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Abstract—In this paper, we consider a trajectory design problem
of an autonomous mobile robot working in industrial environ-
ments. In particular, we formulate an optimization problem that
jointly determines the trajectory of the robot and the time step
duration to minimize the energy consumption without obstacle
collisions. We consider both static and moving obstacles scenarios.
The optimization problems are nonconvex, and the main contri-
bution of this work proposing successive convex approximation
(SCA) algorithms to solve the nonconvex problems with the
presence of both static and moving obstacles. In particular, we
first consider the optimization problem in the scenario with static
obstacles and then consider the optimization problem in the
scenario with static and moving obstacles. Then, we propose two
SCA algorithms to solve the nonconvex optimization problems
in both the scenarios. Simulation results clearly show that the
proposed algorithms outperform the A* algorithm, in terms of
energy consumption. This shows the effectiveness of the proposed
algorithms.

Keywords—Autonomous mobile robot, energy consumption mini-
mization, trajectory design, time step duration, nonconvex optimiza-
tion problem.

I. INTRODUCTION

The robotic field has been developing rapidly, and au-
tonomous mobile robots (AMRs) have recently been widely
used in industrial environments as well as other applications due
to their efficiency and productivity [1], [2] Recently, the AMR
with differential drive wheels has been increasingly noticed and
widely applied due to its advantages, such as flexible motion
capabilities, a simple structure, and lower production costs.
However, the mobile robots are typically equipped with an
removable energy source that has limited capacity. Meanwhile,
the mobile robots require a large amount of energy for sensor
system, control system, and motion system. Therefore, the
energy consumption minimization for the mobile robots need to
be investigated. With the aim of reducing energy consumption
and improving the energy efficiency of the mobile robots, both
hardware design and algorithms have been proposed.

For the hardware-based solutions, the authors in [3], [4]
designed the low-power hardware to reduce the overall elec-
trical energy consumption of the robot. The authors in [5]
designed a novel DC power supplier for industrial robots to
reduce the total energy consumption for different electrical
power profiles. In addition, the authors in [6]–[14] proposed
power management, wireless power transfer systems and battery
conservation methods to reduce the energy consumption for the
robots. Besides, the energy harvesting method was proposed in
[15]–[18] to have more power for the robot thus reduce the
energy that need from the battery.

Authors in [19] introduced two energy-conservation tech-
niques which are dynamic power management and real-time
scheduling to save energy. The experiment is conducted on the
Pioneer 3DX robot, and the results shown that the proposed
techniques are promising to reduce the energy consumption and
extend the lifetime of the robot. Authors in [20] considered
the energy-efficient consumption problem by using illuminance
instead of the laser-beacon in the navigation system. The
experiments results show that the proposed system outperforms
the system using laser beacons in terms of power consumption.
Different from the aforementioned works, other works aim to
save energy by optimizing motion planning of the mobile robot
as proposed in [21].

The simulation results in [21] show that optimizing the mo-
tion planning can save battery energy up to 10% compared with
the widely used trapezoidal velocity profile. Energy-efficient
motion planning for the mobile robot exploration is proposed
in [22], which can save up to 42% energy compared with
the standard utility-based method. Differently, the authors in
[23] proposed a motion planning approach, and the simulation
results show that the energy can be saved up to 51%. With
motion planning, the problems of path planning and path
tracking are the most important. Otherwise, several works have
investigated a range of control algorithms of path tracking

Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id



Journal of Robotics and Control (JRC) ISSN: 2715-5072 404

for the robots [24]–[35]. However, these researches have not
considered the energy consumption yet.

Author in [36] considered the energy consumption in the
trajectory tracking problems. This work shows some well-
known motion controllers, such as feedback-based controller,
the Lyapunov-based controller, the clever trigonometry-based
controller, the advance controller, and the Dubins path-based
controller. The simulation results show that the total energy
loss by different controllers are different.

Authors in [37] proposed a optimized controller based on
fuzzy logic systems to minimize the energy consumption of
the robot. In particular, by using the genetic algorithm, the
proposed controller minimizes acceleration, thus reducing the
kinetic energy of the robot. The simulation results show that
the energy consumption is reduced significantly, and thus
demonstrating the efficiency of the proposed controller as well
as the proposed algorithm. However, it is difficult to reduce
more energy consumption with tracking task of the robot.

Related to path planning, many techniques based on Dijkstra,
Genetic, Banker, Bellman-Ford, A* and D* algorithms have
been developed over the years [38]–[53]. In general, the path
planning optimization with the aim of minimizing the energy
consumption is challenging to be solved due to the nonconvex
objective function. For this, the authors in [54] incorporated
the shortest path length into the objective function to minimize
energy consumption using the Newton algorithm.

