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Abstract—This paper presents an innovative task allocation
method for multi-robot systems that aims to optimize task dis-
tribution while taking into account various performance metrics
such as efficiency, speed, and cost. Contrary to conventional
approaches, the proposed method takes a comprehensive approach
to initialization by integrating the K-means clustering algorithm,
the Hungarian method for solving the assignment problem, and
a genetic algorithm specifically adapted for Open Loop Travel
Sales Man Problem (OLTSP). This synergistic combination allows
for a more robust initialization, effectively grouping similar tasks
and robots, and laying a strong foundation for the subsequent
optimization process. The suggested method is flexible enough
to handle a variety of situations, including Multi-Robot System
(MRS) with robots that have unique capabilities and tasks of
varying difficulty. The method provides a more adaptable and
flexible solution than traditional algorithms, which might not
be able to adequately address these variations because of the
heterogeneity of the robots and the complexity of the tasks.
Additionally, ensuring optimal task allocation is a key component
of the suggested method. The method efficiently determines the
best task assignments for robots through the use of a systematic
optimization approach, thereby reducing the overall cost and
time needed to complete all tasks. This contrasts with some
existing methods that might not ensure optimality or might
have limitations in their ability to handle a variety of scenarios.
Extensive simulation experiments and numerical evaluations are
carried out to validate the method’s efficiency. The extensive
validation process verifies the suggested approach’s dependability
and efficiency, giving confidence in its practical applicability.

Keywords—balanced task allocation; heterogeneous agents,
multi robot system; path planning; task decomposition.

I. INTRODUCTION

Task allocation is an important aspect of multi-robot systems,
where multiple robots are working in one team to achieve a
shared goal [1]. The process of task allocation has to be optimal
in order to achieve a high level of efficiency and effectiveness
of the multi-robot system [2]–[4]. In other words, the tasks must
be distributed among all the robots in the MRS in a way that
maximizes the efficiency, minimizes the completion time, and

optimizes the overall performance of the robots’ system [5],
[6]. Search and rescue [7]–[9] hunting operations [10]–[12] or
transportation and logistics [13], and other fields could all be
revolutionized by effective task allocation.

The multi-robot system can improve efficiency, reduce com-
pletion times, and achieve higher overall performance by al-
locating tasks in the best way possible. Take into account
a search and rescue scenario in which various robot types
work together to find survivors in a disaster-stricken area.
Task distribution that is optimised can guarantee prompt rescue
operations, significantly cut down on search time, and distribute
tasks based on each robot’s capabilities.

The presence of heterogeneous robots introduces a layer of
complexity to the task allocation process within multi-robot
systems. Each robot possesses distinct capabilities, spanning
varying levels of performance, mobility, and sensory abilities.
Effectively allocating tasks requires a nuanced understanding
of these discrepancies, ensuring tasks are matched to robots
equipped to handle them optimally. The challenge lies in
creating an allocation strategy that not only maximizes overall
system efficiency but also respects the unique strengths and
limitations of individual robots. Balancing the distribution of
tasks among heterogeneous robots demands a sophisticated
approach that leverages their diversity to achieve collective
excellence.

The architecture chosen for multi-robot systems significantly
influences the success of task allocation strategies. An ap-
plicable architecture should provide a robust framework for
seamless communication, coordination, and real-time informa-
tion exchange among robots. This architecture should foster
efficient decision-making by enabling the aggregation and
analysis of data from various sources. It should accommodate
the complexities introduced by heterogeneous robots, allowing
for adaptive task allocation algorithms that consider both the
characteristics of tasks and the capabilities of individual robots.
Moreover, the architecture should facilitate the integration of
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dynamic factors, such as changing task priorities or environ-
mental conditions, into the allocation process. A well-designed
architecture enhances the adaptability and scalability of the
system, enabling efficient and effective task allocation while
promoting harmonious collaboration among the diverse robotic
entities.

