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Abstract—This paper presents a novel adaptive single-input 
recurrent wavelet differentiable cerebellar model articulation 
controller (S-RWCMAC)-based supervisory control system for 
an m-link robot manipulator to achieve the precision trajectory 
tracking. This adaptive S-RWCMAC-based supervisory control 
system consists of a main adaptive S-RWCMAC, a supervisory 
controller and an adaptive robust controller. The S-RWCMAC 
incorporates the advantages of the wavelet decomposition 
property with a CMAC fast learning ability, dynamic response 
and input space dimension of RWCMAC can be simplified; and 
it is used to control the plant. The supervisory controller is 
appended to the adaptive S-RWCMAC to force the system states 
within a predefined constraint set and the adaptive robust 
controller is developed to dispel the effect of approximate error. 
In this scheme, if the adaptive S-RWCMAC can not maintain the 
system states within the constraint set. Then, the supervisory 
controller will work to pull the states back to the constraint set 
and otherwise is idle. The online tuning laws of S-RWCMAC and 
the robust controller parameters are derived in gradient-descent 
learning method and Lyapunov function, so that the stability of 
the system can be guaranteed. Finally, the simulation and 
experimental results of novel three-link De-icing robot 
manipulator are provided to verify the effectiveness of the 
proposed control methodology. 

Keywords─Wavelet, recurrent Wavelet Cerebellar model 
articulation controller (RWCMAC), De-icing robot manipulator, 
supervisory control. 

I.  INTRODUCTION 

uzzy logic control (FLCs) has found extensive 
applications for plants that are complex and ill-defined 
which is suitable for simple second order plants. 

However, in case of complex higher order plants, all process 
states are required as fuzzy input variables to implement state 
feedback FLCs. All the state variables must be used to 
represent contents of the rule antecedent. So, it requires a huge 
number of control rules and much effort to create. To address 
these issues, single-input Fuzzy Logic controllers (S-FLC) was 
proposed for the identification and control of complex 
dynamical systems [1–3]. As a result, the number of fuzzy 
rules is greatly reduced compared to the case of the 
conventional FLCs, but its control performance is almost the 
same as conventional FLCs. 

Cerebellar model articulation controller (CMAC) was 
proposed by Albus in 1975 [4] for the identification and control 
of complex dynamical systems, due to its advantage of fast 
learning property, good generalization capability and ease of 
implementation by hardware [5–7]. The conventional CMACs, 
regarded as non-fully connected perceptron-like associative 
memory network with overlapping receptive fields which used 
constant binary or triangular functions. The disadvantage is that 
their derivative information is not preserved. For acquiring the 
derivative information of input and output variables, Chiang 
and Lin [8] developed a CMAC network with a differentiable 
Gaussian receptive-field basis function and provided the 
convergence analysis for this network. The advantages of using 
CMAC over neural network in many applications were well 
documented [9]–[11]. 

The most control systems are developed in the literatures 
based on the CMAC which is used to approach the nonlinear 
mapping [12–13], in which the input dimension of CMAC 
includes the all state variables of the system. As a result, many 
adaptive approaches are also rejected as being overly 
computationally intensive because of the real-time parameter 
identification and required control design. To deal with these 
problems, another control schemes are also proposed in [14–
16] by combination with conventional control techniques 
(sliding model control, etc.) so that the dimension of the input 
space is reduced. Recently, there are some researches [17–19] 
which have reported very good results based on the CMAC 
control system. In [17–18], the proposed single-input CMAC 
controllers are not only solely used to control the plant, so the 
input space dimension can be simplified and no conventional 
controller. However, the disadvantaged of proposed CMAC 
control system adopts two learning stages, an off-line learning 
stage and an on-line learning stage. In [19], the later proposed 
controller is developed the same in [18], but in this control 
scheme was not only overcome disadvantages in [18] but also 
the stability of the control system can be guarantied. However, 
the major drawback of the above single-input CMACs is they 
belong to static networks.  