A different approach is based on A* algorithm [55], [56].
Authors in [56] proposed a energy-efficient A* (EA*) algorithm
for optimizing the path for the robot. In this work, although
authors only consider the energy consumption for stop and
turns of the robot, the simulation results shows that the path
optimization by EA* algorithm can save energy more than A*
algorithm. Authors in [55] also designed the robot path based
on the A* algorithm to generate an energy-efficient path where
a new energy-related criterion is used in the cost function.
Also, authors in [57] proposed trajectory planning algorithm
based on A* algorithm to minimize energy loss. However,
the aforementioned works only solve the problem with static
obstacles. Authors in [58] proposed an algorithm base on a
genetic algorithm (GA) to find an optimal path planning in a
dynamic environment with many obstacles. A genetic algorithm
was also implemented to optimize the path planning to decrease
energy consumption [59].

Authors in [60] developed the optimal velocity profile to
reduce energy consumption of the Differential Drive Mobile
Robot (DDMR). In this work, authors consider the power model
that combines the robot and motor dynamic models. The speed
optimization was also used as a method for software-based
power management in [61]. In [62], authors proposed a mobile
robot motion framework based on the enhanced robust panel
method (ERPM), which provides the robust and effective path

planning and motion control in partially known and unknown,
static and dynamic environments. Differently, authors in [63]–
[68] proposed deep reinforcement learning techniques for robot
path planning. However, they did not consider the energy
consumption.

From the existing works, we can observe that some of
them are proposed to improve energy efficiency, but they do
not consider the dynamic environment with moving obstacles.
Moreover, they do not optimize the time step duration which
has a great influence on the energy consumption of the robot.
Meanwhile, some existing works are proposed for dynamic
environment, but they do not investigate the energy efficiency.

In this work, we aim to jointly optimize the trajectory and
time step duration, which is the interval time that the robot
moves from the current position to the next position, so as to
minimize the energy consumption of a mobile robot, i.e., an
AMR, while avoiding the collisions in dynamic environments
with both static and moving obstacles. Note that the introduc-
tion of the step time duration, along with the trajectory into
the optimization problem makes the problem much more chal-
lenging. To solve the problem, we develop a successive convex
approximation (SCA) algorithm. The simulation results clearly
show the effectiveness of the proposed algorithm compared with
the baseline schemes, i.e., the A* algorithm. Interestingly, the
simulation results show that the proposed algorithm with the
time step optimization further reduces the energy consumption
of the mobile robot compared with the proposed algorithm
without time step optimization. The main contributions of the
paper are the followings:

• We formulate an optimization problem for the mobile
robot in the industrial environment that jointly optimizes
the path planning and time step duration to minimize the
energy consumption, subject to the limited velocity, the
limited time and collision avoidance.

• The optimization problem is nonconvex and computation-
ally intractable. Thus, we develop an successive convex
approximation (SCA) algorithm to solve the problem with
efficient computation. This algorithm is proposed for the
scenario in which there are only static obstacles in the
working environment of the robot, and thus it is namely
OSOW algorithm.

• We further propose an algorithm, namely MSOW, for the
scenario including both static and moving obstacles. In this
case, the robot first based on the global path that is created
by OSOW algorithm to move. Then, the robot uses work-
ing environment information sensed by its sensors to find
the local path to avoid the moving obstacles. We formulate
the energy consumption optimization problem in which
the moving collision-avoidance constraints are included.
To solve this problem, we again use the successive convex
approximation algorithm.

• We provide simulation results to show the improvement
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of the proposed algorithms, i.e., the OSOW and MSOW
algorithms, compared with the baseline algorithms in
which the time step duration is random and with the A*
based algorithm.

The rest of the paper is organized as follows. In Section II,
we describe the AMR robot and formulate the optimization
problem for the robot in environment with static obstacles. In
Section III, we present the successive convex approximation
algorithm proposed to solve the problem. In Section IV, we
formulate the optimization problem in a dynamic environment
with static and moving obstacles, followed by the the successive
convex approximation algorithm. The simulation results and
discussions are presented in Section V. The conclusions and
future work are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system model as shown in Fig. 1. There is
an AGV robot moving from a start point (SP) to a goal point
(GP). The robot is in a fixed coordinate system Oxy. Also,
we consider a moving coordinate system O′x′y′ associated
with the robot. We denote qs = (xs, ys)

T , qg = (xg, yg)
T

as the coordinates of the SP and the GP, respectively. We
further denote q(t) = (x(t), y(t))T and v as the coordinate
and velocity, respectively, of the robot at time t. The robot is
assumed to perform a task, e.g., carrying boxes, in an industrial
environment. We aim to determine the optimal trajectory and
time step duration so as to minimize the total energy con-
sumption over its trajectory while avoiding static and moving
obstacles.