Creating a task allocation strategy that can handle the diver-
sity of tasks and robots is an important challenge; which ensures
a seamless distribution of capabilities and resources. Consider-
able advancements have been attained in multiple task alloca-
tion methodologies that derive from diverse approaches [14]
such as centralized approaches [15], decentralized approaches
[16], cloud approaches [17] and market-based approaches [18].
These methods do, however, have some drawbacks that high-
light the demand for more development.

In methods based on centralized approach [19], [20], there is
a central unity that is responsible to allocate tasks to the group
of robots, where it assigns the tasks to the available robots
with a defined criterion [21], [22]. Using this approach, the
allocation is more efficient and optimum than the decentral-
ized approaches, where the centralized computing unit has an
overall overview about the robot properties and tasks [23], [24].
However, these methods depend mainly on the centralized agent
where it can result in delays, inefficiencies when this agent is
not available or not well-informed [25], [26]. Methods of task
allocation based on decentralized approaches [27], [28] relies
on making decisions at the level of each robot [29], [30], where
these robots are responsible to choose tasks to perform based
on their criteria [31], [32]. Therefore, these methods are more
resilient because they are not based on a centralized agent for
decision-making [33], [34]. However, the robots are prone to
have conflicts or misunderstanding when they have different
preferences or interpretations of the task allocation process [26],
[35].

Market-based task allocation strategies in multi-robot sys-
tems are inspired by economic markets [36]–[38]. Robots bid
on tasks as commodities, with allocation governed by market
dynamics like supply, demand, price, and competition [39]–
[41]. Robots autonomously select tasks based on their abilities
and preferences, though these strategies are more complex than
centralized or decentralized methods [42]. The success of such
approaches hinges on the honesty of robot bids, as deceptive
bids can lead to inefficiencies [43]–[45].

Despite the fact that the field of task allocation in MRS has
made significant progress, there is still a significant research
gap when it comes to addressing the issues presented by
heterogeneous tasks and minimising travel expenses within the
framework of a centralised architecture. Current methods have
made progress but struggle to achieve optimal allocation in
scenarios where factors diverge significantly.

Centralized approaches excel in coordination but may fail

in dynamic scenarios or when real-time data is lacking. De-
centralized approaches enhance resilience but can lead to con-
flicts due to divergent preferences. Market-based approaches
offer autonomy but introduce complexities and susceptibility to
dishonest bidding. Additionally, optimizing travel costs during
task execution is a challenge, as they influence operational
expenses, time efficiency, and resource consumption. It is still
largely unknown how tasks should be distributed based on their
varying levels of complexity and how far they must travel to
be completed. An all-encompassing strategy is required, one
that seeks to reduce cumulative travel distances in order to
increase system efficiency while also taking into account the
capabilities of individual robots and the characteristics of tasks.
This can be accomplished by robots working together and
planning strategically to use resources as efficiently as possible.

Currently, centralized approaches to task allocation for multi-
robot systems have gained significant attention and been ex-
tensively researched [24], [46]–[58]. In order to resolve the
cooperative task allocation problem of multi-robot systems,
Wang et al proposed a unique multi-objective ant colony
system (MOACS) strategy [59]. A unique solution construction
approach and a novel pheromone updating rule are provided,
both of which are based on the single objective ant colony
system (ACS). Compared to the current Non-dominated Sorting
Genetic Algorithm II (NSGA-II) and Multi-Objective Particle
Swarm Optimization, the proposed MOACS has shown supe-
rior performance and efficacy (MOPSO). In [60], the study
examines how to carry out tasks that are distributed throughout
the environment while reducing system costs as a whole. They
provide a novel deployment-based framework that divides the
problem into two subproblems: region partitioning and routing
problem, in order to address the issue of multi-robot job
allocation in very vast environments. A novel scheduling model
is suggested that takes wait time into account [61]. The balanced
heuristic mechanism (BHM) is used in this technique to select
the best gathering station to reduce waiting time, and task
rescheduling based on task correlation (TRBTC) is additionally
utilized to mitigate travel costs.