Recently, many applications have also been implemented 
quite successfully based on wavelet neural networks (WNNs) 
which combine the learning ability of network and capability 
of wavelet decomposition property [20–23]. Different from 
conventional NNs, the membership functions of WNN is 
wavelet functions which are spatially localized, so, the WNNs 
are capable of learning more efficiently than conventional NNs 
for control and system identification as has been demonstrated 
in [20, 22]. As a result, WNNs has been considerable interest in 
the applications to deal with uncertainties and nonlinearity 
control system as is shown in [22–23]. 

In this paper, by combining the fast learning property of 
CMAC, capability of the wavelet decomposition property, by 
including a delayed self-recurrent unit in the association 
memory space, , and based on [1–2], the system tracking error 

nRE is transformed into a single variable, termed the signed 
distance ,m

si Rd   we propose a novel adaptive single-input 
recurrent wavelet CMAC (S-RWCMAC)-based supervisory 
control system which is presents a dynamic S-RWCMAC with 
single-input for three-link De-icing robot manipulator to 
achieve the precision trajectory tracking. This control system 
consists of an adaptive S-RWCMAC, a supervisory controller 
and an adaptive robust controller. The S-RWCMAC is the 
main controller which is used to mimic the ideal controller 
through learning and the adaptive robust controller is 
developed to dispel the effect of the approximation error. The 
online tuning laws of S-RWCMAC parameters are derived in 
gradient-descent learning method which can be caused the 
instability controlled system, especially in the transient period. 
So, the supervisory controller is appended to the adaptive S-
RWCMAC to force the system states within a predefined 
constraint set, if the adaptive S- RWCMAC can not maintain 
the system states within the constraint set. Then, the 
supervisory controller will work to pull the states back to the 
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constraint set and otherwise is not. This is the first contribution 
of this paper. The second contribution proposes novel 
architecture and mathematical model of De-icing robot 
manipulator which can be effectiveness application in practical.  

 This paper is organized as follows: System description is 
described in Section II. Section III presents S-RWCMAC-
based supervisory control system. Numerical simulation and 
experimental results of a three-link De-icing robot manipulator 
under the possible occurrence of uncertainties are provided to 
demonstrate the tracking control performance of the proposed 
S-RWCMAC system in Section IV. Finally, conclusions are 
drawn in Section V. 

II. SYSTEM DESCRIPTION 

In general, the dynamic of an m-link robot manipulator 
may be expressed in the Lagrange following form: 

 )(),()( qGqqqCqqM     (1) 

Where , , mq q q R  are the joint position, velocity and 

acceleration vectors, respectively, ( ) m mM q R   denotes the 

inertia matrix, ( , ) m mC q q R  expresses the matrix of 

centripetal and Coriolis forces, 1( ) mG q R   is the gravity 

vector, 1mR  is the torque vectors exerting on joints. In this 
paper, a new three-link De-icing robot manipulator, as shown 
in Fig.1 (b), is utilized to verify dynamic properties are given 
in section IV. By rewriting (1), the dynamic equation of robot 
manipulator can be obtained as follows: 
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Where ( ),f x ( )g x are nonlinear dynamic functions which are 

difficult to determine exactly or can not even obtain. So, we 
can not establish model-based control system. In order to with 
this problem, here we assume that actual value 

( )f x and ( )g x can be separated as nominal part denoted 

by 0 ( ),F x 0 ( )G x , in which 0 ( )G x  is assumed to be positive, 

differentiable and 1
0 ( )G x exists for all q . ),( txL is 

represented as the unknown lumped uncertainly and 
TTT qqx ],[  is vector which represents the joint position 

and velocity. Finally, the system (2) can be rewritten as 
follows: 

0 0( ) ( ) ( ) ( , ),q t F x G x L x t      (3) 

The control problem is to force ,)( nRtq   to track a given 

bounded reference input signal n
d Rtq )( . Let nRte )(  be 

the tracking error as follows: 
( ) ( )de q t q t                     (4) 

and the system tracking error vector is defined as 

  1[ ]
TT T n T nmE e e e R      (5) 

Where n is order of nonlinear system. If the nominal parts 

0 ( ),F x 0 ( )G x  and the uncertainly ),( txL  are exactly known, 

then an ideal controller can be designed as follows: 

 0
0

1
( ) ( ) ( ) ( , )

( ) dt q t F x L x t KE
G x

          (6) 

By substituting the ideal controller (6) into (3), the error 
dynamic equation is given as follows: 

( ) 0Te t K E     (7) 

It is obvious that errors will be asymptotically tend to zero 
if  the gain matrices of 1[ , , ]T nm

nmK k k R  is determined so 

that the roots of the characteristic 

polynomial 1 2 3( )P I k k k         lie strictly in the open 

left haft of complex plane. However, the ideal controller in (6) 
can not determine, because of ),( txL is exactly unknown for 

practical applications. So, in order to this problem, a proposed 
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Fig.1. Architecture of three-link De-icing robot manipulator. 

