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Abstract—The control of any robotic system always faces 

many great challenges in theory and practice. Because between 

theory and reality, there is always a huge difference in the 

uncertainty components in the system. That leads to the 

accuracy and stability of the system not being guaranteed with 

the set requirements. This paper presents a novel adaptive 

single-input recurrent wavelet differentiable cerebellar model 

articulation controller (S-RWCMAC)-based supervisory control 

system for an m-link robot manipulator to achieve precision 

trajectory tracking. This adaptive S-RWCMAC-based 

supervisory control system consists of a main adaptive S-

RWCMAC, a supervisory controller, and an adaptive robust 

controller. The S-RWCMAC incorporates the advantages of the 

wavelet decomposition property with a CMAC fast learning 

ability, dynamic response, and input space dimension of 

RWCMAC can be simplified; and it is used to control the plant. 

The supervisory controller is appended to the adaptive S-

RWCMAC to force the system states within a predefined 

constraint set and the adaptive robust controller is developed to 

dispel the effect of the approximate error. In this scheme, if the 

adaptive S-RWCMAC can not maintain the system states within 

the constraint set. Then, the supervisory controller will work to 

pull the states back to the constraint set and otherwise is idle. 

The online tuning laws of S-RWCMAC and the robust controller 

parameters are derived from the gradient-descent learning 

method and Lyapunov function so that the stability of the system 

can be guaranteed. The simulation and experimental results of 

the novel three-link De-icing robot manipulator are provided to 

verify the effectiveness of the proposed control methodology. The 

results indicate that the proposed model has superior accuracy 

compared to that of the Standalone CMAC Controller. The 

parameters of the average squared error in the S-RWCMAC -

based 3 robot joints are lower than those of the Standalone 

CMAC Controller by 0.023%, 0.029%, and 0.032%, 

respectively. 

Keywords—Wavelet; Recurrent Wavelet Cerebellar Model 

Articulation Controller (RWCMAC); De-icing Robot Manipulator; 

Supervisory Control; Transmission Line; Obstacle Crossing; Path 

Planning. 

I. INTRODUCTION 

Fuzzy Logic Control (FLCs) are deployed in complex, 

high-order systems that require the use of all states. These 

state variables are used to represent the contents of the rule 

premises. Therefore, creating a complex network of rules 

becomes a significant challenge in designing and 

implementing FLCs. This creates distinct difficulty when 

requiring many control rules and requires considerable effort 

from experts. However, in complex higher-order systems, we 

often must increase the number of state variables. That means 

increasing the number of control rules. This not only takes 

time and effort in the process of creating rules but also requires 

a deep understanding of the system and control rules on the 

part of experts. Therefore, deploying FLCs in complex, high-

order systems become a difficult task. To overcome this 

challenge, a careful assessment of the effectiveness and 

complexity of creating and implementing control rules should 

be conducted. Research and development of advanced 

methods to reduce the number of rules and effort required to 

implement FLCs is an important step to overcome the 

limitations of this approach. To address these issues, single-

input Fuzzy Logic controllers (S-FLC) were proposed for the 

identification and control of complex dynamical systems [1]-

[5]. As a result, the number of fuzzy rules is greatly reduced 

compared to the case of conventional FLCs, but its control 

performance is almost the same as conventional FLCs. 

Cerebellar model articulation controller (CMAC) was 

proposed by Albus in 1975 [6] for the identification and 

control of complex dynamical systems, due to its advantage of 

fast learning property, good generalization capability, and 

ease of implementation by hardware [7]-[10]. The 

conventional CMACs are regarded as non-fully connected 

perceptron-like associative memory networks with 

overlapping receptive fields which used constant binary or 

triangular functions. The disadvantage is that their derivative 

information is not preserved. For acquiring the derivative 

information of input and output variables, Chiang and Lin [11] 

developed a CMAC network with a differentiable Gaussian 

receptive-field basis function and provided the convergence 

analysis for this network. The advantages of using CMAC 

over neural networks in many applications were well 

documented [12]-[15]. 

Most control systems are developed in the literature based 

on the CMAC which is used to approach the nonlinear 

mapping [16]-[20], in which the input dimension of CMAC 

includes all state variables of the system. As a result, many 

adaptive approaches are also rejected as being overly 

computationally intensive because of the real-time parameter 

identification and required control design. To deal with these 

problems, other control schemes are also proposed in [21]-

[25] by combination with conventional control techniques 

(sliding model control, etc.) so that the dimension of the input 

space is reduced. Recently, there are some researchers [26]-

[30] who have reported very good results based on the CMAC 
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control system. In [31]-[34], the proposed single-input 

CMAC controllers are not only solely used to control the 

plant, so the input space dimension can be simplified, and no 

conventional controller. However, the disadvantage of the 

proposed CMAC control system adopts two learning stages, 

an off-line learning stage, and an on-line learning stage. In 

[35], the later proposed controller is developed the same in 

[32], but this control scheme not only overcomes 

disadvantages in [33] but also the stability of the control 

system can be guaranteed. However, the major drawback of 

the above single-input CMACs is they belong to static 

networks. 

Many studies have been conducted on the application of 

neural networks (NNs) to predict, recognize, and control 

dynamic systems [36]-[40]. One of the most outstanding 

advantages of NN is its ability to approximate arbitrary linear 

or nonlinear systems through learning. Based on that 

advantage, NNs are used to approximate mathematical 

models of control systems. Structurally, NNs can be classified 

primarily into transmission neural networks (FNNs) [41], [42] 

and regression neural networks (RNNs) [43], [44]. RNNs 

have capabilities superior to FNNs, such as status response 

and information storage capabilities [43], [44]. Because the 

RNN has a feedback loop, it captures the state of the system 

through error, so the RNN represents better control 

performance. However, regardless of FNN or RNN, the 

learning process is slow because all weights are updated in 

each study cycle. Therefore, the effectiveness of NN is limited 

in math problems that need to be learned online. The 

cerebellar model articulation controller (CMAC) is widely 

applied to control the closed loop of complex dynamic 

systems due to its fast-learning characteristics, good 

generalization capabilities, and simple computations 

compared to multi-user perceptrons with back-propagation 

algorithms [45], [46]. The CMAC is a perceptron-like 

associative memory network that is not fully bound to 

overlapping receiving fields. The application of CMAC is not 

limited to control problems but also to the modeler’s function 

approximation. The CMAC network has proven that it can 

approximate a nonlinear function with any desire. The 

advantages of using CMAC over conventional NN in many 

practical applications have been presented in recent literature 

[47]-[50]. However, the main disadvantage of current 

CMACs is that their application domain is limited to static. 

Over the past decade, much research has been conducted on 

the applications of wavelet neural networks, combining the 

ability to learn from the processes of artificial neural networks 

and wavelet separation capabilities [51]-[53] to identify and 

control dynamic systems [54]-[59]. In [54], wavelet networks 

were proposed as an alternative to FNN for approximate 

arbitrary nonlinear functions based on wavelet transform 

theory, and the backstream algorithm was adapted to train 

wavelet networks. Many successful applications have been 

implemented based on neural wavelet networks (WNNs) that 

combine network learning and wavelet dissociation [55]-[58]. 