This paper addresses the issue of task allocation in which
the tasks and robots are heterogeneous and the overall cost
of travel must be optimized. In other words, the tasks have
various levels of difficulty, similar to robots, which have dif-
fering capacities. The tasks and robots are distributed within a
confined workspace, and the robots are required to accomplish
all feasible tasks. The cost is calculated based on the total
distance travelled by each robot in the MRS, and the overall
cost is determined by the highest distance travelled by any
robot within the MRS. The proposed approach for minimizing
the overall cost involves three stages. The first stage involves
task assignment initialization, which directs the robots to their
respective tasks based on distance and difficulty. In the second
stage, pre-allocation is optimized by iteratively modifying the
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set of tasks assigned to each robot, resulting in reduced total
costs. In the final stage, the set of tasks assigned to each
robot is re-evaluated to identify any further opportunities for
improvement.

This study focuses on creating a task allocation methodology
that takes complexity, priority, and resource requirements into
account for heterogeneous tasks in multi-robot systems. The
objective is to maximise system performance while taking care
of issues with various degrees of complexity and importance.
By strategically allocating tasks based on spatial distribution,
task requirements, and robot capabilities, the research aims to
reduce travel expenses. Robot cumulative effort is reduced using
this method, increasing productivity and resource use.

The following sections of this paper are structured as follows:
section 2 introduces briefly background methods and presents
the proposed method; section 3 gives the simulation test and
verifies the feasibility of the proposed method. In section 4,
conclusion and future works are discussed.

II. METHODS AND BACKGROUND

The initialization stage of the proposed method is constructed
using three highly effective techniques that are widely adopted:
K-means algorithm, Hungarian method, and Open-Loop TSP
utilizing genetic algorithm. Each of these methods is briefly
discussed.

A. K-means

The k-means algorithm [62]–[65] is one of the most used
algorithms for clustering problems [66]–[68]. This algorithm
takes a set of n data points and groups them into k clusters,
where k is a pre-specified parameter. The k-means algorithm is
used here to divide a set of n tasks into k robot clusters.

Given a set of points (x1, ..., xn), the objective is to partition
the n points into k sets:

S = S1, S2, ..., Sk, (k ⩽ n) (1)

by minimizing the distance between the points at inside each
partition:

argSmin

k∑
i=1

∑
xj∈Si

∥ xj − µi ∥2 (2)

where µi is the barycenter of the points in Si

• Choose k points which represent the average position of
the initial partitions m(1)

1 , ...,m
(1)
k

• Repeat until there is convergence :
- Assign each observation to the nearest partition :

S
(t)
i =

{
xj :

∥∥∥xj −m
(t)
i

∥∥∥ ⩽
∥∥∥xj −m

(t)
i∗

∥∥∥∀i∗ = 1, . . . , k
}

(3)

- Update the mean of each cluster :

m
(t+1)
i =

1∣∣∣S(t)
i

∣∣∣
∑

xj∈S
(t)
i

xj (4)

B. Hungarian method

The Hungarian Algorithm [69]–[71], also known as the
Kuhn-Munkres Algorithm, is a combinatorial optimization al-
gorithm that solves the assignment problem in polynomial [72]–
[74]. The assignment problem is the problem of finding the
optimal assignment of n tasks to n agents, given a cost matrix
that indicates the cost of assigning each task to each agent [75].
The goal is to minimize the total cost of the assignment.

The Hungarian method is used to find the optimal assignment
of robots to the set of tasks. The following steps explain the
execution order of the Hungarian Algorithm.

Algorithm 1 Hungarian method

Input: Given a bipartite graph G = (V = (X,Y ), E), whose
partitions are X and Y , with E indicating the graph’s edges
where (|X| = |V | = n).
Output: A perfectly matched M

Description:
1: Perform initialization.
2: All numbers in each row are subtracted from the row’s

minimum number.
3: Based on the matrix obtained in the previous step, subtract

all numbers in each column from the column’s minimum
number.

