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Abstract—Obstacle avoidance for mobile robot to reach the 

desired target from a start location is one of the most interesting 

research topics. However, until now, few works discuss about 

working of mobile robot in the dynamic and continuously 

changing environment. So, this issue is still the research 

challenge for mobile robots. Traditional algorithm for obstacle 

avoidance in the dynamic, complex environment had many 

drawbacks. As known that Q-learning, the type of 

reinforcement learning, has been successfully applied in 

computer games. However, it is still rarely used in real world 

applications. This research presents an effectively method for 

real time dynamic obstacle avoidance based on Q-learning in the 

real world by using three-wheeled mobile robot. The position of 

obstacles including many static and dynamic obstacles and the 

mobile robot are recognized by fixed camera installed above the 

working space. The input for the robot is the 2D data from the 

camera. The output is an action for the robot (velocities, linear 

and angular parameters). Firstly, the simulation is performed 

for Q-learning algorithm then based on trained data, The Q-

table value is implemented to the real mobile robot to perform 

the task in the real scene. The results are compared with 

intelligent control method for both static and dynamic obstacles 

cases. Through implement experiments, the results show that, 

after training in dynamic environments and testing in a new 

environment, the mobile robot is able to reach the target 

position successfully and have better performance comparing 

with fuzzy controller.   

Keywords—Path Following; Avoiding Obstacle; Mobile 

Robot; Reinforcement Learning; Q-learning. 

I. INTRODUCTION 

In recent years, due to their agility, maneuverability, and 

ability to be deployed in many complex missions, mobile 

robot has attracted many researchers, particularly in respect 

of autonomous navigation in the warehouse or restricted area 

[1-10]. However, methods using fixed line have many 

drawbacks:  

• After a period of use, line will be blurred and make it 

difficult for the robot to detect. 

• It is also susceptible to the impact of the surrounding 

environment and complicated to change the route.  

• It is not flexible when encountering dynamic obstacles 

and easily causes the robot to have very large errors 

with the planned path. This poses a danger when the 

operating robot escapes from the safety zone in the 

factory or workshop 

Nowadays, there is an expanding demand for complex 

applications where working environment has the 

participation of humans, moving robots or sudden obstacles 

appearance. At this time, humans or robots are considered 

movable obstacles that form the dynamic environment. Since 

then, the solution for the “Navigation” problem, which is 

based on camera application [11-16], has attracted much 

interest as it can surmount the limitations of tradition line 

detecting method and also provides the ability to optimize the 

path. Moreover, the working area is usually a warehouse or 

limited area, so the robot's ability to operate must be flexible 

and can run according to the predetermined trajectory and 

avoid moving obstacles that may appear without leaving from 

safe planning trajectory [17-20]. Therefore, there are 

currently numerous traditional researches and approaches 

such as: RRT* [21-22], A* [23-24], Visibility Graph, Fast 

Marching Tree, which mainly focused on autonomous path 

planning for mobile robot where the environment is static and 

mapped, and obstacle locations are assumed to be known in 

advance. Besides, [25-34] applied complicated algorithms 

such as Adaptive Genetic, Bacterial Evolutionary Algorithm, 

Predictive behavior or Partial swarm to avoid collisions. 

Those methods are time-consuming in building and updating 

of the dynamic environment map, these drawbacks make the 

low accuracy of the prediction.  

Recently intelligent control algorithms are also applied to 

obstacle avoidance, fuzzy logic control method [35-41], 

network method [42-50], The obstacle avoidance method 

based on fuzzy logic control forms certain rules according to 

the prior knowledge. Fuzzy logic control approach 

demonstrates good robustness property, real-time 

performance and less dependence on the environment. But 

there exists the phenomenon of symmetry which cannot be 

determined. The obstacle avoidance method based on neural 

network designs controller according to the position of 

obstacles. But it needs a lot of time to collect data and train 

the network to find a path. 
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Traditional obstacle avoidance algorithms are invalid 

when the information of the obstacle is incomplete or 

completely unknown. The intelligent control needs data or 

experience to design [51-52]. Reinforcement learning (RL), 

unlike other artificial intelligence algorithms, is a learning 

method that does not require any rules [53-56]. RL is a 

machine learning method that regards the feedback of the 

environment as an input and adapts the environment. Q-

learning is one of the most popular algorithms in the RL 

algorithm. The algorithm focuses on value-based 

reinforcement learning that is updated as the environment is 

explored by means of the Q-value function [57-60]. Recently, 

combining intelligent control and Q-learning are also applied 

[61-65]. However, these studies are only carried out on 

simulations, as well as experiments with simple static objects. 

