r,k(z2,k, θk) =

nθ
∑

j=1

θ
[j]
k [ρ−1

r,k(z2,k)]
j

where[ρ−1
r,k(z2,k)]

j is the behavior ofρ−1
r,k at j-th vertex of the

parameter simplexΘ. As well-known, on the MPC technique,
one cost function based on finite-horizon predictions will be
minimized. Over a horizon of lengthN , these predictions
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depend on an unknown sequence of the future scheduling
parameters,Tk, a sequence of the control actions,HN , and
a sequence of the DCSV’s parameters,Sr, as follows:

Tk = {θk+1, . . . , θk+N−1} ∈ Θ× . . .Θ = ΘN−1,

HN =
{

η′0, η
′
1, . . . , η

′
N−1

}

∈ U× . . .U = U
N−1,

Sr = {ρ−1
r,0, ρ

−1
r,1 , . . . , ρ

−1
r,N−1}r=1,2

=







nθ
∑

j=1

θ
[j]
k [ρ−1

r,0(z2,k)]
j , . . . ,

nθ
∑

j=1

θ
[j]
k [ρ−1

r,N−1(z2,k)]
j







.

Only the first control lawη′0 is applied to decoupled systems
in the form (7) whose cost function will be defined by

J(Tk,Sr; zk, θk) = ‖Pzi,k+N‖1 +

N−1
∑

j=0

‖Qzi,k+j‖1+

‖Rη′i,k+j(zi,k+j , θk+j)‖1,

where P , Q and R are real, full-column rank matrices of
appropriate dimensions. The norm‖ · ‖1 is used to indicate
the polyhedral 1-norm, which enables a parametric solutionfor
the optimal problem stated by means DP approach [56].

On the MPC approach, it is assumed that the control law
η′i,k+j is calculated optimally over the horizonN − i not
until zi,k+j andθk+j are available. After finishing the optimal
problem, two optimal control laws will be obtained,η∗1,k and
η∗2,k, one for each subsystem in (7). So, the combined optimal
control will be defined by

η∗i,k = argmin
Sr,0

max
θk+1

min
Sr,1

. . . max
θk+N−1

min
Sr,N−1

J(Tk,Sr; zk, θk)

s.t. ∀j ∈ {0, . . . , N − 1};

zi,k+j+1 = Ai(θk+j)zi,k+j +Bi(θk+j)η
′
i,j(zk+j , θk+j)

+ Ei(θk+j)υk+j ;

η′i,j(zk+j , θk+j) ∈ U, ∀Tk ∈ ΘN−1;

ρk+j ∈ Ω, ∀Tk ∈ ΘN−1;

zi,k+N ∈ ZT,i, ∀Tk ∈ ΘN−1; (17)

zi,k+j ∈ Zi, ∀Tk ∈ ΘN−1;

θk+j ∈ Θ,

for i = 1, 2, whereZT,i represents the polytopic terminal state
constraints and

η′i,j(zk+j , θk+j) = f(uj, z1,k+j)
2

∑

r=1

ρ−1
r,k+j(z2,k+j , θk+j)

+ g(uj, z1,k+j)

2
∑

r=1

ρ−1
r,k+j−1(z2,k+j , θk+j).

Conventionally, the DP procedure to solve (17) is started atthe
prediction horizonN , for i = 1, 2, with

J∗
N (zi,k+N ) = ‖Pzi,k+N‖1.

At each iteration, the right side of (7) is used to substitute
zi,k+j+1 in Jj(zi,kj

), for the k + j-th instant. Asθk+j is
unknown forj > 0, the proposed DP approach will start from
the worst case, which allows solving the following optimization
problem by iterating backward (decreasing fromN − 1 to 1):

J∗
j (zi,k+j , θk) = ‖Qzi,k+j‖1 +max

θk+j

min
Sr,j

‖Rη′i,j(zk+j , θk+j)‖1

+ J∗
j+1(zi,k+j+1)

s.t. (18)

zi,k+j+1 = Ai(θk+j)zi,k+j +Bi(θk+j)η
′
i,j(zk+j , θk+j)

+ Ei(θk+j)υk+j ;

ρk+j ∈ Ω, ∀θk+j ∈ Θ;

η′i,j(zk+j , θk+j) ∈ U, ∀θk+j ∈ Θ;

zi,k+j+1 ∈ Zi,j+1, ∀θk+j ∈ Θ;

zi,k+j ∈ Zi;

θk+j ∈ Θ,

whereZi,j+1 denotes the polytopic set of successor states for
which (18) is feasible at iterationj.