4: Use the fewest possible horizontal and vertical lines to
cover all zeros in the resulting matrix. If n lines are needed,
a best-fit assignment can be found from the zeros. The
algorithm comes to a halt. Continue to Step 4 if less than
n lines are necessary.

5: Create additional zeros:
- Locate the smallest element (call it k) that is not

covered by a line in Step 3.
- Add k to all elements that are covered twice and

subtract k from all uncovered
6: Return M

C. Open loop Travel salesman problem

The Traveling Salesman Problem (TSP) [76]–[78] is a classic
problem in computer science, which seeks to find the shortest
possible route that visits a given set of cities and returns to the
starting point [79]. The open loop variant of TSP is a variant
where the salesman does not need to return to the starting city.
The problem can be formulated mathematically as follows:

Let G = (V, E) be a complete graph with V = 1, 2, ..., n
representing the set of cities and E representing the set of edges
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connecting the cities. The edge weight or distance between any
two cities i and j is represented by c(i,j).

The objective is to find the shortest possible route that visits
all cities exactly once and ends at a particular city. Let’s assume
that the salesman starts at city 1 and ends at city k. The problem
can be formulated as a linear programming problem as follows:

Minimize Z =
∑

(i,j)∈E

c(i,j)x(i,j) (5)

subject to: ∑
(i,j)∈E

x(i,j) = n− 1 (6)

(each city should be visited exactly once)∑
(j∈V,j ̸=i)

x(i,j) = 1 ∀i ∈ V, i ̸= k (7)

(exactly one outgoing edge from each city)∑
j∈V, i̸=j

x(i,j) = 1 ∀i ∈ V, j ̸= 1 (8)

(exactly one incoming edge to each city)∑
(i,j)∈S

x(i,j) ⩽ |S| − 1 ∀S ⊆ V, 2 ∈ S, /∈ kS (9)

(subtour elimination constraint)
Here, x(i,j) is a binary decision variable that takes value 1

if the edge (i, j) is included in the tour, and 0 otherwise. This
problem is NP-hard, which means that it is computationally
infeasible to solve for large instances of the problem. Therefore,
a variety of heuristic and approximation algorithms are often
used to find near-optimal solutions.

The genetic algorithm is one of the popular metaheuristic
approaches to solve the traveling salesman problem (TSP)
inspired by the natural process of evolution. The algorithm
works by evolving a population of candidate solutions over
multiple generations and selecting the best solution as the
output. The following steps explain the execution order:

• Initialization: Generate an initial population of candidate
solutions (Each solution is a permutation of the cities).

• Evaluation: Evaluate the fitness of each solution in the
population (The fitness of a solution is the length of the
tour).

• Selection: Select the best solutions from the population.
• Crossover: Generate new solutions by combining the se-

lected solutions using crossover operators.
• Mutation: Introduce random changes to the new solutions

using mutation operators.
• Replacement: Replace the worst solutions in the popula-

tion with new solutions.

Using the Open Loop Travel Salesman Problem with a genetic
algorithm allows the robot to find the shortest path to execute
the set of tasks

D. Proposed Method

The initialization stage of the proposed method is constructed
using three highly effective techniques that are widely adopted:
K-means algorithm [62], [66], Hungarian method [69], and
Open-Loop TSP utilizing genetic algorithm [79]. Each of these
methods is briefly discussed.

The aim is to distribute a set of tasks with different difficulty
levels among a heterogeneous multirobot system operating
within a defined space. We intend to allocate these tasks in
a collaborative and balanced manner, which poses a search
and optimization problem. To illustrate this problem, each
robot and task is assigned a specific location within a two-
dimensional space, with their Cartesian coordinates represented
by real numbers x and y. Furthermore, robots and tasks are
characterised by their capability and difficulty, denoted as c
and d, respectively.