Unlike conventional NN networks, WNN member functions 

are spatially localized wavelet functions. Therefore, WNN 

networks are capable of learning more efficiently than 

conventional NN networks for system control and 

identification as demonstrated in [55]-[57]. Therefore, WNN 

networks have been of considerable interest in applications to 

handle control systems with uncertain and non-linear 

mathematical models as presented in [57], [58]. Zhang et al. 

in [59] described wavelet-based neural networks for learning 

and estimating mathematical models. The structure of this 

network is like that of the radial base function network except 

that the radial functions are replaced by orthogonal scaling 

functions. From a function representation point of view, 

traditional radial base function networks can be represented 

under any function in extended space. However, it is 

redundant. That means that a given function's radial base 

function lattice representation is not unique and probably not 

the most efficient. 

In this paper, by combining the fast learning property of 

CMAC, the capability of the wavelet decomposition property, 

by including a delayed self-recurrent unit in the association 

memory space, and based on [1], [2], the system tracking error 

𝐸 ∈ 𝑅𝑛 is transformed into a single variable, termed the 

signed distance 𝑑𝑠𝑖 ∈ 𝑅𝑚, we propose a novel adaptive single-

input recurrent wavelet CMAC (S-RWCMAC)-based 

supervisory control system which presents a dynamic S-

RWCMAC with single-input for three-link De-icing robot 

manipulator to achieve the precision trajectory tracking. This 

control system consists of an adaptive S-RWCMAC, a 

supervisory controller, and an adaptive robust controller. The 

S-RWCMAC is the main controller which is used to mimic 

the ideal controller through learning and the adaptive robust 

controller is developed to dispel the effect of the 

approximation error. The online tuning laws of S-RWCMAC 

parameters are derived in the gradient-descent learning 

method which can be caused by the instability-controlled 

system, especially in the transient period. So, the supervisory 

controller is appended to the adaptive S-RWCMAC to force 

the system states within a predefined constraint set, if the 

adaptive S- RWCMAC can not maintain the system states 

within the constraint set. Then, the supervisory controller will 

work to pull the states back to the constraint set, otherwise is 

not.  

• The use of S-RWCMAC in de-icing robot systems on 

power lines has several important contributions as 

follows: High performance: The S-RWCMAC is 

specifically designed to work on power lines and ice 

breakers. It can reach and work in difficult and 

dangerous positions that humans cannot perform. The 

use of this robot increases work efficiency and reduces 

the time required to restore the electrical system.  

• In addition, the supervisory and the adaptive robust 

controllers are proposed to append to the S-RWCMAC 

in order to get rid of the approximation error and 

maintain the system stability. 

• Safety for humans: The use of S-RWCMAC minimizes 

the hazards and risks associated with humans having to 

work on high voltage poles and in extreme weather 

conditions. This robot can perform icebreaking tasks 

automatically and accurately, thereby reducing the risk 

of work accidents.  

• Flexibility and remote controllability: The S-

RWCMAC can be controlled remotely, allowing 

remote management and operation of icebreaker 
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operations on power lines. This minimizes human 

intervention and provides flexibility in performing 

various tasks.  

In summary, the use of S-RWCMAC in ice breaker robots 

on power lines brings many important contributions such as 

increasing work efficiency, ensuring human safety, saving 

costs and providing flexibility during control. 

This paper is organized as follows: System description is 

described in Section II. Section III presents the S-RWCMAC-

based supervisory control system. Numerical simulation and 

experimental results of a three-link De-icing robot 

manipulator under the possible occurrence of uncertainties are 

provided to demonstrate the tracking control performance of 

the proposed S-RWCMAC system in Section IV. Finally, 

conclusions are drawn in Section V. 

II. SYSTEM DESCRIPTION 

In general, the dynamic of an m-link robot manipulator 

may be expressed in the Lagrange in the equation (1). 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏 (1) 

Where𝑞, 𝑞̇, 𝑞̈ ∈ 𝑅𝑚are the joint position, velocity, and 

acceleration vectors, respectively, 𝑀(𝑞) ∈ 𝑅𝑚×𝑚 denotes the 

inertia matrix, 𝐶(𝑞, 𝑞̇) ∈ 𝑅𝑚×𝑚expresses the matrix of 

centripetal and Coriolis forces, 𝐺(𝑞) ∈ 𝑅𝑚×1 is the gravity 

vector, 𝜏 ∈ 𝑅𝑚×1is the torque vectors exerting on joints. In 

this paper, a new three-link De-icing robot manipulator, as 

shown in Fig. 1 (b), is utilized to verify the dynamic properties 

given in section IV. By rewriting (1), the dynamic equation of 

the robot manipulator can be obtained as (2). 

( )1 1( ) ( , ) ( ) ( )

( ) ( )

q M q C q q q G q M q

f x g x





− −= − + +

= +
 (2) 

𝑔(𝑥) = (
𝑔11(𝑥) … 𝑔1𝑚(𝑥)

⋮ ⋱ ⋮
𝑔𝑚1(𝑥) ⋯ 𝑔𝑚𝑚(𝑥)

) = 𝑀−1(𝑞) ∈ 𝑅𝑚×𝑚. 

Where 𝑓(𝑥), 𝑔(𝑥) are nonlinear dynamic functions which are 

difficult to determine exactly or can not even obtain. So, we 

can not establish a model-based control system. In order to 

with this problem, here we assume that actual value 𝑓(𝑥) and 

𝑔(𝑥) can be separated as nominal part denoted by 𝐹0(𝑥), 
𝐺0(𝑥), in which 𝐺0(𝑥) is assumed to be positive, 

differentiable, and 𝐺0
−1(𝑥) exists for all 𝑞. 𝐿(𝑥,  𝑡) is 

represented as the unknown lumped uncertainly and 𝑥 =
[𝑞𝑇 ,  𝑞̇𝑇]𝑇 is a vector that represents the joint position and 

velocity. Finally, the system (2) can be rewritten as (3). 

𝑞̈(𝑡) = 𝐹0(𝑥) + 𝐺0(𝑥)𝜏 + 𝐿(𝑥, 𝑡) (3) 

The control problem is to force 𝑞(𝑡) ∈ 𝑅𝑛 , to track a given 

bounded reference input signal 𝑞𝑑(𝑡) ∈ 𝑅𝑛. Let 𝑒(𝑡) ∈ 𝑅𝑛 be 

the tracking error as (4). 

𝑒 = 𝑞𝑑(𝑡) − 𝑞(𝑡) (4) 

and the system-tracking error vector is defined as (5). 