In order to determine the worst-case parameters of (18), an
epigraph reformulation in the optimization problem will be
applied to transfer the parameter dependence to the constraints,
yielding

J∗
j (zi,k+j) = min

Sr,k+j

w (19)

s.t. ∀θk+j ∈ Θ,

‖Qzi,k+j‖1 + ‖Rη′i,k+j(zk+j , θk+j)‖1+

J∗
j+1(Ai(θk+j)zi,k+j +Bi(θk+j)η

′
i,k+j(zk+j , θk+j)

+ Ei(θk+j)υk+j) ≤ w

ρk+j ∈ Ω;

η′i,k+j(zk+j , θk+j) ∈ U;

zi,k+j ∈ Zi.

According [56], sinceBi(θk) is not constant andη′k is
a polynomial parametrized (due toρ−1

r,k(z2,k, θk) to be also
polynomial parametrized) then the constraint satisfaction of the
semi-definite optimization problem (19) can be conservatively
ensured over the whole parameter simplexΘ by using the
Pólya’s theorem.

Theorem 1 (Pólya’s theorem). If a homogeneus polynomial
p(θ) is positive on the simplexΘ, all the coefficients of

pNp
(θ) = p(θ) ·





nθ
∑

j=1

θ[j]





Np

are positive for a sufficiently large Pólya degreeNp.

Proof. See [69].
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Algorithm 1 Calculatingη∗k
Input: degreed, constraints in (19)
Output: η∗k = η∗1,k + η∗2,k

1: P1: Reformulate constraints in (19) as polynomials inθk
into positivity constraints by using item (ix),

w − J∗
j+1(Ai(θk+j)zi,k+j +Bi(θk+j)η

′
i,k+j(zk+j , θk+j)

+ Ei(θk+j)υk+j) ≥ 0, ∀ θk+j ,∈ Θ ρk+j ∈ Ω;
(20)

whered will be its degree.
2: P2: Homogenize polynomial obtained before by multiply-

ing single monomials
∑nθ

j=1 θ
[j] until all monomials have

the same degree.
3: P3: According to [69], let us denote the maximum of scaled

coefficients of (20) byLmax and the minimum byLmin, if

Np >
d(d− 1)

2

Lmax

Lmin
− d,

then (20) multiplied by(
∑nθ

j=1 θ
[j])Np will have positive

coefficients. Let us denote these coefficients ascNp
.

4: P4: Replace the constraints bycNp
(zi,k+j ,Sr,k+j , w) ≥ 0;

5: P5: Calculateη∗k = η∗1,k + η∗2,k.
6: return η∗k.

Therefore, if the constraints in (19), formulated as homo-
geneous polynomial, are positive on the simplexΘ then all
coefficients of these constraints multiplied by(

∑nθ

j=1 θ
[j])Np

are positive for a sufficiently large Pólya degreeNp. In this
way, an explicit LPV-MPC technique formulated according to
DP procedure is defined by five steps, as shown in Algorithm
1.

When j = 1, the DP procedure must consider the current
parameterθk instead of using the worst case. Nevertheless,
J∗
j (zi,k+j , θk) in (18) is a bilinear function inzi,k and θk,

and bilinear constraints are also present in the minimization
problem, avoiding a standard multiparametric solution strategy.
For this reason, the optimal problem (19) will be based on the
uncontrolled sucessor statêvi,k = (

∑nθ

j=1 A
[j]
i θ

[j]
k )zi,k and a

new epigraph variables. So,

J∗(v̂i,k) = min
Sr,k

w + s

s.t. ∀θk ∈ Θ, (21)

‖Rη′i,k(v̂i,k, θk+1)‖1 + J∗
1 (v̂i,k +Bi(θk)η

′
i,k(v̂i,k, θk)

+ Ei(θk)υk) ≤ w

ǫ′
nθ
∑

j=1

‖Q(v̂i,k +B(θ
[j]
k )η′i,k(v̂i,k, θk+1))‖1 ≤ s;

ρk ∈ Ω;

η′i,k(v̂k, θk) ∈ U,

where0 < ǫ′ << 1 penalizes the vertex predictions such that
the non-uniqueness of the vertex solutions is mitigated.