RC
i (x,y) with c ∈ [1, C] and i ∈ [1, NR] (10)

where C is the maximum capability existing in the MRS and
NR is the total number of robots.

T d
j (x,y)

with d ∈ [1, D] and j ∈ [1, NT ] (11)

where D is the highest difficulty existing in the set of tasks and
NT is the total number of tasks.

The tasks and robots are distributed into the workspace, and
each robot must be assigned to tasks that match or fall within its
capability level. The problem is how to achieve a well-balanced
task allocation process, utilizing all the available robots, and
minimizing the maximum distance travelled by any robot within
the MRS.

The pre-initialization stage involves forming groups of tasks
GT, where the count of tasks ≥ 2. These groups of tasks
are created according to the difficulties of the tasks and the
capabilities of the robots. This implies all tasks of difficulty d
are temporarily assigned to the robots with a capability equal to
d. If no robot possessing a capability c that matches d (where
c ̸= d) is available, then the group of tasks is assigned to the
group of robots with the minimum c within the range [d,Cmax],
where Cmax is the maximum capability of the robots in the
MRS. In case a task requires a capability higher than Cmax, it
becomes impossible to perform it. To illustrate how tasks are
divided into groups, these examples are used: In problem one
as shown in Fig. 1 the environment contains:

• Five robots:
R = R5

1, R
4
2, R

3
3, R

2
4, R

1
5

• Eleven tasks:
T = T 5

1 , T
4
2 , T

4
3 , T

3
4 , T

2
5 , T

2
6 , T

2
7 , T

1
8 , T

1
9 , T

1
10, T

1
11

• The groups of tasks generated are:
GT1 = {T 5

1 }; GT2 = {T 4
2 , T

4
3 }; GT3 = {T 3

4 };
GT4 = {T 2

5 , T
2
6 , T

2
7 }; GT5 = {T 1

8 , T
1
9 , T

1
10, T

1
11}
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Fig. 1. Position, capability, and difficulty-based distribution of robots and task.

Once the tasks are divided into subgroups, each group is
allocated to the robots that possess the required capability to
accomplish them therefore:

• GR1 is assigned to GT1 where GR1 = {R5
1} <=>

R5
1 => T 5

1

• GR2 is assigned to GT2 where GR2 = {R4
2} <=>

R4
2 => {T 4

2 , T
4
3 }

• GR3 is assigned to GT3 where GR3 = {R3
3} <=>

R3
3 => T 3

4

• GR4 is assigned to GT4 where GR4 = {R2
4} <=>

R2
4 => {T 2

5 , T
2
6 , T

2
7 }

• GR5 is assigned to GT5 where GR5 = {R1
5} <=>

R1
5 => {T 1

8 , T
1
9 , T

1
10, T

1
11}

In problem two as shown in Fig. 2 the environment contains:

• Four robots:
R = R5

1, R
5
2, R

4
3, R

2
4

• Twelve tasks:
T = T 5

1 , T
5
2 , T

5
3 , T

4
4 , T

4
5 , T

3
6 , T

3
7 , T

2
8 , T

2
9 , T

1
10, T

1
11, T

1
12

• The groups of tasks generated are:
GT1 = {T 5

1 , T
5
2 , T

5
3 }; GT2 = {T 4

4 , T
4
5 , T

3
6 , T

3
7 };

GT3 = {T 2
8 , T

2
9 , T

1
10, T

1
11, T

1
12}

In this case:

• GR1 is assigned to GT1 where GR1 = {R5
1, R

5
2}

• GR2 is assigned to GT2 where GR2 = {R4
3}

• GR3 is assigned to GT3 where GR3 = {R2
4}

Once the pre-initialization stage is completed and the group
of robots are assigned to their respective group of tasks, the
initialization process proceeds in accordance with the criteria
outlined in Table I.

K-means algorithm is used to divide each group of tasks GT

Fig. 2. Position, capability, and difficulty-based distribution of robots and task.

