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Abstract—Cranes hold a prominent position as one of the most
extensively employed systems across global industries. Given their
critical role in various sectors, a comprehensive examination was
necessary to enhance their operational efficiency, performance,
and facilitate the control of transporting loads. Furthermore,
due to the complexities involved in disassembling and reinstalling
cranes, as well as the challenges associated with precisely de-
termining system parameters, it became essential to implement
adaptive control methods capable of efficiently managing the
system with minimal resource requirements. This work proposes
a trajectory tracking control using adaptive sliding-mode control
(SMC) with particle swarm optimization (PSO) to control the
position and rope length of a 3D overhead crane system with
unknown parameters. The PSO is mainly used to identify the
model and estimate the uncertain parameters. Then, sliding-mode
control is adapted using the PSO algorithm to minimize the
tracking error and ensure robustness against model uncertainties.
A model of the systems is derived assuming changing rope length.
The model is nonlinear of second order with five states, three
actuated states: position x and y, and rope length l, and two
unactuated states, which are the rope angles θx and θy . The
system has uncertain parameters, which are the system’s masses
Mx, My and Mz , and viscous damping coefficients Dx, Dy and
Dy . A simulation study is established to illustrate the influence
and robustness of the developed controller and it can enhance the
tracking trajectory under different scenarios to test the scheme.

Keyword—3D Overhead Crane; Sliding Mode Control;
Particle Swarm Optimization (PSO).

I. INTRODUCTION

Cranes are one of the most used systems in the industry
worldwide. They usually operate in various sites like plants,
shipyards, and warehouses to carry heavy payloads. One class
of crane systems is the overhead cranes, shown in Fig. 1. An
overhead crane usually moves in three-dimensional space, and
it usually consists of three essential parts: the trolley, the gantry,
and the rope that holds the payload. The trolley moves along the

Y -axis, while the gantry moves along the X-axis perpendicular
to the motion of the trolley. The payload is moved up and down
by changing the rope length. The objective of this work is to
study the control of an uncertain 3D overhead crane system and
to control the system while addressing the following challenges:
the system exhibits uncertainties, and its rope length changes
during operation.
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Fig. 1. 3D Overhead Crane

This section reviews the modeling and control of underac-
tuated three dimensional (3D) overhead crane systems. First, a
review of the system modeling is presented. Then, a review of
crane control is presented. Modeling overhead cranes can fall
into two categories, first is the two-dimensional model [1], [3]–
[9], 2D crane models (also called single-pendulum cranes) [10]
are usually nonlinear with three states; trolley’s position, the
length, and angle of hoisting rope [8]. In many cases, when the
crane is in motion, the rope length does not change or change at
a slow rate; hence, some works [1], [3]–[7], [9] assume fixed
rope length; as a result, the number of states is reduced to
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two states only. In addition to fixed rope length, if the swing
angle is assumed to be small as well, the system model can be
linearized [1] [2]. On the other hand, more accurate models can
be obtained by incorporating more dynamics into the model,
like friction between running parts [8] and external disturbances
[4].

The other category is the 3D overhead crane (double-
pendulum cranes) [11]. In 1998, [12], [13] utilized the La-
grangian method to drive a general nonlinear model for a
3D overhead crane. The model describes the dynamics of the
crane’s five states: x and y positions, hoisting rope length,
and swing angles. Similar to 2D overhead cranes, the model
can be simplified by assuming fixed rope length; hence, the
number of states is reduced to four states only [10], [14], [15],
[16], [17]–[20]. The linear model is used in other works like
[13], [14], [18] by assuming small angles and a fixed length.
Some works [11], [13], [21]–[23] included viscous damping
coefficients of crane’s moving parts, while other models [11],
[16], [18] included environmental disturbances like wind in
their models. In [15], the dynamics of friction and air resistance
were considered in the model.

Generally, the control methods used on overhead cranes
could be classified into two major classes: open-loop and
closed-loop. One example of open-loop methods is optimal
motion planning [24]–[28]. Since motion planning methods
are offline, the reference trajectory and the system’s initial
conditions must be known in advance. The second open-loop
control method is called command shaping [29]–[32]. Unlike
motion planning, the Command shaping control method is
online. The advantage of using input shaping is that it damps
the payload swing, yet, it is sensitive to modeling errors because
input shapers are placed at the feed-forward channel [33].

The second class of control methods is closed-loop control.
Many control techniques fall under the umbrella of closed-loop
control. In [13], [34], a linear closed-loop control is used to
control crane systems assuming linear dynamics. Because crane
systems are highly nonlinear, in some cases, linear models are
not enough to give an accurate representation of the crane’s
dynamics which could affect the quality of linear control
methods. In addition, since the linearized model assumes a
fixed rope length, linear control is designed to control the
crane at a single rope length. Furthermore, the performance
of linear methods could be affected by nonlinear uncertainties
in the actual system e.g., wind and friction. Partial feedback
linearization is another control scheme used for crane control
[19], [22], [35]. It is usually employed as an initial step to
simplify the control problem [33].