Moreover, designing the controller for robot to follow the 

processed path (virtual) is not clearly discussed. As we 

known that Q-learning based on a learning experience of trial 

and error where the agent goes through numerous failures 

before actual success. it is very expensive as well as time-

consuming. This means that the training is difficult to 

perform in a real environment and tends to be done mostly in 

simulation. From [61-65] it can be seen that Q-learning are 

trainable in virtual environments and afterward transferable 

to the real world in robot applications. To address these 

challenges, in this research the training environment for the 

RL agent in a virtual environment is developed. The virtual 

environment depicts the actual scenario and enables the user 

to collect a large number of reactions in various 

environments. The agent can interact with the environment 

through the actions and can also be trained with various user-

defined rewards and goals. After that the learned table is 

transfer to the real mobile robot for doing the real 

experiments. 

The contribution of this study is that: 

• Unlike other traditional, artificial and intelligence 

algorithms, the obstacle avoidance methodology for 

moving obstacle in this paper does not use any prior 

dataset for training or experience for design the 

controller.  

• The training data are transferred to robot and work 

real time in the real application.  

• From the experiment the RL proved to have better 

performance than intelligent control algorithm in 

terms of total time and errors. 

II. ROBOT MODELING 

Fig. 1 show the parameters of two-wheel mobile robot, 

where 𝑅(𝑥𝑅 , 𝑦𝑅) is the goal point, 𝐺(𝑥𝐺 , 𝑦𝐺) is the control 

point of robot, d is radius of wheels, b is the distance between 

two wheels and 𝑒1, 𝑒2, 𝑒3 are the errors between robot and goal 

point. 

From Fig. 1, the error between the center and the goal 

point as shown in equations (1) and (2). 

[

𝑒1

𝑒2

𝑒3

] = [
𝑐𝑜𝑠𝛷 𝑠𝑖𝑛𝛷 0

−𝑠𝑖𝑛𝛷 𝑐𝑜𝑠𝛷 0
0 0 1

] [

𝑥𝑅 − 𝑥𝐶

𝑦𝑅 − 𝑦𝐶

𝛷𝑅 − 𝛷
] (1) 

Derivative of the errors we have 

[

�̇�1

�̇�2

�̇�3

] = [
−1 𝑒2

0 −𝑒1 − 𝑑
0 −1

] [
𝑣
𝜔

] (2) 

with two control parameters are velocity 𝑣 and angular 

velocity ω, objective of the needed controller is to eliminate 

the errors [𝑒1, 𝑒2, 𝑒3]𝑇 = [0,0,0]𝑇. The Lyapunov’s stability 

method is used for the controller. 

Moving direction
Moving direction

 

Fig. 1. Robot modelling 

Theorem: consider a system which is described by a state 

equation �̇� = 𝑓(𝑥1, … , 𝑥𝑛). If exist a positive-definite 𝑉(𝑥) 

with all state variables, so that its time derivative is a 

negative-definite function then that system is stable [66]. 

Choose a positive-definite Lyapunov function shown in (3) 

and value of derivatve. 

𝑉 =
1

2
𝑒1

2 +
1

2
𝑒2

2 + (1 − 𝑐𝑜𝑠𝑒3) (3) 

Derivative of 𝑉:  

�̇� = 𝑒1�̇�1 + 𝑒2�̇�2 + �̇�3𝑠𝑖𝑛𝑒3 = −𝑒1𝑣 − 𝜔𝑠𝑖𝑛𝑒3 − 𝑑𝜔𝑒2  

Choose (𝑣, 𝜔) so that V ̇ is negative-definite: 

{
𝑣 = 𝑘1𝑒1      
𝜔 = 𝑘2𝑠𝑖𝑛𝑒3

     𝑤𝑖𝑡ℎ 𝑘1, 𝑘2 > 0  

Substitute 𝑣 and ω into (3), we have: 

�̇� = −𝑘1𝑒1
2 − 𝑘2𝑠𝑖𝑛2𝑒3 − 𝑑𝜔𝑒2 ≤ 0  

From Fig. 1 the velocity of each wheel is calculated in 

equation (4) and (5). 