 𝐸𝛥 [𝑒𝑇 𝑒̇𝑇 ⋯ 𝑒𝑛−1𝑇]𝑇 ∈ 𝑅𝑛𝑚 (5) 

Where n is the order of the nonlinear system. If the nominal 

parts 𝐹0(𝑥), 𝐺0(𝑥) and the uncertainly 𝐿(𝑥, 𝑡) are exactly 

known, then an ideal controller can be designed as (6). 

𝜏∗(𝑡) =
1

𝐺0(𝑥)
[𝑞̈𝑑(𝑡) − 𝐹0(𝑥) − 𝐿(𝑥, 𝑡) + 𝐾𝐸] (6) 

 

Fig. 1. Architecture of three-link De-icing robot manipulator 

By substituting the ideal controller (6) into (3), the error 

dynamic equation is given as (7). 

𝑒̈(𝑡) + 𝐾𝑇𝐸 = 0 (7) 

It is obvious that errors will asymptotically tend to zero if the 

gain matrices of 𝐾 = [𝑘1, ⋯ , 𝑘𝑛𝑚]𝑇 ∈ 𝑅𝑛𝑚 is determined so 

that the roots of the characteristic polynomial 𝑃(𝜆) = 𝐼𝜆̈ +

𝑘1𝜆̇ + 𝑘2𝜆 + 𝑘3 lie strictly in the open left haft of the complex 

plane. However, the ideal controller in (6) can not determine, 

because of 𝐿(𝑥, 𝑡) is exactly unknown for practical 

applications. So, to this problem, a proposed adaptive S-

De-icing Robot
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RWCMAC-based supervisory control system is shown in Fig. 

2 which is described in the following sections. 

III. ADAPTIVE S-RWCMAC-BASED SUPERVISORY 

CONTROL SYSTEM 

The architecture of the adaptive S-RWCMAC-based 

supervisory control system is shown in Fig. 2 which consists 

of adaptive S-RWCMAC. 

 

Fig. 2. Block diagram of proposed adaptive S-RWCMAC-based supervisory 

control system 

The supervisory controller, and the adaptive robust 

controller with the equation (8). 

𝜏 = 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 + 𝜏𝑆 + 𝜏𝑅𝐶  (8) 

Where 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 is the main controller based on the S-

RWCMAC which is used to mimic the ideal controller in (6) 

and 𝜏𝑆 is the supervisory controller, which can be used to 

stabilize the states of the controlled system within a 

predefined constrain set and the adaptive robust controller 𝜏𝑅𝐶  

is utilized to compensate for the approximation error between 

the ideal controller and 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 . 

A. Brief of the S-RWCMAC 

An S-RWCMAC is proposed based on [19] and is 

depicted in Fig. 3. This S-RWCMAC is composed of an input 

space, an association memory space, a weight memory space, 

an output. The signal propagation and the basic function in 

each space are introduced as follows. 

1. Input Space 𝑫𝒔: assume that each input state variable 

𝑑𝑟𝑠𝑖 can be quantized into 𝑁𝑠𝑖 discrete states and that the 

information of a quantized state is distributive stored in 𝑁𝑒 

(𝑁𝑒 ≥ 2) memory elements. Therefore, there exist 𝑁𝑠𝑖 + 1 

individual points on the 𝑑𝑟𝑠𝑖 axis. Fig. 4 depicts the schematic 

diagram of one dimensional S-RWCMAC operations with 

𝑁𝑒 = 3 and 𝑁𝑠𝑖 = 7 for 𝑖 = 1,  2 ⋯  𝑚 where the equidistant 

quantization scheme is used to partition the input space 

[−1, +1]. This simple example shows that the input space is 

quantized into three discrete regions, called blocks. For 

instance, there are three blocks, namely, A, B, and C, in the 

first layer. By shifting each block to a small interval, different 

blocks can be obtained. For example, D, E, and F in the second 

layer are possible shifted regions. With this kind of 

decomposition, one can imagine that there are 𝑁𝑒 = 3 layers 

of blocks. Each state is covered by 𝑁𝑒 = 3 different blocks. 

The S-RWCMAC associates each block to a physical 

memory element. Information for a quantized state is 

distributed and stored in memory elements associated with 

blocks that cover this state. Note that a state will share some 

memory elements with its neighboring states, but any two 

states will not correspond to the same set of blocks. Moreover, 

the entire memory size that is equal to the number of blocks 

and denoted by 𝑁ℎ is determined by 𝑁ℎ = 𝑁𝑠𝑖 + 𝑁𝑒 − 1. See 

the block division shown in Fig. 4 for instance; the total 

number of memory elements is 9. In this space, each block 

performs a receptive-field basis function, which can be 

defined mother wavelet. The first derivative of the basic 

Gaussian function for each block is given here as a mother 

wavelet which can be represented as (9). 

𝜇𝑖𝑗(𝑑𝑟𝑠𝑖 , 𝑚𝑖𝑗 , 𝜎𝑖𝑗 , 𝑘)

= −
(𝑑𝑟𝑠𝑖(𝑘) − 𝑚𝑖𝑗)

𝜎𝑖𝑗

𝑒𝑥𝑝

[
 
 
 
 

−

(
(𝑑𝑟𝑠𝑖(𝑘) − 𝑚𝑖𝑗)

𝜎𝑖𝑗
)

2

2

]
 
 
 
 

= −𝐹𝑖𝑗𝑒𝑥𝑝 (−
𝐹𝑖𝑗

2

2
) 

𝑖 = 1,  2, ⋯ ,𝑚 and 𝑗 = 1,  2, ⋯ , 𝑁ℎ (9) 

Where 𝐹𝑖𝑗(𝑑𝑟𝑠𝑖 , 𝑚𝑖𝑗 , 𝜎𝑖𝑗 , 𝑘) =
(𝑑𝑟𝑠𝑖(𝑘)−𝑚𝑖𝑗)

𝜎𝑖𝑗
, 𝜇𝑖𝑗 represents the 

reception-field basic function for 𝑗th block of the 𝑖th input, 

𝑚𝑖𝑗 is a translation parameter, and 𝜎𝑖𝑗 is dilation. In addition, 

the input of this block can be represented as (10). 

 𝑑𝑟𝑠𝑖(𝑘) = 𝑑𝑠𝑖(𝑘) + 𝑟𝑖𝑗𝜇𝑖𝑗(𝑘 − 1) (10) 

Where 𝑟𝑖𝑗is the recurrent gain, 𝑘 denotes the time step and 

𝜇𝑖𝑗(𝑘 − 1) denotes the value of 𝜇𝑖𝑗(𝑘) through a time delay. 

The input of this block contains the memory term𝜇𝑖𝑗(𝑘 − 1), 

which stores the past information of the network and presents 

the dynamic mapping. 

2. Output Space O: The output of S-RWCMAC is the 

algebraic sum of the firing element with the weight memory, 

and is expressed as (11). 

𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 = ∑𝑎𝑖𝑗𝑤𝑖𝑗𝜇𝑖𝑗 ,

𝑁ℎ

𝑗=1

  𝑖 = 1,  2, ⋯ ,𝑚. (11) 

Where 𝑤𝑖𝑗  denotes the weight of the jth block, 𝑎𝑖𝑗 = 𝑎𝑖𝑗(𝑑𝑟𝑠𝑖), 

𝑗 = 1,  2, ⋯ 𝑁ℎ is the index indicating whether the 𝑗th 

memory element is addressed by the state involving 𝑑𝑟𝑠𝑖. 

Since each state addressed exactly 𝑁𝑒 memory elements, only 

those addressed 𝑎𝑖𝑗
,s are one, and the others are zero. 

sd
+

-

dq

iq

m̂
̂

ŵ

iq
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Distance 

(Eq. 13)

Adaptive S-

RWCMAC 

(Eq. 11)

Adaptive Law 
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B. On-line Learning Algorithm 

The central part of the learning algorithm for an S-

RWCMAC is how to choose the weight memory 𝑤𝑖𝑗 , 𝑚𝑖𝑗 is a 

translation parameter, 𝜎𝑖𝑗 is dilation of the wavelet functions 

and 𝑟𝑖𝑗  is a recurrent gain. For achieving effective learning, an 

on-line learning algorithm, which is derived using the 

supervised gradient descent method, is introduced so that it 

can in real-time adjust the parameters of S-RWCMAC. 

According to [1], [2], the system tracking error (𝑒𝑖 , 𝑒̇𝑖) ∈
𝑅𝑛 is transformed into a single variable, termed the signed 

distance 𝑑𝑠𝑖 ∈ 𝑅𝑚, which is the distance from an actual state 

(𝑒𝑖, 𝑒̇𝑖) ∈ 𝑅𝑛 to the switching line as shown in Fig. 5 for a 2-

D input. 
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Fig. 5. Derivation of a signed distance 

The switching line is defined as (12). 

𝑒𝑖
𝑛−1 + 𝜆𝑛−1𝑒𝑖

𝑛−2 + ⋯+ 𝜆2𝑒̇𝑖 + 𝜆1𝑒𝑖 = 0 (12) 

Where 𝜆𝑛−1 is a constant. Then, the signed distance between 

the switching line and the operating point (𝑒𝑖 , 𝑒̇𝑖) ∈ 𝑅𝑛 can be 

expressed by the equation (13). 

𝑑𝑠𝑖 =
𝑒𝑛𝑖

𝑛−1 + 𝜆𝑛−1𝑒(𝑛−1)𝑖
𝑛−2 + ⋯+ 𝜆2𝑒2𝑖 + 𝜆1𝑒1𝑖

̇

√1 + 𝜆𝑛−1
2 + ⋯+ 𝜆2

2 + 𝜆1
2

 

= Γ(𝑒𝑛𝑖
𝑛−1 + 𝜆𝑛−1𝑒(𝑛−1)𝑖

𝑛−2 + ⋯+ 𝜆2𝑒2𝑖 + 𝜆1𝑒1𝑖
̇ ) 

 (13) 

Where 𝛤 = 1 (√1 + 𝜆𝑛−1
2 + ⋯+ 𝜆2

2 + 𝜆1
2)⁄  is a positive 

constant. By taking the time derivative of (13) for 𝑛 = 2 and 

using (3), (8).  We have (14). 

𝑑𝑠̇ = Γ(𝑒̈ + 𝜆1𝑒̇) 

 
= Γ(−𝐹0(𝑥, 𝑡) − 𝐺0(𝑥, 𝑡)(𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶 + 𝜏𝑆)

+ 𝑞̈𝑑(𝑡) − 𝐿(𝑥, 𝑡) + 𝜆1𝑒̇) 

 (14) 

Define a cost function 𝑉(𝑑𝑠(𝑡)) =
1

2
𝑑𝑠

2(𝑡); then 𝑉̇(𝑑𝑠(𝑡)) =

𝑑𝑠(𝑡)𝑑̇𝑠(𝑡). The tuning of S-RWCMAC parameter aims to 

speed up the convergence of 𝑉(𝑑𝑠(𝑡)), i.e., minimize 

𝑉̇(𝑑𝑠(𝑡)) with respect to the tuned parameters. By multiplying 

both sides of (14) by 𝑑𝑠(𝑡), yields equation (15). 

𝑑𝑠(𝑡)𝑑̇𝑠(𝑡) = −Γ(𝑑𝑠(𝑡)𝐹0(𝑥, 𝑡)
− 𝑑𝑠(𝑡)𝐺0(𝑥, 𝑡)(𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶 + 𝜏𝑆)
+ 𝑑𝑠(𝑡)(𝑞̈𝑑(𝑡) − 𝐿(𝑥, 𝑡) + 𝜆1𝑒̇)) 

 (15) 

With this representation of the S-RWCMAC system, it 

becomes straightforward to apply the backpropagation idea to 

adjust the parameters. The weight memory 𝑤𝑖𝑗 and the 

translations 𝑚𝑖𝑗 and dilations 𝜎𝑖𝑗 of the mother wavelet 

function are updated by the following: 

1. The updating law for the thj  weight memory can be 

derived according to (16). 
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Where 𝛽𝑤 is the positive learning rate for the output weight 

memory 𝑤𝑖𝑗 , the connective weight can be updated according 

to the equation (17). 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝛥𝑤𝑖𝑗  (17) 

2. The translations and dilations of the thj  mother wavelet 

function can be also updated according to (18). 
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Where 𝛽𝑚, 𝛽𝜎 are positive learning rates for the translation 

and the dilation parameters. The translation and dilation can 

be updated as (20) and (21). 

𝑚𝑖𝑗(𝑡 + 1) = 𝑚𝑖𝑗(𝑡) + 𝛥𝑚𝑖𝑗  (20) 

𝜎𝑖𝑗(𝑡 + 1) = 𝜎𝑖𝑗(𝑡) + 𝛥𝜎𝑖𝑗 (21) 

3. Finally, the updating law for recurrent gain can be derived 

as (22). 
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Where 𝛽𝑟is the learning rate, the recurrent gain can be updated 

by the equation (23). 

𝑟𝑖𝑗(𝑡 + 1) = 𝑟𝑖𝑗(𝑡) + 𝛥𝑟𝑖𝑗  (23) 

C. Supervisory Controller 

The design of a supervisory controller is necessary in case 

of divergence of states. This controller is used to pull the 

states back to a predefined constraint set. The supervisory 

controller fires only when the system states leave the 

predefined constraint set. When the system states stay within 

the constraint set, only the adaptive S-RWCMAC will be 

utilized to approximate the ideal control law. The supervisory 

controller is presented as follows. From (3) and (6) and using 

(8), an error equation is obtained as (24). 