V. ACCESSINGDCSV-BASED MPC: RESULTS

This section consists of numerical validations based on the
manipulator UR5, whose technical specifications and details
about matrices in the model (3)-(4) are widely available in
the current literature (e.g., [14], [15], [67]). This robothas
six revolute joints; therefore, the scheduling parameterθk will
equal generalized coordinates inq, i.e., nθ = 6 = dim {q}.
For the inner loop based on (1), the parametersKp,Ki,Kd

were set as10.0, 0.0 and18.0, respectively, to guarantee Hur-
witz’s criterium. The global branch-and-bound based solver in
YALMIP was used to compute optimization problems, like (19)
and (21). Simulations were executed using the remote API to
communicate CoppeliaSim (V-REP) with MATLABr.

Flexibility was induced by including disturbances in the first
joint’s motion (associated withq1 , θ

[1]
k ) as spring-damper

mode controllers; specifically, modifying spring constantand
damping coefficient to impose small opposite torsional motions
that violate the kinematic constraints of subsequent joints. To
this end, two cases will be analyzed based on the spring con-
stantK and damping coefficientC: CASE 1, (K,C)=(1×1011,
1×108) andCASE 2, (K,C)=(9.025,6.650).

Fig. 5 shows the evolution of the end-effector trajectory
tracking, starting at (-0.4872, 0.5672, 0.1487) and ending at
(-0.4872, 0.256, 0.589), whereθk coursesC-space beginning at
[0 0 0 0 0 0] and finishing at[0 0 − π

2
π
6 0 0]. Two strategies

were applied, one associated with the classical auxiliary law (2)
for CASES 1 and 2 (label:aux02), and one another associated
with the explicit parameter-dependent control law (16) based
on polytopeΩ, optimization problem (21) and stepP5 in
Algorithm 1 (label:aux16).

The classical approach of (2) is generally used for libraries
available in frameworks for robotic systems, as shown in [67],
while the approach based on (16) has been partially studied in
[55]. Improvements in that approach are just the main focus of
this paper.

Fig. 3 shows in six-time stages the behavior of UR5 in
CoppeliaSim after applyingaux02.

According to items (ii) and (iv), it was computed, simulta-
neously with the path tracking, the evolution of the kinematic
constraints for both flexibility cases, as shown in Fig. 6. Tothis
end, it was used the∞-norm as follows:

‖AT (q)q̇‖∞ = ε‖AT (q)A(q)µ‖∞.

Note that the vertical scale in Fig. 6 gives a notion about the
order ofε.

In Fig. 5 can be noted that by usingaux16 with N = 2 and
Np = 2, the path tracking is better thanaux02. However,
the end-effector does not reach the end point because the
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t = 0.05 s t = 175.5 s t = 462.3 s t = 586.7 s t = 899.6 s t = 1128.2 s

Fig. 3. Evolution of the path tracking for UR5 in CoppeliaSimby usingKp = 10.0, Ki = 0.0, Kd = 18.0 in the control law (2). The plotted path corresponds
to the CASE 2 and labelaux02 in Fig. 5.

t = 0.05 s t = 45.9 s t = 154.9 s t = 396.2 s t = 593.29 s t = 716 s

Fig. 4. Evolution of the path tracking for UR5 in CoppeliaSimby usingKp = 10.0,Ki = 0.0,Kd = 18.0, N = 3 andNp = 5 in the explicit parameter-
dependent control law (16) associated with optimal problem(21). The plotted path corresponds to the CASE 1 and labelaux16N in Fig. 5.

compensation for the additional torsional effect imposed by the
first joint is insufficient.

After settingN = 3 and Np = 5, the trajectory tracking
and the behavior of the kinematic constraints are shown in
Fig. 5 (label:aux16N) and Fig. 6b, respectively. Note that
the tracking was improved, and the scale in Fig. 6b (×10−10)
is lower than noted in Fig. 6a (×10−6). Hence, according to
notation ε‖AT (q)A(q)µ‖∞, it can be possible to infer that
ε was changed from order10−6 to order 10−10, i.e., the
motion became closer to the rigid conditions, improving the
performance of the control law (16). Finally, Fig. 4 shows the
path tracking after applying the explicit parameter-dependent
control law (16) withN = 3 andNp = 5.