Backstepping control is a method usually used for a par-
ticular class of nonlinear dynamical systems. These systems
can be divided into subsystems such that the output from one
subsystem is considered as a control input for the following
subsystem. In [10], [36] the crane controller was designed

using the backstepping method. The backstepping is usually
combined with another control technique, such as [37], [38],
who used it with sliding mode.

Dealing with uncertainty is a significant issue in crane
systems. Uncertainties such as friction, external disturbance,
or elasticity of the rope could complicate the control prob-
lem. Hence, adaptive control is employed to deal with these
uncertainties [3], [10], [39]–[41]. In [42], they control a high-
speed 2D crane using adaptive sliding-mode. On the other hand,
some studies use robust control to overcome uncertainties in
the model, like [9], [43]–[45]. Robust control could perform
for systems with small uncertainties. On the other hand, Adap-
tive methods are suitable for systems with high uncertainty;
however, they could be sensitive to unstructured uncertainties
[33].

Model predictive control (MPC) is one of the advanced
techniques that has been used in crane control. [4], [14], [46].
One disadvantage of MPC is that it is sensitive to errors in the
model since it highly relies on it [33].

Sliding mode control (SMC) is considered a variable struc-
ture control (VSC) technique [23]. It has been extensively
utilized to control dynamic systems due to its different good
features. e.g., disturbance elimination and robustness in the
presence of uncertainties in the system [47]. Many studies
have utilized VSC in the crane systems. Basher [48] used
VSC to control the crane using its linearized model. Shyu, Jen
and Shang [49] used a SMC anti-swing controller on a 2D
overhead crane. Bartolini, Orani, Pisano and Usai [50] proposed
a second-order SM control scheme to control a 2D overhead
crane.
Runge-Kutta (RK) methods are widely recognized as one-
step techniques for effectively solving initial value problems
in ordinary differential equations [51], [52]. In the realm of
control theory, various studies have explored the connection
between RK coefficients and the stability region linked to these
methods, as well as the optimal choice of step sizes for RK
approaches, as discussed in [53]. Due to their computational
simplicity and straightforward implementation, RK methods
are extensively used in practical engineering applications. One
notable application is the real-time integration of RK methods
into control systems. In this study, we utilized Runge-Kutta
(RK) type methods to tackle the challenges posed by nonlinear
ordinary differential equations [54]. In many studies, SMC is
combined with another control method to enhance the system’s
performance e.g., adaptive hierarchical sliding mode with neural
network [41], [55], sliding-mode with partial-state feedback
[35], sliding-mode with state observer [23], sliding-mode-based
robust finite-time [20], backstepping with sliding-mode [37],
and finally, a fuzzy-based VSC is used for cranes systems [56]–
[59].

Another class of control that is employed in crane control is
intelligent control. A common example of this class is fuzzy-
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logic control [21], [60]–[62]. Another intelligent algorithm used
for crane control is PSO [32], [63]. In, [55] a neural network
is used with adaptive sliding mode. More than one intelligent
algorithm can be combined, for example, fuzzy logic with PSO
[9], and genetic algorithm with fuzzy control [64].

The 3D overhead crane system’s mathematical model is non-
linear and considers the dynamics of the crane’s trolley, hoist,
and bridge. The model includes both actuated and unactuated
states and is susceptible to external disturbances that cause
uncertainties in the system dynamics. These uncertainties can
arise from various sources, such as changes in the load weight,
wind gusts, or friction in the crane’s joints.

The uncertainties in the system dynamics can significantly
impact the performance and stability of the control system.
They can cause the system to become unstable or exhibit
oscillations, leading to unsafe or inefficient operation of the
crane. To address this issue, the proposed approach uses particle
swarm optimization (PSO) to adaptively estimate the uncertain
parameters of the system dynamics. The estimated parameters
are then used to update the controller, ensuring that the system
remains stable and robust under uncertain conditions.

The sliding mode control techniques ensure the stability of
the control system by driving the system states to a desired
sliding surface in a finite time. The stability of the sliding
surfaces is guaranteed, and the effectiveness of the proposed
approach is demonstrated through both synthetic and real-life
systems.

In this paper, a trajectory tracking control using adaptive
sliding mode is applied to a 3D overhead crane system with
unknown parameters to control its position and rope length.
While some prior studies have applied PSO for crane control,
our approach focuses on utilizing PSO specifically for the
identification of unknown parameters within the system.

A. Key Contributions

The main contributions of this work and the proposed method
are summarized as follows:

• This paper proposes a trajectory tracking control scheme
to control 3D overhead crane system. A key advantage of
this control scheme is that it’s easy to implement since
it does not require measuring all of the crane parameters
in advance, the system identification is going to be done
during operation using the PSO algorithm.

• This paper employs the complete non-linear model of the
3D overhead crane system with a variable rope length,
resulting in enhanced control over crane states and more
accurate simulation results compared to the simplifications
associated with using a linear model and assuming a fixed
rope length.

• Utilize fourth-order Runge-Kutta for integrating the dy-
namic equations to the upcoming time instant.

• The proposed control scheme can be used for different
crane operations since it shows a good performance with
different types of reference trajectories.