𝐸̇ = 𝛬𝐸 + 𝐵𝑚(𝜏∗ − 𝜏)
= 𝛬𝐸 + 𝐵𝑚(𝜏∗ − 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 − 𝜏𝑅𝐶 − 𝜏𝑆) 

 (24) 

Where, 

𝛬 =

(

 
 

0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1

−𝑘𝑛 −𝑘𝑛−1 −𝑘𝑛−2 −𝑘𝑛−3 ⋯ −𝑘2 −𝑘1)

 
 

 

∈ 𝑅𝑛𝑚×𝑛𝑚, 

𝐵𝑚 = (

0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 0 0

𝑔𝑚1 𝑔𝑚2 ⋯ 𝑔𝑚𝑚

) ∈ 𝑅𝑛𝑚×𝑚 

The Lyapunov function is defined as (25). 

𝑉𝑠 =
1

2
𝐸𝑇𝑃𝐸 (25) 

Where 𝑃 ∈ 𝑅𝑛𝑚×𝑛𝑚is a symmetric positive definite matrix 

which satisfies the Lyapunov equation (26). 

𝛬𝑇𝑃 + 𝑃𝛬 = −𝑄 (26) 

And 𝑄 ∈ 𝑅𝑛𝑚×𝑛𝑚is a positive definite matrix. Take the 

derivative of the Lyapunov function and use (24) and (26), 

then obtained equation (27). 
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 (27) 

Assumption 1: we assume that actual value 𝑓(𝑥,  𝑡) and 

𝑔(𝑥,  𝑡) can be separated as nominal part denoted by 𝐹0(𝑥,  𝑡), 
𝐺0(𝑥,  𝑡) are known, in which 𝐺0(𝑥,  𝑡) is assumed to be 

positive, differentiable and 𝐺0
−1(𝑥,  𝑡). The unknown lumped 

uncertainly 𝐿(𝑥,  𝑡) is bounded by |𝐿(𝑥,  𝑡)| ≤ 𝐿𝑈. 

Based on Assumption 1 and observing (27), the 

supervisory controller is designed as (28). 

( )

( )
0

0

1
sgn

( )

( )

T

S m S RWCMAC RC

U T

d

I E PB
G x

F x L q K E

  −


= + + 



− + + +


 (28) 

Where sgn( ) is a sign function, and the operator index as in 

(29). 

𝐼 = {
1,  if  𝑉𝑠 ≥ 𝑉̄

0,  𝑖𝑓  𝑉𝑠 < 𝑉̄
 (29) 

In which 𝑉̄ is a preset positive constant. Substituting (6) and 

(28) into (27) and considering the case 𝐼 = 1, it is obtained 

that equation (30). 

𝑉̇𝑠(𝐸, 𝑡) = −
1

2
𝐸𝑇𝑄𝐸 + |𝐸𝑇𝑃𝐵𝑚|

× [
1

𝐺0(𝑥)
(𝑞̈𝑑 − 𝐹0(𝑥) − 𝐿(𝑥,  𝑡) + 𝐾𝑇𝐸)

+ |𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶|

+ |𝜏𝑅𝐶| −
1

𝐺0(𝑥)
(−𝐹0(𝑥) + 𝐿𝑈 + 𝑞̈𝑑 + 𝐾𝑇𝐸)

+ |𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶| + |𝜏𝑅𝐶|]

≤ −
1

2
𝐸𝑇𝑄𝐸 + |𝐸𝑇𝑃𝐵𝑚|

1

𝐺0(𝑥)
|𝐿(𝑥,  𝑡)| −

1

𝐺0(𝑥)
𝐿𝑈

= −
1

2
𝐸𝑇𝑄𝐸 − |𝐸𝑇𝑃𝐵𝑚|

1

𝐺0(𝑥)
(𝐿𝑈 − |𝐿(𝑥,  𝑡)|)

≤ 0. 

 (30) 

 Using the supervisory controller 𝜏𝑆 shown in (28), the 

inequality 𝑉̇𝑆 ≤ 0 can be obtained for nonzero value of the 

tracking error vector 𝐸 when 𝑉𝑆 > 𝑉̄. As the results from (30), 

the supervisory controller is capable to drive the tracking error 

to zero. 
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A. Adaptive Robust Controller 

The S-RWCMAC approximation (11) is used to 

approximate the ideal controller (6) through learning. By the 

universal theorem, there exists an S-RWCMAC 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶  to 

approximate 𝜏∗ (31) [60]. 

𝜏∗ = 𝜏𝑆−𝑅𝑊𝐶𝑀𝐴𝐶 + 𝜀 (31) 

Where 𝜀 denotes the approximation error which is assumed to 

be bounded by 0 ≤ ‖𝜀‖ ≤ 𝐷, if 𝐷 is assumed to be a positive 

constant during the observer. Then, the conventional robust 

controller is designed as (32). 

𝜏𝑅𝐶 = 𝐷 𝑠𝑔𝑛(𝐸𝑇𝑃𝐵𝑚) (32) 

However, the parameter variations of the controlled 

system are difficult to measure, and the exact value of the load 

disturbance is also difficult to know in advance for practical 

applications. Therefore, the error-bound estimation needs a 

continuous prediction by the proposed fuzzy logic controller 

(FLC) bound observer. In the general FLC, as shown in Fig. 

6. every fuzzy rule is composed of an antecedent and a 

consequent part, a general form of the fuzzy rules can be 

represented as (33). 

𝑅𝑜:  if 𝐸1 is Γ1𝑘𝑙 and 𝐸2 is Γ2𝑘𝑙 ⋯𝐸𝑛𝑙
 is Γ𝑖𝑘𝑙  

Then 
  𝐷𝑘𝑙 is 𝜃𝑘𝑙 for 𝑖 = 1,2⋯𝑛𝑖 ,  𝑘 = 1,2⋯𝑛𝑘 ,  𝑙

= 1,2⋯𝑛𝑙 

(33) 

Where 𝑛𝑖 is the input dimension, 𝑛𝑘 and 𝑛𝑙 are the rule for 

𝑖th input variable, 𝜃𝑘𝑙 is the output weight in the consequent 

part and 𝑛𝑜 = 𝑛𝑘𝑛𝑙  is the number of the fuzzy rules. Here, the 

membership functions for the input are chosen to be a 

triangular type as shown in Fig. 6. 

Z P+N-

0-1 E
a. Input fuzzy sets

FZ FPFN

b. Output fuzzy sets

+1

 

Fig. 6. Fuzzy rule membership functions 

In this paper, the defuzzification of the output is obtained 

by the height method as (34). 
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Where 𝑏 = [𝑏1 𝑏2 ⋯ 𝑏𝑛𝑜]
𝑇 ∈ 𝑅𝑛𝑜  is a firing strength 

vector of rule and 𝜃 = [𝜃1 𝜃2 ⋯ 𝜃𝑛𝑜]
𝑇 ∈ 𝑅𝑛𝑜 is the 

consequent parameter vector which is adjusted by the 

adaptive rule. By the universal theorem [60], there exists an 

optimal FLC in the form of (34) such that. 

𝐷 = 𝜃∗𝑇𝑏 + 𝛼 (35) 

Where 𝜃∗ is the optimal weighting vector that achieves the 

minimum approximation error and 𝛼 is the approximation 

error of the FLC and assumed to be bounded by |𝛼| ≤ 𝛿. 