O
x

y

O'

x'

y' 



x
v

 

Fig. 1. AMR model.

A. Energy Model

The energy consumed for the robot motors include two main
parts: the energy transformed into robot kinetic energy and the
energy to overcome traction resistance, i.e., the friction [55].
In our work, we ignore transforming loss, the mechanical loss,
and the energy loss as heat in the armatures of motors as in

[69]. The kinetic energy losses of the robot can be expressed
as in [70] as follows:

Ek =
1

2
mv2(t)

=

∫ T

t=0

(
d

(
1

2
mv2(t)

))
, (1)

where m is the mass and the moment of inertia of the robot.
The friction dissipation during the movement of the robot is
[70]

Efriction = 2µmg

∫ T

t=0

|v(t)|dt, (2)

where g is the gravitational acceleration, m is the weight of
the robot the robot, and µ is the rolling friction coefficient
that depends on the surface type of the ground. Therefore, the
energy consumption of the robot’s motion system is determined
by [55]

Emotion =

∫ T

t=0

(
d

(
1

2
mv2(t)

))
+ 2µmg

∫ T

t=0

|v(t)|dt, (3)

Now, we determine the energy consumed by the onboard
computer, sensors, and electric circuits as follows: [70] [55]

Es = Ps

∫ T

t=0

dt, (4)

where Ps is the electrical power of the system.
The energy consumption formulation can be rewritten in

time-discrete as follows:

E = Emotion + Es

= Ek + Efriction + Es

=
1

2

D−1∑
d=0

mv2d + 2µmg

D−1∑
d=0

|qd+1 − qd|+ Ps

D−1∑
d=0

τ,

=
1

2

D−1∑
d=0

m

(
|qd+1 − qd|

τ

)2

+ 2µmg

D−1∑
d=0

|qd+1 − qd|

+ Ps(D − 1)τ, (5)

where D is the total requirement number of time steps,
d ∈ [0, D] as the time-varying path of the robot, Q =
[q0,q1, . . . ,qD], and v = [v1, v2, . . . , vD] denote the set of
possible coordinates and the set of velocity values of the robot,
and τ is the time step duration.

B. Collision-avoidance Constraints

Given the factory environment, we assume that the obstacles
are in rectangular shape. In particular, there is a set K =
{1, . . . ,K} of obstacles in the workspace of the AMR. Then,
each obstacle is defined as the intersection of four half spaces
[71]

P = {z|Az < b}, (6)
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where A ∈ RH×2 and b ∈ RH . The point z is defined to
be outside of the shape P if at least one of the four scalar
inequalities Aq ≥ b is satisfied, i.e.,

Az ≥ b+ (e− 1)M, (7)
H∑

h=1

eh = 1, (8)

where e = (e1, e2, . . . , eH)T is a vector of binary variables,
eh ∈ {0, 1}, and 1 = 1H is a vector of ones, M is a sufficiently
large constant used in the Big-M method [72]. The constraints
in (7) and (8) ensure that at least one element of e is equal
to 1 and the point z is out of the obstacle. We denote dr as
the size of robot. To avoid the collision between the robot and
obstacles, we define a safe distance of δ > 0. Therefore, the
location of the robot needs to satisfy the following constraint

Akqd ≥ bk + dr + δ + (ek − 1)M,

∀d ∈ [0, D],∀k ∈ K, (9)

E ∈ {0, 1}K×H×(D+1), (10)
H∑

h=1

ek,h,d = 1,∀k ∈ K, d ∈ [0, D], (11)

where ek,h,d ∈ {0, 1}H is a binary vector for obstacle k and
E = (e1, e2, . . . , eK).

C. Optimization Formulation

In general, we can design the trajectory which makes to
decrease the travel distance to reduce the kinetic energy con-
sumption and the friction dissipation during the movement
of the robot. However, it should be to satisfy the collision
avoidance requirement. In addition, we can decrease the time
step duration to reduce the energy consumed by the onboard
computer, sensors, and electric circuits. However, this requires
the mobile robot to move faster that can exceed its limited
velocity. Therefore, in this work, we aim to minimize the energy
consumption of the robot by optimizing its trajectory and time
step duration while satisfying the collision avoidance require-
ment. The optimization problem is mathematically formulated
as the mixed-binary optimization problem as follows:

min
Q,τ,e

E (12a)

s.t. (9) - (11),
q0 = qs, (12b)
qD = qg, (12c)
vd ≤ vmax,∀d ∈ {1, 2, . . . , D}, (12d)
τmin ≤ τ ≤ τmax, (12e)

where vmax is the maximum linear velocity of the robot, τmin

and τmax are the minimum time step duration and the maximum
time step duration, respectively.