  



adaptive S-RWCMAC-based supervisory control system is 
shown in Fig. 2 which is described in the following sections. 

III. ADAPTIVE S-RWCMAC-BASED SUPPERVISORY  

CONTROL SYSTEM 

The architecture of the adaptive S-RWCMAC-based 
supervisory control system is shown in Fig. 2 which consists 
of adaptive S-RWCMAC, the supervisory controller and the 
adaptive robust controller with the following form: 

RCSRWCMACS       (8) 

Where RWCMACS  is the main controller based on the S-

RWCMAC which is used to mimic the ideal controller in (6) 
and S  is the supervisory controller, which can be used to 

stabilize the states of the controlled system within a predefined 
constrain set and the adaptive robust controller RC is utilized 

to compensate for the approximation error between the ideal 
controller and S RWCMAC  . 

A. Brief of the S-RWCMAC 

An S-RWCMAC is proposed based on [19] and is depicted 
in Fig. 3. This S-RWCMAC is composed of an input space, an 
association memory space, a weight memory space, an output. 
The signal propagation and the basic function in each space 
are introduced as follows. 
1. Input space sD ; assume that each input state variable 

rsid can be quantized into siN discrete states and that the 

information of a quantized state is distributive stored in eN  

)2( eN  memory elements. Therefore, there exist 1siN  

individual points on the rsid - axis. Fig. 4 depicts the schematic 

diagram of one dimensional S-RWCMAC operations with 
3eN   and 7siN   for 1, 2i m   where the equidistant 

quantization scheme is used to partition the input 

space ]1,1[  . This simple example shows that the input 

space is quantized into three discrete regions, called blocks. 
For instance, there are three blocks, namely, A, B, and C, in 
the first layer. By shifting each block a small interval, 
different blocks can be obtained. For example, D, E and F in 
the second layer are possible shifted regions. With this kind of 
decomposition, one can imagine that there are 3eN  layers 

of blocks. Each state is covered by 3eN different blocks. 

The S-RWCMAC associates each block to a physical memory 
element. Information for a quantized state is distributive stored 
in memory elements associated with blocks that cover this 
state. Note that a state will share some memory elements with 
its neighboring states, but any two states will not correspond 
to the same set of blocks. Moreover, the entire memory size 
that is equal to the number of blocks and denoted by hN  is 

determined by 1h si eN N N   . See the block division 

shown in Fig. 4 for instance; the total number of memory 
elements is 9. In this space, each block performs a receptive-
field basis function, which can be defined mother wavelet. The 
first derivative of basic Gaussian function for each block is 
given here as a mother wavelet which can be represented as 
follows:
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                      1, 2, , ,i m     hNj ,,2,1         

(9) 

Where ( , , , ) ( ( ) )ij rsi ij ij rsi ij ijF d m k d k m   , ij  represents 

the reception-field basic function for thj block of the 

thi input, ijm is a translation parameter and ij  is dilation. In 

addition, the input of this block can be represented as 
( ) ( ) ( 1)rsi si ij ijd k d k r k    (10) 

Where ijr is the recurrent gain, k is denotes the time step, and 

)1( kij  denotes the value of )(kij  through a time delay. 

Clearly, the input of this block contains the memory 
term )1( kij , which stores the past information of the 

network and presents the dynamic mapping. 
2. Output space O: The output of S-RWCMAC is the 
algebraic sum of the firing element with the weight memory, 
and is expressed as 

1

,
hN

S RWCMAC ij ij ij
j

a w 


    1, 2, , .i m       (11) 

Where ijw denotes the weight of the jth block, 

),( rsiijij daa  hNj ,2,1  is the index indicating whether 

the thj memory element is addressed by the state 

involving rsid . Since each state addressed exactly eN  

memory elements, only those addressed ,
ija s are one, and the 

others are zero. 
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Fig.2. Block diagram of proposed adaptive S-RWCMAC-
based supervisory control system. 