𝜔𝑙 =
𝑣𝑙

𝑟
=

𝑣 − 𝜔
𝑏
2

𝑟
=

𝑣

𝑟
−

𝜔𝑏

2𝑟
 

(4) 

𝜔𝑟 =
𝑣𝑟

𝑟
=

𝑣 + 𝜔
𝑏
2

𝑟
=

𝑣

𝑟
+

𝜔𝑏

2𝑟
 

(5) 

III. CONTROL DESIGN 

A. Q-learning 

Q-learning is a modeless reinforcement learning 

algorithm [67-68]. The goal of Q-learning is to learn the rules, 

the rules that tell the machine what action to take under what 

circumstances. The algorithm does not require a model of the 
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environment and can handle random changes without 

adjustment [69-71]. 

Specifically, in case the robot approaches an obstacle, the 

robot will compare the relative position of the obstacle and 

then take an action turn left, turn right, go straight). Every 

time the robot passes or hits an obstacle, it will receive the 

corresponding reward. This process repeats until the robot 

finds the actions to optimize the reward received, in other 

words, finds the best rule to avoid the obstacle. 

The relative position of the obstacle relative to the robot 

will be divided into 8 angles (Gi with i ∈ {1, 8}) 

corresponding to 8 states. Each angle Gi has a magnitude of 

450, starting from the direction coincident with the current 

direction of the robot, in the positive trigonometric direction 

as shown in Fig. 2. The robot calculates the angle (the angle 

between the robot's current direction and the line connecting 

the control point to the center of the obstacle) and then 

considers what state it is in and then gives the corresponding 

action for that state 

 

Fig. 2. The action states the robot 

In the Q-Learning algorithm, the corresponding action for 

each state is calculated from the Q-table. The rows of the 

table include the states reached by the robot during the 

learning process, the columns are the actions that the robot 

performs in the respective states, each action is predefined 𝑣 

and  𝜔 for the action. Initially, the value of the cells in the 

table is set to 0, then it will be updated gradually during the 

learning process. The value in each cell is calculated by the 

formula in equation (6). 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑀𝑎𝑥(𝑄, 𝑠𝑡+1) (6) 

Where, 𝑠𝑡 , 𝑎𝑡 are state and action at time t respectively, 

𝑄(𝑠𝑡 , 𝑎𝑡) is the value at state 𝑠𝑡 and action 𝑎𝑡, 𝑟(𝑠𝑡 , 𝑎𝑡) is the 

reward received when performing the action at in state 𝑠𝑡, 

𝑀𝑎𝑥(𝑄, 𝑠𝑡+1) is the largest value in the row corresponding to 

the state at the next time in the Q-table, 𝛾 is the attenuation 

factor, with a value less than 1 to ensure that the further away 

from the target, the smaller the value. 

When the robot is in the state 𝑠𝑡, the robot will find the 

maximum value of the corresponding actions in that state and 

perform the action, then update the value at that cell 

𝑄(𝑠𝑡 , 𝑎𝑡). Continue until the learning process is over, the 

robot has learned the rules (through the Q-table) to be able to 

avoid obstacles in many different cases. 

B. Fuzzy Control 

Fuzzy Logic is a control algorithm that mimics the 

processing of ambiguous information and decision-making 

by humans [72-77]. Specifically, in case the robot approaches 

an obstacle, the input value includes not only greater or less 

than the safe distance, but also additional values such as 

slightly far, far, slightly close, close, between combined with 

predefined rules to get the corresponding output values. 