TABLE I
ALGORITHM SELECTION IN INITIALIZATION PHASE BASED ON THE

NUMBER OF TASKS AND ROBOTS IN EACH GROUP

GRi GTi K-means Hungarian OTSP

= 1 = 1

= 1 ≥ 2 x

≥ 2 ≤ GRi x x

≥ 2 ≥ GRi x x x

into k clusters, where k is the number of the robots assigned
to this group. Performing this algorithm on all task groups
generates new task groups ϑi and their corresponding centroids
zi , with {i|1 ≤ i ≤ NR}. Then each group of tasks ϑi is
allocated to the dedicated robot Ri using the Hungarian method,
as shown in Table 2. For example, in problem two:
GR1 is assigned to GT1 ≡ {R5

1, R
5
2} ⇒ {T 5

1 , T
5
2 , T

5
3 }

K-means({T 5
1 , T

5
2 , T

5
3 }, k) = ({ϑ1, z1}, {ϑ2, z2})

with ϑ1 = {T 5
1 , T

5
2 } and ϑ2 = {T 5

3 }

TABLE II
TASK ASSIGNMENT USING HUNGARIAN METHOD BASED ON EUCLIDEAN
DISTANCE BETWEEN ROBOT POSITIONS AND TASK GROUP CENTROIDS

z1 z2

R5
1 ||R5

1, z1|| = 7.07 ||R5
1, z2|| = 8.06

R5
2 ||R5

1, z1|| = 3.16 ||R5
2, z2|| = 9.21

Using the Hungarian method shown in Table II, the best
assignment that minimises the total travel cost for each robot
is represented in the following manner:
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Hungarian(R5
1, R

5
1, z1, z2) = ({R5

1 => z2}, {R5
2 => z1})

thereby R5
1 => T 5

3 and R5
2 => {T 5

1 , T
5
2 }

After performing Hungarian method, each group tasks ϑi are
allocated to dedicated robot Ri where {i|1 ≤ i ≤ NR} which
means: Ri ⇒ ϑi = {Ti,j} where {j|1 ≤ j ≤ NT} is the index
of task. To calculate the distance travelled by a robot, the norm
is taken between the coordinates of its starting position and the
assigned task:

Disti(Ri, ϑi) = Disti(Ri, {Ti,j}) = ψ(Ri ∪ {Ti,j}) (12)

For this, three cases are possible:

• If the robot is not assigned to any task, then ϑi = ⊘

ψ(Ri ∪ {Ti,j}) = 0 (13)

• If the robot is assigned to one task, then ϑi = Ti,j

ψ(Ri ∪ {Ti,j}) = ∥Ri, Ti,j∥ (14)

• If the robot is assigned to many tasks

ψ(Ri∪{Ti,j}) = ∥Ri, Ti,j∥+
∑
j∈ϑi

L−1∑
l=1

∥∥T l
i,j , T

l+1
i,j

∥∥ (15)

The constant L represents the tasks’ aggregate in the group
{Ti,j}. The priority ranking of tasks within this group is
determined by the genetic algorithm for OLTSP function ξ,
which generates the order index l, which indicates the optimal
sequence for executing tasks to obtain the shortest path, where:

ξ(Ri, ϑi) = ξ({Ri, Ti,j}) = {T l
i,j} (16)

The cost function is the maximum distance travelled by a
robot in the MRS :

∃Ri Max(ψ (Ri ∪ {Ti,j})) (17)

The objective is to reduce the overall cost by optimising the
cost function :

Υ(Max(ψ(Ri ∪ {Ti,j}))) (18)

The following iterative optimization algorithm outlines the
method for minimizing the overall cost function.

III. RESULTS AND DISCUSSION

To present the outcomes of our proposed approach, we used
the MATLAB software installed in a computer equipped with
an i7 / 8GB RAM configuration. This setup enabled us to con-
duct comprehensive evaluations of our approach and produce
reliable results. To demonstrate the versatility and practicality
of our algorithms in addressing various challenges in the field
of BMRTA, we have selected several distinct examples that
involve robots with varying capabilities and tasks with varying
levels of complexity.