  



B. On-line learning algorithm 

The central part of the learning algorithm for an S-
RWCMAC is how to choose the weight memory ,ijw ijm is a 

translation parameter ij,  is dilation of the wavelet functions 

and ijr  is a recurrent gain. For achieving effective learning, an 

on-line learning algorithm, which is derived using the 
supervised gradient descent method, is introduced so that it 
can in real-time adjust the parameters of S-RWCMAC. 

According to [1], [2], the system tracking error 
( , ) n

i ie e R is transformed into a single variable, termed the 

signed distance ,m
si Rd   which is the distance from an actual 

state ( , ) n
i ie e R to the switching line as shown in Fig. 5 for a 

2-D input. The switching line is defined as follows: 
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Where 1n   is a constant. Then, the signed distance between 

the switching line and operating point ( , ) n
i ie e R can be 

expressed by the following equation: 
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By taking the time derivative of (13) for 2n  and using (3), 
(8).  We have 

 


etxLtq

txGtxF

eed

d

SRCRWCMACS

s





1

00

1

),()(

))(,(),(











  (14) 

Define a cost function 2( ( )) 1 2 ( )s sV d t d t ; then, 

( ( )) ( ) ( )s s sV d t d t d t  . The tuning of S-RWCMAC parameter 

aims to speed up the convergence of ( ( ))sV d t , i.e., minimize 

( ( ))sV d t with respect to the tuned parameters. By multiplying 

both sides of (14) by )(tds , yields 
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With this representation of the S-RWCMAC system, it 
becomes straightforward to apply the back propagation idea to 
adjust the parameters. The weight memory ijw and the 

translations ijm and dilations ij of the mother wavelet 

function are updated by the following: 
1. The updating law for the thj  weight memory can be 

derived according to 
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Where w is positive learning rate for the output weight 

memory ,ijw the connective weight can be updated 

according to the following equation: 
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2. The translations and dilations of the thj  mother wavelet 

function can be also updated according to 
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Fig.5. Derivation of a signed distance.  
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Fig.3. Architecture of a single-input RWCMAC. 
  

 
 

Fig.4. Block division of S-RWCMAC with wavelet function 
 



Where ,m   are positive learning rates for the 

translation and the dilation parameters. The translation 
and dilation can be updated as follows: 

ijijij mtmtm  )()1(  (20) 

ijijij tt   )()1(  (21) 

3. 



  


RWCMACS  (31) 

Where  denotes the approximation error which is assumed to 

be bounded by D 0 , if D is assumed to be a positive 

constant during the observer. Then, the conventional robust 
controller is designed as follows: 

)sgn( m
T

RC PBED  (32) 

However, the parameter variations of the controlled system 
are difficult to measure and the exact value of the load 
disturbance is also difficult to know in advance for practical 
applications. Therefore the error bound estimation needs a 
continuous prediction by the proposed fuzzy logic controller 
(FLC) bound observer. The general FLC as shown in Fig. 6, 
every fuzzy rule is composed of an antecedent and a 
consequent part, a general form of the fuzzy rules can be 
represented as follows: 
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Where in is the input dimension, kn and ln are the rule 

for thi input variable, kl  is the output weight in the 

consequent part and lko nnn  is the number of the fuzzy 

rules. Here, the membership functions for the input are chosen 
to be a triangular type as show in Fig. 6. In this paper, the 
defuzzification of the output is obtained by the height method. 
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Where o

o

nT
n Rbbbb  ][ 21   is a firing strength 

vector of rule and o

o

nT
n R ][ 21    is the 

consequent parameter vector which is adjusted by the adaptive 
rule. By the universal theorem [24], there exist an optimal 
FLC in the form of (34) such that 

     bD T  (35) 

Where   is the optimal weighting vector that achieves the 
minimum approximation error and  is the approximation 

error of the FLC and assumed to be bounded by   . 