Replacing 𝐷 by 𝐷̂ in (32), the robust controller can be 

represented as (36). 

𝜏𝑅𝐶 = 𝜃̂𝑇𝑏 𝑠𝑔𝑛(𝐸𝑇𝑃𝐵𝑚) (36) 

To compensate for the approximation error of the FLC 𝜏𝑅𝐶  

is developed as (37). 

𝜏𝑅𝐶 = 𝐷 𝑠𝑔𝑛(𝐸𝑇𝑃𝐵𝑚) + 𝛿̂ 𝑠𝑔𝑛(𝐸𝑇𝑃𝐵𝑚) (37) 

Where 𝛿̂ is the estimated value of 𝛿. From (3), (6) and using 

(8), (31), then, the error equation becomes (38). 

𝐸̇ = 𝛬𝐸 + 𝐵𝑚(𝜏∗ − 𝜏) = 𝛬𝐸 + 𝐵𝑚(−𝜏𝑅𝐶 − 𝜏𝑆 + 𝜀) (38) 

Theorem 1: Consider an n-link robot manipulator 

expressed (2). If the adaptive S-RWCMAC-based supervisory 

control law is designed as (8) in which the supervisory control 

law is designed in (28), the S-RWCMAC is presented in (11) 

with the adaptive laws of the S-RWCMAC are designed as 

(16), (18), (19) and (22), and the robust controller is developed 

as (37) with the estimation law in (34), (39) to (40), then the 

stability of the proposed S-RWCMAC-based supervisory 

control system can be ensured. 

𝜃̇̂ = 𝛽𝜃𝑏|𝐸𝑇𝑃𝐵𝑚| (39) 

𝛿̇̂ = 𝛽𝛿|𝐸
𝑇𝑃𝐵𝑚| (40) 

𝜃∗ = {|𝜀(𝑡)| 𝑛𝑜𝑟𝑚(𝑏)⁄ } + 𝛺 (41) 

Where 𝛺 is a positive constant. 

Proof: Define a Lyapunov function candidate as in (42). 

𝑉(𝐸, 𝜃̃, 𝛿, 𝑡) =
1

2
𝐸𝑇𝑃𝐸 +

𝜃̃𝑇𝜃̃

2𝛽𝜃

+
𝛿2

2𝛽𝛿

 (42) 

Where 𝜃̃ = 𝜃∗ − 𝜃̂, 𝛿 = 𝛿 − 𝛿̂, 𝛽𝜃 and 𝛽𝛿  are approximation 

error of fuzzy compensation, estimation error, and learning 

rates for the fuzzy compensator and the error estimator, 

respectively. By differentiating (42) with respect to time and 

using (26) and (38), we can obtain equation (43). 
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From (28) and using (39) to (41), (37) and (43) can be 

rewritten as (44). 
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 Since 𝑉̇(𝐸, 𝜃̃, 𝛿, 𝑡) ≤ 0 is a negative semi-definite 

function, i.e. 𝑉̇(𝐸, 𝜃̃, 𝛿, 𝑡) ≤ 𝑉̇(𝐸, 𝜃̃, 𝛿, 0), it implies that 𝐸, 𝜃̃ 

and 𝛿 is bounded functions. Let function ℎ ≡ 𝐸𝑇𝑄𝐸 2⁄ ≤

−𝑉̇(𝐸, 𝜃̃, 𝛿, 𝑡) and integrate function ℎ(𝑡) with respect to time 

(45). 

∫ ℎ(𝜏)
𝑡

0

𝑑𝜏 ≤ 𝑉(𝐸, 𝜃̃, 𝛿, 0) − 𝑉(𝐸, 𝜃̃, 𝛿, 𝑡) (45) 

Because 𝑉(𝐸, 𝜃̃, 𝛿, 0) is a bounded function, and 𝑉(𝐸, 𝜃̃, 𝛿, 𝑡) 

is a non-increasing and bounded function, the following result 

can be concluded (46). 

𝑙𝑖𝑚
𝑡→∞

∫ ℎ(𝜏)
𝑡

0

𝑑𝜏 < ∞ (46) 

In addition, ℎ̇(𝑡) is bounded; thus, Barbalat’s lemma can 

be shown that 𝑙𝑖𝑚
𝑡→∞

ℎ(𝑡) = 0. It can imply that 𝐸 will be 

converging to zero as time tends to be infinite. As a result, the 

stability of the proposed adaptive S-RWCMAC-based 

supervisory control system can be guaranteed. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Results 

A three-link De-icing robot manipulator as shown in Fig.1 

is utilized in this paper to verify the effectiveness of the 

proposed control scheme. The detailed system parameters of 

this robot manipulator are given as link mass 𝑚1, 𝑚2,
𝑚3 (𝑘𝑔), lengths 𝑙1,  𝑙2 (𝑚), angular positions 𝑞1,  𝑞2 (𝑟𝑎𝑑) 

and displacement position𝑑3 (𝑚). 

The parameters for the equation of motion (1) can be 

represented as (47). 

𝑀(𝑞) = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] 

𝑀11 = 9/4𝑚1𝑙1 + 𝑚2(1/4𝑐2𝑙2 + 𝑙1
2 + 𝑙2𝑙1(𝑐1

2 − 𝑠1
2))

+ 𝑚3(𝑐2𝑙2
2 + 2𝑐2𝑙1𝑙2) 

𝑀22 = 1/4𝑚2𝑙2
2 + 𝑚3𝑙2

2 + 4/3𝑚1𝑙1
2 

𝑀23 = 𝑀32 = 𝑚3𝑐2𝑙2 

𝑀33 = 𝑚3 

𝑀12 = 𝑀13 = 𝑀21 = 𝑀31 = 0 

𝐶(𝑞̇) = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] 

𝐶11 = −8𝑚2𝑙1𝑙2𝑐1𝑠1𝑞1̇ + (−1/2𝑚2𝑠2𝑐2𝑙2
2 + 𝑚3(−2𝑠2𝑐2𝑙2

2

− 2𝑠2𝑙1𝑙2)𝑞2̇ 

𝐶21 = (−1/2𝑚2𝑠2𝑐2𝑙2
2 + 𝑚3(−2𝑠2𝑐2𝑙2

2 − 2𝑠2𝑙1𝑙2)𝑞̇1 

𝐶22 = −𝑚3𝑠2𝑙2𝑑̇3 

𝐶23 = −2𝑚3𝑠2𝑙2𝑞̇2 

𝐶32 = −𝑚3𝑠2𝑙2𝑞̇2 

𝐶12 = 𝐶13 = 𝐶31 = 𝐶33 = 0 

𝐺(𝑞) = [

(1/2𝑐1𝑐2𝑙2 + 𝑐1𝑙1)𝑚2𝑔

(−1/2𝑠1𝑠2𝑙2𝑚2 + 𝑐2𝑙2𝑚3)𝑔
𝑚3𝑔

] 

 (47) 

Where 𝑞 = [𝑞1,  𝑞2,  𝑑3] ∈ 𝑅3and the shorthand otations𝑐1 =
𝑐𝑜𝑠( 𝑞1), 𝑐2 = 𝑐𝑜𝑠( 𝑞2), 𝑠1 = 𝑠𝑖𝑛( 𝑞1) and 𝑠2 = 𝑠𝑖𝑛( 𝑞2) are 

used. 