VI. F INAL REMARKS

The work reported here proposes an LPV-MPC technique
based on the explicit parameter-dependent control law (16),
and a recursive polytopeΩ to include the constraints proposed
by the DCSV for flexible manipulator robots. To this end,
techniques on system decoupling were applied in Section III,
and outputs associated with two time scales were subjected
to polytopic representations, specifically slow and fast dy-
namics. Next, Lemma 1 proposes an equivalent condition to
the DCSV such that the weighting function presented in [14]
guarantees the suitable performance of the control law (16). In
this way, Section IV includes polynomial dependence onθk
for components of the weighting function and proposes five
steps (P1-P5) aided by a dynamic programming approach that
returns an optimal control lawη∗k (see stepP5 in Algorithm 1).
Results make sense when the finite horizonN andNp increase,

guaranteeing better path tracking and a significant decrease in
flexibility.

Although the method reported here was used only in manip-
ulator robots, the flexibility is also presented in other robotic
systems, e.g., wheeled mobile robots and unmanned aerial
vehicles. Future works can use the proposed control scheme
to reduce the impact of the deformable contact area between
different kinds of wheels and the motion’s surface, responsible
mainly for inducing flexibility to specific traction tasks. In the
same way, flexible wings and other parts in unmanned vehicles
could also be compensated by using the DCSV, not only as
criterium to improve the controller’s performance but alsoas
criterium for selecting suitable kinematic configurations.

APPENDIX

PROOF OFLEMMA 1

By using the 1-norm, note thathk = ρ−1
1,k + ρ−1

2,k =
‖z2,τ,k+1‖1 + ‖z2,F,k+1‖1 = ‖z2,k+1‖1, and by applying the
Minkowski and Cauchy-Schwarz inequalities in (7) as well as
the control lawη′k, for i = 2, yields

ρ
−1

1,k + ρ
−1

2,k ≤ ‖A2(θk)‖1ρ
−1

1,k−1
+ ‖A2(θk)‖1ρ

−1

2,k−1

+ ‖B2(θk)‖1‖η
∗

k‖1 + ‖E2(θk)‖1‖υk‖1,

or even, by using a slack functionδk > 0 such that

ρ−1
1,k + ρ−1

2,k = ‖A2(θk)‖1ρ
−1
1,k−1 + ‖A2(θk)‖1ρ

−1
2,k−1

+ ‖B2(θk)‖1‖η
∗
k‖1 + ‖E2(θk)‖1‖υk‖1 − δk.

Moreover, sinceE2(θk) is associated with an unknown
dynamic, expressed as an exogenous disturbance, both terms
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Fig. 5. Trajectory tracking by using the explicit parameter-dependent control
law (16) and the classical auxiliary law (2) (aux02) for two flexibility cases
(CASE 1 and CASE 2 based on spring-damper mode for the fist joint). Law (16)
was set according two situations:aux16, with N = Np = 2, andaux16N,
with N = 3, Np = 5

(a) time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

×10-6

-2

0

2

4

6

aux16 CASE 1
aux16 CASE 2

(b) time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

×10-10

-2

-1

0

1

2

aux16N CASE 1
aux16N CASE 2

ε
‖
A

T
(q
)A

(q
)µ

‖
∞

ε
‖
A

T
(q
)A

(q
)µ

‖
∞

Fig. 6. Evolution of the kinematic constraints (at pfaffian form) according to
items (ii) and (iv) such that‖AT (q)q̇‖∞ = ε‖AT (q)A(q)µ‖∞ . From (a)
and (b), it can be noted thatε is strongly associated withε’s reduction like
happens for the control lawaux16N in Fig.5.

‖E2(θk)‖1‖υk‖1 and δk can be redefined asǫ(θk) =
‖E2(θk)‖1‖υk‖1 − δk. Thus,

ρ−1
1,k + ρ−1

2,k = ‖A2(θk)‖1ρ
−1
1,k−1 + ‖A2(θk)‖1ρ

−1
2,k−1

+ ‖B2(θk)‖1‖η
∗
k‖1 + ǫ(θk),

or, by definingf2(θk) = ‖B2(θk)‖1‖η
∗
k‖1 + ǫ(θk), as

ρ
−1

1,k + ρ
−1

2,k = ‖A2(θk)‖1ρ
−1

1,k−1
+ ‖A2(θk)‖1ρ

−1

2,k−1
+ f2(θk). (22)

Consideringǫ∗(θk) = ‖A2(θk)‖1ρ
−1
1,k−1−ρ−1

2,k, the inequality
(12) can be rewritten as

λ1ǫ
∗(θk) + γ12f2(θk) +

γ11

ρ1,k−1

‖A2(θk)‖1

+
γ12

ρ2,k−1

‖A2(θk)‖1 ≤
ρ3,k

ρ1,kρ2,k
(23)