III. SUCCESSIVE CONVEX APPROXIMATION ALGORITHM

It is observed that the optimization problem (12) is noncon-
vex because the objective in (12a) is nonconvex. In this section,
we develop a successive convex approximation [73] algorithm
to solve it.

Let
(
Q⟨κ⟩, τ ⟨κ⟩, e⟨κ⟩

)
be a feasible point for (12) found

from the ⟨κ − 1⟩-th iteration. In iteration κ, we determine the
next feasible point

(
Q⟨κ+1⟩, τ ⟨κ+1⟩, e⟨κ+1⟩). By applying the

inequality (A.2) in Appendix A to Ek, we have

Ek ≤
1

2
m

D−1∑
d=0

( |q⟨κ⟩
d+1 − q

⟨κ⟩
d |

4τ ⟨κ⟩

(
|qd+1 − qd|
|q⟨κ⟩

d+1 − q
⟨κ⟩
d |

+
τ ⟨κ⟩

τ

)2)2

=
m

32

D−1∑
d=0

|q⟨κ⟩
d+1 − q

⟨κ⟩
d |2

(τ ⟨κ⟩)2

(
|qd+1 − qd|
|q⟨κ⟩

d+1 − q
⟨κ⟩
d |

+
τ ⟨κ⟩

τ

)4

≜ E
⟨κ⟩
k . (13)

It is observed that the expression in the brackets of E⟨κ⟩
k is sum

of the norm function, i.e., |qd+1−qd|
|q⟨κ⟩

d+1−q
⟨κ⟩
d |

and the inverse of the

positive portion, i.e., τ
⟨κ⟩
d

τd
. These terms are convex functions,

thus E
⟨κ⟩
k is convex. In addition, Efriction is aready convex.

Therefore, we can approximate the objective in (12a) by the
following convex function

E ≤ E
⟨κ⟩
k + Efriction + Es

≜ E⟨κ⟩. (14)

Based on (14), we solve the following convex optimization
problem rather than (12)

min
Q,τ,e

E⟨κ⟩ (15a)

s.t. (9) - (11), and (12b)− (12e), (15b)

which generates
(
Q⟨κ+1⟩, τ ⟨κ+1⟩) in the next iteration. The

computational complexity of the algorithm to solve the convex
problem in (15) is O

(
α2β2.5 + β3.5

)
[74], where O

(
α2β2.5 +

β3.5
)

[74], where α = 2D+KH(D+ 1) + 3 and β = 2(D+
1)KH+(D+1)K+D+3 are the numbers of decision variables
and convex constraints as solving (15), respectively. Note that(
Q⟨κ⟩, τ ⟨κ⟩

)
and

(
Q⟨κ+1⟩, τ ⟨κ+1⟩) are the feasible point and

the optimal solution to (15), respectively, we can show that

E⟨κ⟩(Q⟨κ+1⟩, τ ⟨κ+1⟩) > E⟨κ⟩(Q⟨κ+1⟩, τ ⟨κ+1⟩), (16)

for any
(
Q⟨κ⟩, τ ⟨κ⟩

)
̸=

(
Q⟨κ+1⟩, τ ⟨κ+1⟩). It simply means that(

Q⟨κ+1⟩, τ ⟨κ+1⟩) is a better point to (12) than
(
Q⟨κ⟩, τ ⟨κ⟩

)
.

Considering (12a), it is true that [75]:

E
(
Q⟨κ⟩, τ ⟨κ⟩

)
= E⟨κ⟩(Q⟨κ⟩, τ ⟨κ⟩

)
(17)

< E⟨κ⟩(Q⟨κ+1⟩, τ ⟨κ+1⟩) (18)

≤ E
(
Q⟨κ+1⟩, τ ⟨κ+1⟩). (19)
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Algorithm 1 OSOW Algorithm For (12)

Initialization: Set κ = 1;
1: repeat
2: Solve the convex problem (15) to obtain(

Q⟨κ+1⟩, τ ⟨κ+1⟩) = (
Q⋆, τ⋆

)
;

3: Update
(
Q⟨κ+1⟩, τ ⟨κ+1⟩) := (

Q⋆, τ⋆
)

4: Set κ← κ+ 1
5: until Convergence
6: Output

(
Q⟨κ⟩, τ ⟨κ⟩

)