For the convenience of the simulation, the nominal 

parameters of the robotic system are given as  

[𝑚1,  𝑚2,  𝑚3,  𝑙1,  𝑙2,  𝑔] = [3,  2,  2.5,  0.14,  0.32,  9.8] 

and the initial conditions [𝑞1,  𝑞2,  𝑑3,   𝑞̇1,   𝑞̇2,   𝑑̇3,  0] =
[0,  0,  0,  0,  0,  0] and the unknown lumped uncertainly in 

(3) is 𝐿(𝑥, 𝑡) which is assumed to be a square wave with 

amplitude ±0.5 and period 2𝜋. The desired reference model 

is defined as (48). 

(
𝑥̇𝑑1

𝑥̇𝑑2
) = (

0 1
−30 −20

) (
𝑥𝑑1

𝑥𝑑2
) + (

0
50

) 𝑟(𝑡) (48) 

Where [𝑥𝑑1(0), 𝑥𝑑2(0)]𝑇 = [0,  0]𝑇and 𝑟(𝑡) is a periodic 

rectangular signal. The adaptive S-RWCMAC-based 

supervisory control system implemented here needs to know 

the actual values 𝐹0(𝑥, 𝑡) = 1, 𝐺0(𝑥, 𝑡) = 1, the bound of the 

unknown lumped uncertainly 𝐿𝑈(𝑥, 𝑡) = 5 and 𝑉̄ = 4.  

Furthermore, the input variables of S-RWCMAC are 𝑑𝑠1, 

𝑑𝑠2 and 𝑑𝑠3, the translation and dilation of mother wavelet 

functions are selected to cover the input space{[−0.5,  0.5]}3, 

the initial value of mother wavelet functions, the recurrent 

gain and weight memory are defined as: 𝜎𝑖𝑗 = 0.15, 𝑟𝑖𝑗 = 1.0,  

𝑤𝑖𝑗 = 0, 𝜆𝑖 = 1, for 𝑗 = 1,  2, ⋯  9, 𝑖 = 1,  2,  3 and  

[𝑚𝑖1, 𝑚𝑖2, 𝑚𝑖3, 𝑚𝑖4, 𝑚𝑖5, 𝑚𝑖6, 𝑚𝑖7, 𝑚𝑖8, 𝑚𝑖9] =
[−0.4, −0.3, −0.2, −0.1,  0,  0.1,  0.2,  0.3,  0.4]. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 446 

 

Thanh Quyen Ngo, Adaptive Single-Input Recurrent WCMAC-Based Supervisory Control for De-icing Robot Manipulator 

Finally, the learning rates of S-RWCMAC are chosen such 

as: 𝛽𝑤𝑖 = 0.05, 𝛽𝑚𝑖 = 0.02, 𝛽𝜎𝑖 = 0.02, 𝛽𝑟𝑖 = 0.02. For the 

adaptive robust controller, each input variable 𝑒𝑖𝑘,   𝑒̇𝑖𝑙  was 

divided into three fuzzy subsets within {[−0.5,  0.5]}3 along 

with each input dimension by using the triangular 

membership function for𝑘 = 1,  2,⋯ , 3, 𝑙 = 1,  2,⋯ ,  3, the 

learning rate and the initial output weight in the consequent 

part are selected as 𝛽𝜃𝑖 = 0.5, 𝛽𝛿𝑖 = 0.2 and 𝜃𝑜𝑖 = 1 for 𝑜 =
1, 2,⋯ , 9, 𝑖 = 1,  2,  3  respectively. 

a) According to the simulation results of the S-

WFCMAC-based supervisory control system due to periodic 

as shown in Fig. 7. The joint-position tracking responses and 

tracking error are shown in Fig. 7(a-c) and Fig. 7(d-f). 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 7. Simulation position responses and tracking error of the proposed adaptive S-RWCMAC-based supervisory control system at links 1, 2 and 3 

The simulation results indicate that the high-accuracy 

trajectory tracking responses can be achieved by using the 

proposed adaptive S-RWCMAC-based supervisory control 

system for periodic step reference trajectory. However, the 

performance measure comparison of the proposed S-

RWCMAC control system with the standalone CMAC 

control system which has been proposed in [19] is also shown 

in Table I. This table shows that, for the adaptive S-

RWCMAC control system, the root mean square errors are 

0.038%, 0.023%, and 0.012% for periodic step commands for 

each link, respectively. Moreover, comparing the proposed S-

RWCMAC control system with the standalone CMAC 

control system, the root means square errors have been 

reduced by about 0.023%, 0.029%, and 0.032% for periodic 

step commands for each link, respectively. This indeed 

confirms the performance improvement of the proposed S-

RWCMAC control system.  

Based on the given data, we can analyze some important 

points as follows:  

1. Control performance evaluation: RMS is a 

measurement commonly used to evaluate the accuracy and 

efficiency of a control system. The lower the RMS value, the 

smaller the error and the better the control performance. 

2. Comparison between Standalone CMAC Controller 

and S-RWCMAC Controller: Based on the given data, we see 

that the S-RWCMAC Controller has a lower RMS value than 

the Standalone CMAC Controller for all links. This shows that 

the S-RWCMAC Controller has better control in reducing 

errors and achieving the desired output position.  At the same 

time, it shows that the S-RWCMAC Controller can achieve a 

more accurate response and reducing errors in controlling 

links.  

TABLE I.  PERFORMANCE MEASURE OF S-RWCMAC AND THE 

STANDALONE CMAC APPROXIMATION 

Control 

System 

Standalone CMAC 

Controller [19] 

S-RWCMAC 

Controller 

RMS (rad) RMS (rad) 

Link 1 0.061% 0.038%, 

Link 2 0.052% 0.023% 

Link 3 0.044% 0.012% 
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However, for a more comprehensive and accurate 

assessment of the performance of these controllers, additional 

factors such as stability, response speed, and ability to respond 

to interference and fluctuations in the control system should 

be considered. 

B. Experimental Results 

The hardware block diagram of the control system is 

implemented to verify the effectiveness of the proposed 

methodologies and is shown in Fig. 8(a). An image of a 

practical experimental control system for De-icing robot 

consists of three manipulators and is shown in Fig 8(b). The 

left and right manipulators have three-link with two revolute 

joints and a prismatic joint. End-effectors of each manipulator 

have attached the motion structure to move the De-icing robot 

on the power line and the de-icing device. During normal 

operating conditions, the left and right manipulators are only 

operating. The manipulator has only two joints a revolute joint 

and a prismatic joint. It only works when the De-icing robot 

avoids obstacles on the power line. In general, the operation 

of De-icing robot is very complex. In this paper, we consider 

only the three-link De-icing robot manipulator for proposed 

methodologies while the other manipulator is the same. 