λ2ǫ
∗(θk) + γ22f2(θk) +

γ21

ρ1,k−1

‖A2(θk)‖1

+
γ22

ρ2,k−1

‖A2(θk)‖1 ≥
ρ3,k

ρ1,kρ2,k
, (24)

whereλ1 = γ12−γ11 andλ2 = γ22−γ21. By adding (23) and
(24) yields

ρ2,k−1ρ1,k−1[λ3ǫ
∗(θk) + λ4f2(θk)]

+ λ5ρ2,k−1‖A2(θk)‖1 + λ4ρ1,k−1‖A2(θk)‖1 ≤ 0

whereλ3 = λ1 − λ2, c2 = γ12 − γ22 andλ5 = γ11 − γ21, or
even,

c1ρ2,kρ2,k−1‖A2(θk)‖1 + c2ρ1,k−1ρ2,k‖A2(θk)‖1

+ c2ρ2,kρ2,k−1ρ1,k−1f2(θk)− λ3ρ2,k−1ρ1,k−1 ≤ 0

wherec1 = λ3 + λ5. But, it is necessary that at leastc2ρ2,k ≤
λ3

pf2(θk)
, for p > 1, to guarantee the before inequality i.e.,

c1λ3

‖A2(θk)‖1
pc2f2(θk)

ρ2,k−1 + λ3

‖A2(θk)‖1
pf2(θk)

ρ1,k−1

+ λ3

1− p

p
ρ2,k−1ρ1,k−1 ≤ 0. (25)

According to (13), the inequalityaρ21,k−1+ bρ22,k−1 ≤ V ∗ is
also satisfied, and by adding this last one with (25) yields

c1
‖A2(θk)‖1
pf2(θk)

ρ2,k−1 + c2
‖A2(θk)‖1
pf2(θk)

ρ1,k−1

+ c2
1− p

p
ρ2,k−1ρ1,k−1 + aρ

2

1,k−1 + bρ
2

2,k−1 ≤ V
∗

.

Sinceρ−1
1,k + ρ−1

2,k = ‖z2,τ,k+1‖1 + ‖z2,F,k+1‖1 = ‖z2,k+1‖1, it
can be noted thatf2(θk) = ‖z2,k+1‖1−‖A2(θk)‖1‖z2,k‖1 and
c1 = c2 = γ12 − γ22, thus by definingc = γ12 − γ22 and by
using the vectorial notationρk = [ρ1,k, ρ2,k]

T , for (k − 1)-th
sample, the left side can be expressed as

c‖A2(θk)‖1
p(‖z2,k+1‖1 − ‖A2(θk)‖1‖z2,k‖1)

[ 11 ] · ρk−1

+ ρTk−1

[

a c
1−p
2p

c
1−p
2p

b

]

ρk−1 ≤ V ∗.

This last one ends the proof.
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[12] B. D’Andréa-Novel, G. Campion, and G. Bastin, “Control of wheeled
mobile robots not satisfying ideal velocity constraints: Asingular pertur-
bation approach,”International Journal of Robust and Nonlinear Control,
vol. 5, no. 4, pp. 243–267, 1995.

[13] R. M. Murray, Z. Li, and S. S. Sastry,A Mathematical Introduction to
Robotic Manipulation, First ed. CRC Press LLC, 1994.

[14] C. P. Fernández, J. Cerqueira, and A. Lima, “Nonlineartrajectory tracking
controller for wheeled mobile robots by using a flexible auxiliary law
based on slipping and skidding variations,”Robotics and Autonomous
Systems, vol. 118, pp. 231–250, aug 2019.

[15] C. A. Peña Fernández, J. J. F. Cerqueira, and A. M. N. Lima, “Trajectory
control of wheeled mobile robots not satisfying ideal velocity con-
straints by using slipping and skidding variations: A singular perturbation
approach,” inCommunications in Computer and Information Science.
Springer Berlin Heidelberg, 2015, pp. 74–95.

[16] ——, “Control of wheeled mobile robots singularly perturbed by using
slipping and skidding variations: curvilinear coordinates approach (part
i),” in Proceedings of 11th IFAC Symposium on Robot Control, 2015.

[17] M. W. Spong, “An historical perspective on the control of robotic
manipulators,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 5, no. 1, pp. 1–31, 2022.

[18] W. Alam, A. Mehmood, K. Ali, U. Javaid, S. Alharbi, and J.Iqbal,
“Nonlinear control of a flexible joint robotic manipulator with experimen-
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