This clearly shows that the optimal solution(
Q⟨κ+1⟩, τ ⟨κ+1⟩) of (12) satisfies the convergence condition:
E
(
Q⟨κ+1⟩, τ ⟨κ+1⟩) > E

(
Q⟨κ⟩, τ ⟨κ⟩

)
. The sequence(

Q⟨κ+1⟩, τ ⟨κ+1⟩) converges to a saddle point
(
Q̄, τ̄

)
after

a sufficiently large number of iterations [75]. The overall
algorithm for the optimization problem in (12) is shown in
Algorithm 1. This algorithm is namely OSOW algorithm,
meaning that there are only static obstacles in the robot’s
workspace.

IV. MOVING OBSTACLES SCENARIO

In Section III, we consider the scenario in which the obstacles
are static. In realistic scenarios, other than the static obstacles,
there are also the obstacles are movable. Thus, in this section,
we consider the scenarios with moving obstacles while the robot
runs. In particular, we consider the workspace is with the static
obstacles (SOs) similar to subsection II-B. First of all, the robot
calculates and determines the trajectory to minimize the energy
consumption by solve the problem (12). After that, the robot
follows the trajectory, i.e., Q = [q0,q1, . . . ,qD]. During the
robot’s movement, at time step i ∈ [0, D], the robot detects a
set Ni = {1, . . . , Ni} of moving obstacles (MOs). Each MO is
assumed to be in circle shape. Particularly, the robot observes
the MO ni centered at qO

n,i = (xO
n,i, y

O
n,i) with velocity vni =

(vnxi
, vnyi

). The collision avoidance requirement is to ensure
that the future trajectory of the robot qi,di

= (xi,di
, yi,di

)
for di ∈ [0, Di] does not collide with all obstacles, where
Di is number of steps to overcome Ni MOs. We denote
Qi = [qi,0,qi,1, . . . ,qi,Di ], and vi = [vi,1, vi,2, . . . , vi,Di ] be
the set of possible coordinates and the set of velocity values of
the robot. Accordingly, Q is called the global trajectory and Qi

is the local trajectory. For the collision avoidance requirement,
the following constraints are satisfied

∥qi,di
− qO

n,di
∥ ≥ rOn,i + dr + δ, ∀n ∈ N , di ∈ [0, Di], (20)

where rOn,i is the radius of the obstacle n, and qO
n,di

=

(xO
n,di

, yOn,di
) is the location of the obstacle n at time step di.

Let di,r,n = rOn,i+dr+δ, the constraint in (20) can be rewritten
as

∥qi,di
− qO

n,di
∥ ≥ di,r,n,∀n ∈ N , di ∈ [0, Di]. (21)

We now formulate the optimization problem for the MOs
scenario, which is similar to (12) with the introduction of the
moving obstacle avoidance constraint (20) as follows:

min
Qi,τi,e

Ei (22a)

s.t. (9) - (11), and (21).
qi,0 = qi,s, (22b)
qi,Di

= qi,g, (22c)
vi,di ≤ vmax,∀ ∈ [0, Di], (22d)
τmin ≤ τi ≤ τmax, (22e)

where τi is step time, qi,s,qi,g are the start point where the
robot detects the MOs, and the goal point where the robot
overcomes the MOs and backs to the trajectory Q, respectively,
and

Ei = Eki
+ Efrictioni

+ Esi

=
1

2

Di−1∑
di=0

m

(
|qi,di+1 − qi,di

|
τi

)2

+ 2µmg

Di−1∑
di=0

|qi,di+1 − qi,di
|+ Ps(Di − 1)τi (23)

is the total energy consumption for overcoming Ni MOs.
The problem in (22) is nonconvex since the objective (22a)

and the constraint in (21) are nonconvex. Similar to Section III,
by applying the inequality (A.2) in Appendix A to Eki

, we have

Eki

≤ 1

2
m

Di−1∑
di=0

( |q⟨κ⟩
i,di+1 − q

⟨κ⟩
i,di
|

4τ
⟨κ⟩
i

( |qi,di+1 − qi,di
|

|q⟨κ⟩
i,di+1 − q

⟨κ⟩
i,di
|
+

τ
⟨κ⟩
i

τi

)2)2

=
m

32

Di−1∑
di=0

|q⟨κ⟩
i,di+1 − q

⟨κ⟩
i,di
|2

(τ
⟨κ⟩
i )2

(
|qi,di+1 − qi,di

|
|q⟨κ⟩

i,di+1 − q
⟨κ⟩
i,di
|
+

τ
⟨κ⟩
i

τi

)4

≜ E
⟨κ⟩
ki

. (24)

Therefore, we can approximate the objective in (22a) by the
following convex function

Ei ≤ E
⟨κ⟩
ki

+ Efrictioni + Esi

≜ E
⟨κ⟩
i . (25)

Now, we consider the constraint in (21), which is equivalent
to the following expression(

xi,di − xO
n,di

)2
+
(
yi,di − yOn,di

)2 ≥ d2r,n,

∀n ∈ N , di ∈ [0, Di],
(26)

where xO
n,di

= xO
n,i + vnxi

diτi, y
O
n,di

= yOn,i + vnyi
diτi.