Replacing D by D̂ in (32), the robust controller can be 

represented as 

 m
TT

RC PBEb sgn̂   (36) 

To compensate the approximation error of the FLC RC is 

developed as follows: 

   m
T

m
T

RC PBEPBED sgnˆsgn    (37) 

Where ̂ is the estimated value of  . From (3), (6) and using 

(8), (31), then, the error equation becomes: 

     
SRCmm BEBEE  (38) 

Theorem 1: Consider an n-link robot manipulator expressed 
(2). If the adaptive S-RWCMAC-based supervisory control 
law is designed as (8) in which the supervisory control law is 
designed in (28), the S-RWCMAC is presented in (11) with 
the adaptive laws of the S-RWCMAC are designed as (16), 
(18), (19) and (22), and the robust controller is developed as 
(37) with the estimation law in (34), (39-40), then the stability 
of the proposed S-RWCMAC-based supervisory control 
system can be ensured 

m
T PBEb 

̂
 (39) 

m
T PBE 

̂
 (40) 

   )()( bnormt  (41) 

Where  is a positive constant. 

Proof: Define a Lyapunov function candidate as 
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Where ˆ    , ˆ   
  and  are approximation 

error of fuzzy compensation, estimation error, learning rates 
for the fuzzy compensator and the error estimator, 
respectively. By differentiating (42) with respect to time and 
using (26) and (38), we can obtain. 
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From (28) and using (39)–(41), (37) and (43) can be rewritten 
as follows. 

  
 

Fig.6. Fuzzy rule membership functions. 
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Since 0),
~

,
~

,( tEV   is a negative semi-definite function, 

i.e. ),0,
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,
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,(),
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,
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,(  EVtEV    it implies that ,E 
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is 

bounded functions. Let function ),
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and integrate function )(th  with respect to time 
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tEVEVdh
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Because )0,
~

,
~

,( EV is a bounded function, and 

),
~

,
~

,( tEV  is a non-increasing and bounded function, the 

following result can be concluded: 

 
 dh

t

t
0

)(lim  (46) 

In addition, )(th  is bounded; thus, by Barbalat’s lemma can 

be shown that 0)(lim 


th
t

. It can imply that E will be 

converging to zero as time tends to infinite. As a result, the 
stability of the proposed adaptive S-RWCMAC-based 
supervisory control system can be guaranteed. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation results 

A three-link De-icing robot manipulator as shown in Fig.1 
is utilized in this paper to verify the effectiveness of the 
proposed control scheme. The detailed system parameters of 
this robot manipulator are given as: link mass )(,, 321 kgmmm , 

lengths ),(, 21 mll angular positions )(, 21 radqq and 

displacement position )(3 md . 

The parameters for the equation of motion (1) can be 
represented as follow: 
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Where 3
1 2 3[ , , ]q q q d R  and the shorthand 

notations ),cos( 11 qc  ),cos( 22 qc   )sin( 11 qs  and 

)sin( 22 qs   are used. 

For the convenience of the simulation, the nominal 
parameters of the robotic system are given as 

]8.9,32.0,14.0,5.2,2,3[],,,,,[ 21321 gllmmm and the initial 

conditions ]0,0,0,0,0,0[]0,,,,,,[ 321321 dqqdqq  and the 

unknown lumped uncertainly in (3) is ),( txL  which is 

assumed to be a square ware with amplitude 5.0 and 

period 2 . The desired reference model is defined as 

1 1

2 2

0 1 0
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Where 1 2[ (0), (0)] [0, 0]T T
d dx x  and )(tr is a periodic 

rectangular signal. The adaptive S-RWCMAC-based 
supervisory control system implemented here needs to know 
the actual values ,1),(0 txF ,1),(0 txG  the bound of the 

unknown lumped uncertainly 5),( txLU and 4V .  