Algorithm 2 Iterative optimization stage

Input: A subgroup of tasks assigned to robots{Ri => {GTi}}
Output: Optimal assignment of the subgroups of tasks to robot
{Ri => {GT ∗

i }}
Description:

1: repeat
2: α: Find the Robot Rc

i with Max(ψ(Rc
i ∪ {Ti,j})) and

label it Rc0
x

3: from GTx extract the task TL
x,j

4: for each robot with capability c0 do
5: Assign temporarily TL

x,j to Rc0
i :

Rc0
i => GTi∗ = GTi + TL

x,j

6: Reorder the tasks in GTi∗ :
ξ(GTi∗) = ξ({Ti,j} + TL

x,j)
7: if ψ(Rc0

i ∪GTi∗) < ψ(Rc0
x ∪GTx) then

8: GTi = GTi∗
9: GTx = GTx \ TL

x,j

10: goto α
11: end if
12: end for
13: for c in c0 + 1 to Cmax do
14: for each robot with capability c do
15: Assign temporarily TL

x,j to R
c
i :

Rc
i ⇒ GTi∗ = GTi + TL

x,j

16: Reorder the tasks in GTi∗:
ξ(GTi∗) = ξ({Ti,j}+ TL

x,j)
17: if ψ(Rc

i ∪GTi∗) < ψ(Rc0
x ∪GTx) then

18: GTi = GTi∗
19: GTx = GTx \ TL

x,j

20: end if
21: end for
22: end for
23: as long as (Υ(Max(ψ(Rc

i ∪ {Ti,j})) ̸= 0)

TABLE III
INITIAL ROBOTS CONFIGURATION: POSITION AND CAPABILITY

Robots R1 R2 R3 R4

Position (4, 14) (6, 8) (9, 2) (12, 9)

Capability 5 5 4 2

We present the initial configuration of the robots and tasks,
including their positions, levels of capability, and difficulty,
which were randomly generated, (Table III and Table IV).

This configuration is visually represented as a graph (Fig. 3),
where robots are depicted as diamonds and tasks are depicted
as circles. Following the completion of the initialization phase
(Fig. 4), every robot is allocated to a group of tasks in consid-
eration of both the capacity of the robots and the difficulty of
the tasks, in the manner outlined below:
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TABLE IV
INITIAL TASKS CONFIGURATION: POSITION AND DIFFICULTY

Tasks T1 T2 T3 T4 T5

Position (1, 12) (5, 2) (12, 15) (4, 10) (11, 8)

Difficulty 5 5 5 4 4

T6 T7 T8 T9 T10 T11 T12

(14, 16) (10, 2) (8, 13) (10, 4) (3, 5) (8, 5) (14, 8)

3 3 2 2 1 1 1

• R5
1 => GT1(ϑ1) where GT1(ϑ1) = (T 5

3 )
thereby R5

1 => T 5
3

• R5
2 => GT1(ϑ2) where GT1(ϑ2) = (T 5

2 , T
5
1 )

thereby R5
2 => T 5
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The overall time required for the robots to complete their
tasks is determined by the robot with the highest cost distance,
which in this case is R3, with a cost of 26.02. The result
achieved is not balanced or optimal (Table V).

Fig. 3. 2D representation of initial configuration of robots and tasks

In the second phase of the approach, we aim to optimize the
system in a balanced manner through collaboration among the
robots:

• R5
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Fig. 4. 2D representation of initialization phase and robot-task assignment

TABLE V
INITIALIZATION PHASE: TRAVEL COST OF ROBOTS WITH ASSIGNED GROUP

OF TASKS

Ri R1 R2 R3 R4

GTi GT1(ϑ1) GT1(ϑ2) GT2 GT3

Cost 8, 06 16, 85 26,02 24, 56
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The proposed algorithm’s application during the optimization
phase resulted in a balanced and optimal outcome, leading to
a significant reduction in the total cost of distance travelled
by a robot from 26.02 to 16.85 (Table VI and Fig. 5). This
optimization was achieved within a run time of 0.38 seconds.