Let the right-hand-side of (26) be f(wn,di
), where wi,di

=
(qi,di ,qn,di). By taking the Hessian matrix of second partial
derivatives of function f(wn,di) with respect to xi,di , yi,di and
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τi, it is observed that matrix is positive semidefinite. Therefore,
f(wn,di

) is convex. As the function f(wn,di
) is convex, its

gradient, i.e, ∇f(w⟨κ⟩
n,di

), is super-gradient [76]. Therefore, we
have

f(wn,di
)

≥ f(w
⟨κ⟩
n,di

) +∇f(w⟨κ⟩
n,di

)(wn,di
−w

⟨κ⟩
n,di

)

=
(
x
⟨κ⟩
i,di
− x

O⟨κ⟩
n,di

)2
+
(
y
⟨κ⟩
i,di
− y

O⟨κ⟩
n,di

)2
+ 2(x

⟨κ⟩
i,di
− x

O⟨κ⟩
n,di

)

× (xdii
− x

⟨κ⟩
i,di

) + 2(y
⟨κ⟩
i,di
− y

O⟨κ⟩
n,di

)(yi,di − y
⟨κ⟩
i,di

)

− 2di
(
vnx(x

⟨κ⟩
i,di
− x

O⟨κ⟩
n,di

) + vny(y
⟨κ⟩
i,di
− y

O⟨κ⟩
n,di

)
)
(τi − τ

⟨κ⟩
i )

≜ f ⟨κ⟩(wn,di
). (27)

Based on (26) and (27), the nonconvex constraint in (20) is
innerly approximated by the following convex constraint

f ⟨κ⟩(wn,di
) ≥ d2i,r,n. (28)

From (25) and (28), instead of (22), we solve the following
convex optimization problem

min
Qi,τi,e

E
⟨κ⟩
i (29a)

s.t. (9) - (11), (22b)− (22e) and (28), (29b)

which generates
(
Q

⟨κ+1⟩
i , τ

⟨κ+1⟩
i

)
in the next iteration. The

computational complexity of the algorithm to solve the convex
problem in (15) is O

(
α2β2.5 + β3.5

)
[74], where O

(
α2β2.5 +

β3.5
)

[74], where α = 2Di+KH(Di+1)+3 and β = 2(Di+
1)KH+(Di+1)K+Di+DiNi+3 are the numbers of decision
variables and convex constraints as solving (29), respectively.
Similar to Section III, the sequence

(
Q

⟨κ+1⟩
i , τ

⟨κ+1⟩
i

)
converges

to a saddle point
(
Q̄i, τ̄i

)
after a sufficiently large number of

iterations [75]. To enhance the computational efficiency of the
algorithm, it is important to generate a feasible point.

Taking any feasible point
(
Q

⟨0⟩
i , τ

⟨0⟩
i

)
for (12b), (12c) and

(12e), it follows from (29) that initialized by a feasible point(
Q

⟨κ⟩
i , τ

⟨κ⟩
i

)
for the convex constraints (12d) and (28), we

iterate

max
Qi,τi,e

η (30a)

s.t. (9) - (11), (22b)− (22c), (22e),
vmax ≥ vdi

η,∀di ∈ {1, 2, . . . , D}, (30b)

f ⟨κ⟩(wn,di) ≥ d2i,r,nη, (30c)

for κ = 0, 1, . . . until the value of the objective in (30) is great
than or equal to 1, making

(
Q

⟨κ⟩
i , τ

⟨κ⟩
i

)
feasible for (29).

As mention early, the robot follows the local trajectory Qi

to overcome the MOs, and after that, the robot returns the
global trajectory Q. The overall algorithm for the optimization
problem with both SOs and MOs is shown in Algorithm 2. This
algorithm is namely MSOW algorithm, meaning that there are
both moving and static obstacles in the robot’s workspace.