Furthermore, the input variables of S-RWCMAC are 
,1sd 2sd and 3sd , the translation and dilation of mother 

wavelet functions are selected to cover the input 

space   
3

0.5, 0.5 , the initial value of mother wavelet 

functions, the recurrent gain and weight memory are defined 
as: ,15.0ij ,0.1ijr ,0ijw ,1i  for 

,9,2,1 j 3,2,1i  and 

1 2 3 4 5 6 7 8 9[ , , , , , , , , ]

[ 0.4, 0.3, 0.2, 0.1, 0, 0.1, 0.2, 0.3, 0.4]
i i i i i i i i im m m m m m m m m

    
  



. Finally, the learning rates of S-RWCMAC are chosen such 
as: ,05.0wi ,02.0mi ,02.0i .02.0ri For the 

adaptive robust controller, the each input variable ilik ee ,  was 

divided into three fuzzy subsets within   
3

0.5, 0.5 along 

with each input dimension by using the triangular membership 
function for ,3,,2,1 k 3,,2,1 l , the learning rate and 

the initial output weight in the consequent part are selected as 
,5.0i 2.0i and 1oi for ,9,,2,1 o 3,2,1i   

respectively. 
According to the simulation results of the S-WFCMAC-

based supervisory control system due to periodic as shown in 
Fig. 7. The joint-position tracking responses and tracking error 
are shown in Fig. 7(a-c) and Fig. 7(d-f). The simulation results 
indicate that the high-accuracy trajectory tracking responses 
can be achieved by using the proposed adaptive S-RWCMAC-
based supervisory control system for periodic step reference 
trajectory. However, the performance measure comparison of 
the proposed S-RWCMAC control system with the standalone 
CMAC control system which has been proposed in [19] are 
also shown in Table 1. This table shows that, for the adaptive 
S-RWCMAC control system, the root mean square errors are 
0.038%, 0.023% and 0.012% for periodic step commands for 
each link, respectively. Moreover, comparing the proposed S-
RWCMAC control system with the standalone CMAC control 
system, the root mean square errors have been reduced by 
about 0.023%, 0.029% and 0.032% for periodic step 
commands for each link, respectively. This indeed confirms 
the performance improvement of the proposed S-RWCMAC 
control system. 

Table 1: Performance measure of S-RWCMAC and the 
Standalone CMAC approximation 

Control 
System 

Standalone CMAC 
Controller [19] 

S-RWCMAC 
Controller 

RMS (rad) RMS (rad) 

Link 1 0.061% 0.038%,  

Link 2 0.052% 0.023%  

Link 3 0.044% 0.012%  

B. Experimental results 

An image of a practical experimental control system for 
De-icing robot consists of three manipulators and is shown in 
Fig 8(b). The left and right manipulators have three-link with 
two revolute joints and a prismatic joint. End-effectors of each 
manipulator have attached the motion structure to move the 
De-icing robot on the power line and the de-icing device. 
During normal operating conditions, the left and right 
manipulators are only operation. The between manipulator has 
only two joints with a revolute joint and a prismatic joint. It 
only works when the De-icing robot voids obstacles on the 
power line. In general, the operation of De-icing robot is very 
complex. In this paper, we consider only the three-link De-
icing robot manipulator for proposed methodologies while the 
other manipulator is the same. 
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Fig.7. Simulation position responses and tracking error of the
proposed adaptive S-RWCMAC-based supervisory control 
system at links 1, 2 and 3.  

 



The hardware block diagram of the control system is 
implemented to verify the effectiveness of the proposed 
methodologies and is shown in Fig. 8 (a). Each joint of 
manipulator is derived by the “EC─**” type MAXON DC 
servo motors, which is designed by Switzerland Company, 
and each this motor contains an encoder. Digital filter and 
frequency multiplied by circuits are built into the encoder 
interface circuit to increase the precision of position feedback. 
The DCS303 is a digital DC servo driver developed with DSP 
to control the DC servo motor. The DCS303 is a micro-size 

DSP

D/A 
Converter

Feedback 
signal proces

DC 
Driver 1

DC 
Driver 2

DC 
Driver 3

Oscillograph

Digital Signal Processor (DMC2610)