TABLE VI
OPTIMIZATION PHASE: TRAVEL COST OF ROBOTS WITH ASSIGNED GROUP

OF TASKS

Ri R1 R2 R3 R4

GTi GT1(ϑ1) GT1(ϑ2) GT2 GT3

Cost 15, 67 16,85 12, 91 15, 12

Below are additional simulations that showcase balanced
optimization across different numbers of robots and tasks.

A. Experiment 1

This experiment involved generating three robots and nine
tasks randomly, along with their positions (x, y), capacity, and
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Fig. 5. 2D representation of final result for balanced collaborative multi-robot
task allocation

difficulty levels. The initial maximum travel cost was found to
be 211.18, which was quite high. However, after implementing
the optimization phase, the travel cost was reduced by 90.75
(Fig. 6). This reduction was achieved within a short execution
time of 0.34 seconds, demonstrating the effectiveness of the
optimization algorithm used in this study.

TABLE VII
EXPERIMENT 1 RESULTS FOR TRAVEL COST MINIMIZATION OVER

EXECUTION TIME

Robots Tasks Init. cost Optim. cost Exec. time(s)

3 9 211.18 90.75 0.34

B. Experimental Results

The experiments conducted in this study demonstrated the
effectiveness of the optimization algorithm in reducing travel
cost, even in scenarios where the number of tasks exceeded the

Fig. 6. Experiment 1 optimization history of travel cost by iteration

available number of robots. This indicates that the algorithm can
handle complex scenarios with ease and still achieve a balanced
and optimal solution.

TABLE VIII
TABLE SUMMARIZING THE EXPERIMENTAL RESULTS FOR MINIMIZING

TRAVEL COSTS OVER TIME OF EXECUTION

Experiment 2 3 4 5

Robots 8 10 30 30

Tasks 20 30 100 200

Initialization cost 192.36 211.84 224.88 165.90

Optimization cost 93.68 104.05 105.66 101.26

Execution time(s) 20 30 100 200

Interestingly, despite the increase in problem complexity,
the execution time required to achieve the optimal solution
remained minimal. This suggests that the algorithm is efficient
and can be used in real-world applications where time is of the
essence.

Overall, these findings highlight the potential of the pro-
posed optimization algorithm in improving the efficiency and
effectiveness of robotic systems, particularly in scenarios where
resources are limited or where there is a high degree of
uncertainty.

IV. CONCLUSION

In this paper, a novel method for assigning heterogeneous
tasks to heterogeneous robots is presented. This approach aims
to reduce the overall cost of task execution, which is the MRS
task with the highest cost incurred by a robot. A variety of tasks
with different levels of difficulty are present in the environment,
along with a group of robots that are capable of handling tasks
that are either equal to or below their capabilities.
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Fig. 7. Experiments: optimization history of travel cost by iteration

The suggested process consists of three steps. The K-means
algorithm is used to determine the centroid of each task group
and the Hungarian method is used to assign robots in a balanced
manner for a set of tasks in the initialization of the allocation
based on the difficulties, capabilities, and distances. In order to
determine whether the current allocation is optimal or if further
optimization is necessary, a validation and re-optimization
process is lastly carried out. This centralized approach produces
a balanced distribution among all the robots in the MRS and is
expandable for any environment, regardless of the number and
nature of robots and tasks.

The proposed method is effective and appropriate for MRS
task allocation applications, as demonstrated by the simulation
experiments and numerical results. However, the effectiveness
of this proposed method is constrained because it disregards
environments with obstacles. Furthermore, given that each task
takes the same amount of time to complete, the task cost
only considers the distance between the robot and the task.
Therefore, we will consider the environments that are filled with
obstacles and the amount of time needed to complete each task
in our future work.
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