Algorithm 2 MSOW Algorithm

1: Using Algorithm 1 to generate the solution
(
Q⟨s⟩, τ ⟨s⟩

)
for

only static obstacles in workspace.
2: Let

(
Q⟨g⟩, τ ⟨g⟩

)
:=

(
Q⟨s⟩, τ ⟨s⟩

)
3: repeat
4: The robot moves base on the global trajectory(

Q⟨g⟩, τ ⟨g⟩
)
.

5: if The robot detects Ni MOs at step i then
6: Initialization: Generate an initial point

(
Q

⟨0⟩
i , τ

⟨0⟩
i

)
for

(22b), (22c) and (22e), and iterate (30) for a feasible
point

(
Q

⟨κ⟩
i , τ

⟨κ⟩
i

)
for (29). Set κ = 0;

7: repeat
8: Solve the convex problem (29) to obtain(

Q
⟨κ+1⟩
i , τ

⟨κ+1⟩
i

)
=

(
Q⋆

i , τ
⋆
i

)
;

9: Update
(
Q

⟨κ+1⟩
i , τ

⟨κ+1⟩
i

)
:=

(
Q⋆

i , τ
⋆
i

)
10: Set κ← κ+ 1
11: until Convergence
12: Output

(
Q

⟨κ⟩
i , τ

⟨κ⟩
i

)
.

13: Using
(
Q

⟨κ⟩
i , τ

⟨κ⟩
i

)
to update

(
Q⟨g⟩, τ ⟨g⟩

)
.

14: end if
15: until The robot is at the goal point.

V. PERFORMANCE EVALUATION

In this section, we present the numerical results to demon-
strate the effectiveness of the proposed algorithms. We first
present simulation results in the scenario with only static
obstacles (SOs), and then we present simulation results the
scenario with both SOs and moving obstacles (MOs). Consider
the first scenario, the number of SOs is set to K = 5, which
are randomly distributed in a square area of 10m × 10m [55].
The friction parameter µ on the flat road is 0.05. Other
simulation parameters are listed in Table I. The simulation is
implemented by MATLAB, and the optimization problem is
solved in MATLAB using the CVX 2.2 [77]–[80] with the
optimization solver Mosek 9.1.9 and default precision.

TABLE I. SIMULATION PARAMETERS

Parameter Value Parameter Value

K 5 D 30
dr 0.3 m δ 0.1 m

vmax 0.7 m/s µ 0.05
τmax 1 s τmin 0.01 s
g 9.8m/s2 m 9 kg [55]
M 100 [71] Ps 17.8 W
qs [1.5, 1.5] qg [8, 8]

For the performance comparison, we consider the following
algorithms:

• OSOW: This is the successive convex approximation
algorithm as described in Section III (shown in Algorithm
1), which is proposed to solve the optimization problem
given in (12).
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• OSOW with fixed τ : This algorithm is similar to the
OSOW algorithm in which the step time duration τ is
fixed.

• MSOW: This is the successive convex approximation
algorithm as described in Section IV (shown in Algorithm
2), which is proposed to solve the optimization problem
given in (22).

• MSOW with fixed τ : This is similar to the MSOW
algorithm in which the time step duration τ is fixed.

First, we consider the only static obstacles (SOs) scenario.
For comparison, we introduce the A* based algorithm [55] as
a baseline scheme. It is note that the A* based algorithm is
adopted for SOs scenario only, thus the comparison is only
in this scenario. Fig. 2(a) shows the optimal trajectory by
three algorithms which are the OSOW algorithm, the OSOW
algorithm with fixed τ , and the A* based algorithm. It is
observed that the trajectory with the OSOW algorithm and
the OSOW algorithm with fixed τ are the same, and they are
smoother than that with the A* based algorithm. In addition,
Fig. 2(b) shows the energy consumption and the travel time of
the robot versus its maximum velocity with three algorithms.
As seen, the energy consumption and the travel time of the
robot obtained by the OSOW algorithm are always the lowest
at each value of vmax. This result clearly shows that it is
important and necessary to optimize the time step duration τ in
the OSOW algorithm. This also demonstrates the effectiveness
of our proposed algorithm.
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Fig. 2. (a) The optimal trajectory by three algorithms (b) The energy
consumption and travel time versus the maximum velocity of the robot.