Encoder 1

Encoder 2

Encoder 3

Fig. 8a

3

2

1

Fig. 8b

Fig. 8c

Servo Motor 2

Servo Motor 3

Servo Motor 1

DMC2610 Card

DCS303

DCS303

DCS303

RightBetweenLeft

IPC+PMAC Motion 
Control Cards

Feedback

DCS303

De-icing 
Framework

Moving 
Framework

Power Line in Icing

Computer

IPC+PMAC Motion Control Cards

Actuators

Power Line

 
Fig.8. IPC-based De-icing robot position control system a) 
Block diagram of three-link De-icing robot manipulator 
control system, b) image of practical control system, c) 
image of special robot laboratory of power industry. 
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brush DC servo drive. It is an ideal choice for this operating 
environment. Two DC servo motor motion control cards are 
installed in the industrial personal computer, in which, a 6-axis 
DC servo motion control card is used to control the joint 
motors and a 4-axis motion control card is used to control the 
drive motors. Each card includes multi-channels of 
digital/analog and encoder interface circuits. The name of 
model is DMC2610 with a PCI interface connected to the IPC. 
The DMC2610 implements the proposed program and execute 
in the real time. Considering that the control sampling rate Ts 
= 1 ms is too demanding for the hardware implementation, Ts 
= 10 ms is thus considered here. 

The experimental parameters of the proposed S-
RWCMAC-based supervisory control system are selected in 
the same simulation. In this section, the control objective is to 
control the each joint angles of the three-link De-icing robot 
manipulator to move different sinusoidal commands 

 1 2 3, , 2sin(0.2 ), cos(0.2 ), sin(0.2 ),d d dq q q t t t     and 

the initial conditions of system are given 

as 1 2 3 1 2 3[ , , , , , , 0] [0.5, 0.5, 0.5, 0, 0, 0]q q d q q d   . Finally, the 

experimental position responses, tracking errors and control 
effort results of the proposed S-RWCMAC-based supervisory 
control system are depicted in Fig. 9 (a), (b), (c), Fig. 9 (d), 
(e), (f) and Fig. 9 (g), (h), (k). According to these experimental 
results of proposed S-RWCMAC-based supervisory control 
system due to sinusoidal reference trajectories; it is shown that 
high-accuracy tracking performance of proposed S-
RWCMAC-based supervisory control system can also be 

archived for sinusoidal reference commands. For the 
experimental results, the performance measure comparison of 
the proposed S-RWCMAC control system with the standalone 
CMAC control system which has been proposed in [19] are 
also shown in Table 2. This table shows that, for the adaptive 
S-RWCMAC control system, the root mean square errors are 
0.078%, 0.055% and 0.043% for sinusoidal commands for 
each link, respectively. Moreover, comparing the proposed S-
RWCMAC control system with the standalone CMAC control 
system, the root mean square errors have been reduced by 
about 0.023%, 0.027% and 0.011% for sinusoidal commands 
for each link, respectively. This indeed confirms the 
performance improvement of the proposed S-RWCMAC 
control system. 

Table 2: Performance measure of S-RWCMAC and the 
Standalone CMAC approximation 

Control 
System 

Standalone CMAC 
Controller [19] 

S-RWCMAC 
Controller 

RMS (rad) RMS (rad) 

Link 1 0.091% 0.068% 

Link 2 0.072% 0.045% 

Link 3 0.054% 0.043% 

V. CONCLUSIONS 

This study has successfully implemented an adaptive S-
RWCMAC-based supervisory control system for the three-link 
De-icing robot manipulator to achieve high-precision position 
tracking performance. Due to in the proposed scheme consists 
of the adaptive S-RWCMAC, the supervisory and the adaptive 
robust controllers, in which, the adaptive S-RWCMAC 
controller incorporates the advantages of the wavelet 
decomposition property with a CMAC fast learning ability, 
dynamic response and input space dimension of S-RWCMAC 
can be simplified, The supervisory controller is appended to the 
adaptive S-RWCMAC to force the system states within a 
predefined constraint set and the adaptive robust controller is 
developed to dispel the effect of approximate error. The online 
tuning laws of S-RWCMAC parameters and error estimation of 
adaptive robust controller are derived in gradient-descent 
learning method and the Lyapunov function so that the stability 
of the system can be guaranteed. Finally, through the 
simulation and experimental results indicate that the proposed 
S-RWCMAC-based supervisory control system can achieve 
favorable tracking performance for difference reference 
commands. This proposed system can also be applied to other 
systems, such as mobile robotic, AC servo system and so on. 
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