Number of inputs consist of angle 𝜃 which is the angle made 

by the robot's current direction and the line connecting the 

control point to the center of the obstacle and the variation of 

the angle 𝜃 (∆𝜃). The number of outputs includes robot 

angular speed 𝜔 as shown in Fig. 3. Center average is used 

for Defuzzification. 

Obstacle

 

Fig. 3. Relative position of robot and obstacle  

The angle 𝜃 is partitioned into three fuzzy sets with the 

range from -60 to 60 degree and the change rate of 𝜃 is 

partitioned into three fuzzy sets from -8 to 8. The output 𝜔 

have five fuzzy set from -20 to 20 rad/s. All the parameters 

are shown in Fig. 4 and Fig. 5. 

0-4-8 4 8

NB ZE PB

0-20-40-60 20 40 60

NB ZE PB

 
                      (a)                                            (b) 

Fig. 4. The membership function (a) theta, (b) change rate of theta  

0 5 20

Right

Straight

Left

10 1520 515 10

SRight SLeft

 

Fig. 5. The membership function of output 𝜔  

One important step in the fuzzy logic controller design is 

to make a rule table. In this work, three fuzzy subsets of 𝜃 
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and three subsets ∆𝜃 , there exist nine rules, and therefore, the 

rule base is represented in a 3x3 matrix, as shown in Table 1. 

TABLE I.  RULE FUZZY TABLE 

 NB ZE PB 

NB Straight SRight Right 

ZE Sright Straight SLeft 

PB Left SLeft Straight 

 

IV. SIMULATION RESULTS 

For designing the Q-learning controller, the simulation 

has two Phase: Training and Testing. The simulation is to 

investigate the ability of mobile robot to accomplish the task 

without hit the obstacles in different environment. The Q 

learning and Fuzzy Q learning is applied in Training Phase. 

In Testing Phase, Mobile robot is placed in another 

environment and three algorithms discussed above are 

performed and compared. 

Training Phase: Mobile robot is trained to reach the target 

in an environment with eight static circle (black color) and 

six dynamic obstacles (blue color) with 10cm diameter are 

used. The dynamic one is generated randomly and run 

different velocity and trajectory as shown in Fig. 6. There are 

six random start-points for the training to make sure that robot 

can operate in different environment. The velocity of robot is 

assumed constant as 0.5(m/s). By using the controller 

discussed in Section 3, the robot will keep tracking the 

shortest path (dot line) to reach the target while avoiding the 

obstacle. After twenty-two epochs, in different positions, 

robot can reach the target without hitting any obstacles. The 

result of the training performance and learning table is shown 

in Fig. 7. 

 

Fig. 6. Training environment for mobile robot  

 

Fig. 7. Training performance and learning table result  

Testing Phase: The robot reuses the map as shown in Fig. 

6, but the position of the robot's starts are changed. This 

position change is used to create different operating 

environments for the robot. The robot is placed in the starting 

positions. Fuzzy and Q learning algorithms are performed at 

those locations, respectively. The performance of these 

algorithms are illustrated in Fig. 8 and Fig. 9. The average 

error between the shortest path the simulation path of each 

algorithm, the time average for each simulation is 

summarized as in table 2. 

 

Fig. 8. Testing performance of Q learning  

From Fig. 8 and Fig. 9, it can be seen that under the same 

condition, the robot can complete the task with both 

algorithms. However, with the Q learning algorithm, the 

robot has better performance when avoiding obstacles, the 

robot has less to change direction many times, which is very 

important when the robot carries objects in a warehouse or 

working area. 

From the Table 2 and Table 3 it can be seen that at every 

position, the Q-learning algorithm have smaller total time and 

the absolute error between the shortest path planning (the line 

connecting the start and the goal point) and the real path is 

smaller. Q learning algorithm helps the robot to follow the 

planned path better, so that the robot does not get out of the 

safe zone around the planned path 

 

Fig. 9. Testing performance of Fuzzy control  
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TABLE II.  PERFORMANCE TABLE OF FUZZY CONTROL 

Position Total time (s) 

Average Absolute 

Error with reference 

line (m) 

1 62 0.68 

2 79 0.72 

3 20 0.21 

4 16 0.14 

Average 44.25 0.44 

TABLE III.  PERFORMANCE TABLE OF Q-LEARNING 

Position Total time (s) 