Next, we discuss the impact of the maximum velocity, i.e.,
vmax, of the robot on the energy consumption obtained by the
algorithms in only static obstacles scenario. As shown in Fig. 2,
as vmax increases, the energy consumption and the travel time
of the robot obtained by the OSOW algorithm and the A* based
algorithm decrease, and those obtained by the OSOW with
fixed τ algorithm keep constant. These results can be explained
as follows. With the OSOW algorithm, as vmax increases, the
totally moving time of the robot decreases that reduces the
energy consumption by the onboard computer, sensors, and
electric circuit, i.e., Es. On other hand, as vmax increases, the
robot moves with higher velocity that increases the energy con-
sumption of the robot’s motion system, i.e., Emotion. However,

it is interesting that the total energy consumption decreases.
The reason may be that the decrease of Es is faster than the
increase of Emotion. The similar reason is explained for down
trend of the energy consumption and the travel time of the robot
when vmax increases. With the OSOW with fixed τ , as vmax

increases, the travel time keeps no change. The reason is that
the location of robot at each step is no change as vmax varies.
Moreover, the step duration τ is fixed, thus the velocity of the
robot is no change. As a result, the total energy consumption
seems does not change.
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Fig. 3. The energy consumption and travel distance versus number of
moving obstacles in the workspace

Now, we consider the scenario with both moving and static
obstacles in the working environment of the robot. It is im-
portant to show how the energy consumption varies as the
number of moving obstacles (MOs) varies. In our simulations,
we assume the robot detects one MO at step 3, the MO centered
at (1.5, 3), with radius 0.5 m, then the robot detects one more
MO at step 20, this MO centered at (6.5, 7.5), with radius 0.3
m. As shown in Fig. 3(a), as the number of MOs increases, the
energy consumption of the robot increases. The reason is that as
the number of MOs increases, the robot requires longer travel
distance and travel time to avoid the collisions. In addition,
the energy consumption of the robot obtained by the MSOW
algorithm is lower than by the MSOW with fixed τ algorithm.
This demonstrates the effectiveness of our proposed algorithm.

Finally, it is worth showing the trajectories of the robot with
our proposed algorithms, which are shown in Figs. 4(a), (b),
(c), and (d). In the figures, each blue circle and red circles
present the robot and the MO at each time step, respectively.
Fig. 4(a) shows the trajectory of the robot when there is no MO
appears and it is the same as the global trajectory. Figs. 4(b)
and (c) shows the trajectory of the robot in scenarios with one
and two MOs, respectively. It is observed that the trajectory of

Nguyen Thi Thanh Van, Energy Consumption Minimization for Autonomous Mobile Robot: A Convex Approximation
Approach



Journal of Robotics and Control (JRC) ISSN: 2715-5072 410

the robot is changed to avoid the MOs. Fig. 4(d) also shows
that by adopting our algorithms, the trajectory is smooth and
the collision avoidance requirement is satisfied with minimum
energy consumption.
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Fig. 4. The optimal trajectory of the robot for minimizing the energy
consumption in (a) OSOW scenario (b) MSOW scenario with 1 MO
(c) MSOW scenario with 2 MOs and (d) 3 scenarios.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the energy consumption
of the AMR with differential drive wheels. In particular, we
aim to design the trajectory and the time step duration for
the robot to minimize the energy consumption. The robot was
limited by the velocity and the workplace layout. Therefore,
we have formulated an optimization problem that minimizes
the energy consumption constrained to a maximum velocity
and obstacles. We consider two scenarios: the first scenario
with static obstacles and the second scenario with both static
and moving obstacles. The optimization problem is nonconvex,
and we have proposed the successive convex approximation
algorithms to solve it. Simulation results have shown the
effectiveness of the proposed algorithms compared with the
A* algorithm. In addition to the path planning, path tracking
as a motion planning can help to improve the performance
of the mobile robot. In future work, we will investigate the
energy consumption minimization of the mobile robots by
jointly optimizing the path planning and path tracking.

APPENDIX A: FUNDAMENTAL INEQUALITIES

Using the Cauchy-Schwarz inequality, we have the following
inequality

2xy ≤ x̄ȳ

2

(
x

x̄
+

y

ȳ

)2

,∀(x, y) ∈ R2
+ and (x̄, ȳ) ∈ R2

+ (A.1)

Substituting y → 1/y and ȳ → 1/ȳ, we have the following
inequality

2
x

y
≤ x̄

2ȳ

(
x

x̄
+

ȳ

y

)2

,∀(x, y) ∈ R2
+ and (x̄, ȳ) ∈ R2

+ (A.2)

ACKNOWLEDGMENT

This research was funded by Vietnam’s National project
“Research, develop an intelligent mobile robot using different
types of sensing technology and IoT platform, AI, and im-
plemented in radioactive environment monitoring application,”
code: DTDLCN.19/23 of the CT1187 Physics development
program in the period 2021- 2025.

REFERENCES

[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots:
Concepts, methods, theoretical framework, and applications,” Inter-
national Journal of Advanced Robotic Systems, vol. 16, no. 2, p.
1729881419839596, 2019.
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