Each joint of the manipulator is derived by the “EC─**” 

type MAXON DC servo motors, which are designed by 

Switzerland Company, and each this motor contains an 

encoder. Digital filter and frequency multiplied by circuits are 

built into the encoder interface circuit to increase the precision 

of position feedback. The DCS303 is a digital DC servo driver 

developed with DSP to control the DC servo motor. The 

DCS303 is a micro-size brush DC servo drive. It is an ideal 

choice for this operating environment. Two DC servo motor 

motion control cards are installed in the industrial personal 

computer, in which, a 6-axis DC servo motion control card is 

used to control the joint motors and a 4-axis motion control 

card is used to control the drive motors. Each card includes 

multi-channels of digital/analog and encoder interface 

circuits. The name of the model is DMC2610 with a PCI 

interface connected to the IPC. The DMC2610 implements 

the proposed program and executes it in real time. 

Considering that the control sampling rate Ts = 1 ms is too 

demanding for the hardware implementation, Ts = 10 ms is 

thus considered here. 

The experimental parameters of the proposed S-

RWCMAC-based supervisory control system are selected in 

the same simulation. In this section, the control objective is to 

control each joint angle of the three-link De-icing robot 

manipulator to move different sinusoidal commands 
[𝑞𝑑1,  𝑞𝑑2,  𝑞𝑑3] = [2 𝑠𝑖𝑛( 0.2𝜋𝑡), 𝑐𝑜𝑠( 0.2𝜋𝑡), 𝑠𝑖𝑛( 0.2𝜋𝑡)] and 

the initial conditions of system are given as 

[𝑞1,  𝑞2,  𝑑3,  𝑞̇1, 𝑞̇2,  𝑑̇3,  0] = [0.5,  0.5,  0.5,  0,  0,  0]. 

Finally, the experimental position responses, tracking 

errors and control effort results of the proposed S-RWCMAC-

based supervisory control system are depicted in Fig. 9 (a), 

(b), (c), Fig. 9 (d), (e), (f) and Fig. 9 (g), (h), (i). 

According to these experimental results in Fig. 9 of 

proposed S-RWCMAC-based supervisory control system due 

to sinusoidal reference trajectories; it is shown that high-

accuracy tracking performance of proposed S-RWCMAC-

based supervisory control system can also be archived for 

sinusoidal reference commands. For the experimental results, 

the performance measure comparison of the proposed S-

RWCMAC control system with the standalone CMAC control 

system which has been proposed in [19] is also shown in Table 

II. This table shows that, for the adaptive S-RWCMAC 

control system, the root mean square errors are 0.078%, 

0.055%, and 0.043% for sinusoidal commands for each link, 

respectively. 

 

Fig. 8. IPC-based De-icing robot position control system a) Block diagram of 
three-link De-icing robot manipulator control system, b) image of practical 

control system, c) image of special robot laboratory of power industry 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

 

(i) 

Fig. 9. Experimental position responses, tracking errors of the proposed adaptive S-RWCMAC-based supervisory control system at joints 1, 2 and 3 

Moreover, comparing the proposed S-RWCMAC control 

system with the standalone CMAC control system, the root 

means square errors have been reduced by about 0.023%, 

0.027%, and 0.011% for sinusoidal commands for each link, 

respectively. This indeed confirms the performance 

improvement of the proposed S-RWCMAC control system.  

 

TABLE II.  PERFORMANCE MEASURE OF S-RWCMAC AND THE 

STANDALONE CMAC APPROXIMATION 

Control 

System 

Standalone CMAC 

Controller [19] 

S-RWCMAC 

Controller 

RMS (rad) RMS (rad) 

Link 1 0.091% 0.068% 

Link 2 0.072% 0.045% 

Link 3 0.054% 0.043% 
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V. CONCLUSIONS AND DISCUSSION 

This study has successfully implemented an adaptive S-

RWCMAC-based supervisory control system for the three-

link De-icing robot manipulator to achieve high-precision 

position tracking performance, which plays a very crucial role 

in the field of robotics. By using the S-RWCMAC structure, 

the system is capable of learning and adapting quickly to the 

environment. At the same time, the system is also capable of 

adjusting the parameters of the model to achieve optimal 

results.  

One of the outstanding advantages of the system is the 

combination of wavelet neural networks and the fast-learning 

capabilities of CMAC. The use of decay properties? (locality) 

and fast learning capabilities helps reduce data size and 

increase the processing speed of S-RWCMAC, creating a 

more flexible and effective control method.  

The adoption of the adaptive controller and the durable 

controller is also shown to ensure safety, avoidunwanted 

states, and minimize the impact of errors on system 

performance. In addition, the online tuning laws of S-

RWCMAC parameters and error estimation of the adaptive 

robust controller which are derived from the gradient-descent 

learning method and the Lyapunov function guarantee the 

stability of the system. The simulation and experimental 

results indicate that the proposed S-RWCMAC-based 

supervisory control system can achieve favorable tracking 

performance for different reference commands. 

With its good tracking performance, this monitoring 

control system is promising to a variety of automated systems 

such as mobile robots, AC servo systems, etc.  

For a more comprehensive evaluation of the proposed 

adaptive S-RWCMAC-based monitoring control system, 

more research of the detailed structure of S-RWCMAC can 

be conducted. 

The S-RWCMAC controller is a high-level algorithm in 

the field of control for dealing with uncertain components in 

nonlinear systems. These algorithms can learn from system 

errors and adjust parameters to optimize control performance. 

Thereby bringing adaptability and flexibility to the system.  

By dealing with uncertain components, the S-RWCMAC 

has the potential to improve the control system’s performance. 

However, like other algorithms, they also face some 

limitations and challenges.  

First, calculating and processing data in the control system 

requires a lot of resources to calculate. Ensuring high 

performance and fast system response time requires good and 

efficient data processing. This can pose challenges in terms of 

complex algorithms.  

Second, environmental conditions may create other 

limitations and challenges to the performance of the control 

system. Interference from outside and inside the system can 

significantly affect the stability and operation of the system. 

Building control systems to deal with these factors is no small 

challenge.  

Despite the limitations and challenges, the advancement 

and application of the S-RWCMAC control system remain 

very promising. The extension and application of S-

RWCMAC can be adapted to handle complex systems and 

meet control system requirements.  

However, the research and development of new algorithms 

are necessary to improve the performance and application of 

control systems. Continued investment in control technology 

research and development is critical to making progress in this 

area. Especially exploiting the potential of the S-RWCMAC 

control system.  

In summary, CMAC and S-RWCMAC are important and 

promising technologies in the field of control. However, to 

overcome limitations and challenges, it is necessary to invest 

in further research and development and to create optimal 

hardware and software architecture solutions for the effective 

implementation of CMAC and S-RWCMAC control systems 

in practice. 
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