Average Absolute 

Error with reference 

line (m) 

1 40 0.21 

2 60 0.34 

3 14 0.05 

4 12 0.12 

Average 31.5 0.18 

 

V. EXPERIMENT 

Robot is brought to another operating environment 

similar to the real experiment to simulate and compare the 

results with the experiment. The Q- learning table which 

obtained in the simulation is also reused in the real 

experiment. The robot attached with AR marker above will 

operate on flat terrain, camera fixed above working space 

with frame rate 30fps and fixed lighting conditions to create 

a map as shown in Fig. 10. The robot (marked with a red “R”) 

will move from the starting point to the destination point 

(marked in red), the robot's initial direction is 0o. Obstacles 

will be fixed-sized objects of the same height as the robot. 

Each obstacle is mounted on an AR marker (static obstacles 

are marked with red “SO”, moving obstacles are marked with 

red “MO”). The number of obstacles includes two static 

obstacles and one dynamic obstacle. The starting point is 

marked in black; the destination point is marked in green. 

Static obstacles are black circles; dynamic obstacles are 

purple circles. The overall controller for the mobile robot is 

shown in Fig. 11. Firstly the AR marker on robot will give 

the position of the robot and the error pose between the initial 

location and target pose [𝑒1, 𝑒2, 𝑒3]𝑇  are calculated. After that 

the velocity of the wheel robot is calculated for robot to move 

to the target position. on the way to the destination, mobile 

robot will use the Q-learning algorithm to avoid the obstacles. 

The working result of simulation and experiment are also 

shown in Fig. 12.  

 

Fig. 10. Experiment apparatus  

Destination 
Lyaponov 

stability

+

_

Velocity 

controller
Motor Robot

Encoder

Camera

+

_

e= wd we D w
[e1, e2, e3] Obstacle 

avoidance 

algorithm

 

Fig. 11. The overall control flowchart 

 
(a) 

 
(b) 

Fig. 12. The working result of simulation and real experiment, (a) fuzzy 

control, (b) Q-learning control.  

From Fig. 12 it can be seen that, When the robot moves 

to the destination, the moving obstacle (pink circle) also 

moves to cut the mobile robot's direction, then the robot must 

use algorithms designed to avoid obstacles. 

 The performance of the controllers is showed in Fig. 13 

and Table 4. The result shown in blue is the robot's trajectory. 

The red points are the position of the robot when performing 

the obstacle avoidance algorithm. 

 
(a) 
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(b) 

Fig. 13. Performance of controller, (a) Fuzzy controller, (b) Q-learning 

controller.  

TABLE IV.  PERFORMANCE TABLE COMPARISON 

Position 
Total time 

(s) 

Average absolute error 

between simulation and 

experiment (m) 

Fuzzy 8.5 0.15 

Q-learning 7 0.14 

 

From Fig. 12 it can be seen that, the response of the 

control algorithm in simulation and experiment is similar. 

Both simulation and experiment in the new environment, Q-

learning algorithm always gives better results when the 

trajectory changes less direction. 

From table 4, it can be seen that, the total time and error 

of Q learning is smaller. This happens because the moving 

trajectory of the Q-learning algorithm is smoother 

VI. CONCLUSION 

In this paper, the path following algorithm for mobile 

robot and obstacle avoidance using Lyaponov stability, and 

Q-learning has been implemented. The series of simulation 

and experiment are investigated to make sure that the obstacle 

avoidance algorithm can help robot to avoid obstacles 

without leaving the planned path. These algorithms can all be 

applied in factories or pre-planned areas with fixed cameras 

from above. Series of simulation and experiment show that 

the Q learning algorithm can simulate in a virtual 

environment before applying it in the real environment. By 

comparing the total time and error from Table 4, the 

performance for the obstacle avoidance algorithm using Q-

learning controller is better than the fuzzy controller in terms 

of total time performing and errors with the planning path. 

This happens because the moving trajectory of the Q-learning 

algorithm is smoother  

 For future improvement, the error between the simulation 

and the real experiment can be reduced by implementing 

visual servoing control algorithm.  
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