The rest of this article is structured as follows. The non-
linear model of the system is derived in section II. Then, an
adaptive sliding-mode control with particle swarm optimization
algorithm is proposed in III. Section IV presents and discusses
the simulation results. Finally, the conclusion in section V.

II. SYSTEM MODELING

In general, the dynamics of a 3D crane system can be
described using the following equation [23].

M(q)q̈ + + Dq̇ + C(q, q̇)q̇ + G(q) = F (1)

where q = [x, y, l, θx, θy]
T is the state vector, x and y represent

the systems position in meters, l represents the rope length
in meters, θx and θy represent the angles between the rope
and the Y -Z and X-Z planes correspondingly in radians.
F = [fx, fy, fl, 0, 0]

T is the input vector. fx and fy represent
the forces applied to move the trolley on the X and Y axes
correspondingly in Newtons(kg.m/s2), while fl represents
the force applied to change rope length in Newtons(kg.m/s2).
M(q) is the matrix corresponding to the mass, D is the matrix
corresponding to damping, C(q, q̇) is the matrix corresponding
to centrifugal force, and G(q) is the matrix corresponding to
gravitational force. These matrices can be described as follows:

M(q) =


m11 0 m13 m14 m15

0 m22 m23 m24 m25

m31 m32 m33 0 m35

m41 0 0 m44 0
m51 m52 0 0 m55

 ,

D =


Dx 0 0 0 0
0 Dy 0 0 0
0 0 Dx 0 0
0 0 0 0 0
0 0 0 0 0

 ,

C(q, q̇) =


0 0 c13 c14 c15
0 0 C23 0 c25
0 0 0 c34 c35
0 0 c43 c44 c45
0 0 c53 c55 c55

 , G(q) =


0
0
g3
g4
g5


Following are the nonzero elements of matrix M(q)

m11 = Mx +m, m13 = m31 = m sinθx cos θy

m22 = My +m, m23 = m32 = m sinθx

m33 = Ml +m, m14 = m41 = m l cosθx cos θy

m44 = m l2 cos2θy, m15 = m51 = −m l sinθx sinθy

m55 = m l2, m25 = m52 = m l cosθy
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The nonzero elements of matrix C(q, q̇) are

c13 = m cosθx cosθy θ̇x − m cosθx cosθy θ̇y

c14 = m cosθx cosθy l̇ − ml sinθx cosθy θ̇x

− ml cosθx sinθy θ̇y

c15 = −m sinθx sinθy l̇ − ml cosθx sinθy θ̇x

− ml sinθx cosθy θ̇y

c23 = m cosθy θ̇y, c25 = −m cosθy l̇ − ml sinθy θ̇y

c34 = −ml cos2θy θ̇x, c35 = −ml θ̇y

c43 = ml cos2θy θ̇x, c44 = ml cos2θy l̇

− ml2 sinθy cosθy θ̇y

c45 = −ml2 sinθy cosθy θ̇x, c53 = −ml θ̇y

c54 = ml2 cosθy sinθy θ̇x, c55 = mll̇

The nonzero elements of matrix G(q) are

g3 = −mg cosθx cosθy; g4 = mgl sinθx cosθy,

g5 = mgl cosθx sinθy

where Mx and My indicate the masses moving along X and
Y axes in kg, respectively, Ml indicate the mass of the rope
in kg, m is the mass of the load in kg, g is the gravitational
acceleration in m/s2, and Dx , Dy and Dl indicate the viscous
damping coefficients in kg/s.

The matrix M(q) can be shown to be positive definite for
l ≥ 0 and |θy| ≤ π/2.

A. Decoupling System Transformation

The number of actuators in the crane system is less than
the number of states to be controlled (uder-actuated systems)
[33]. This structure complicates the control problem of a
crane system, so, to simplify the controller design process; the
actuated states are separated from unactuated states using state
transformation. the resulting vectors are

q1 =

xy
l

 , q2 =

[
θx
θy

]

where the states in q1 are the actuated states, while the states
in q2 are the unactuated states. Similarly, the actuated input
vector F1 is

F1 =

fxfy
fl



the, the system in equation (1) is divided and into the
following equations:

M11(q)q̈a +M12(q)q̈u +D11q̇1 + C11(q, q̇)q̇a

+C12(q, q̇)q̇u +G1(q) = F1 (2)
M21(q)q̈a +M22(q)q̈u + C21(q, q̇)q̇a

+C22(q, q̇)q̇u +G2(q) = 0 (3)

where M11(q) ∈ R3×3, M12(q) ∈ R3×2, M21(q) ∈ R2×3

and M22(q) ∈ R2×2 are sub-matrices of M(q). C11(q, q̇) ∈
R3×3, C12(q, q̇) ∈ R3×2, C21(q, q̇) ∈ R2×3 and C22(q, q̇) ∈
R2×2 are sub-matrices of C(q, q̇). G1(q) ∈ R3×1 and G2(q) ∈
R2×1 are sub-matrices of G(q).

rearranging Equation (3)
q̈u =

−M−1
22 (q)[M21(q)q̈1 + C21(q, q̇)q̇1 + C22(q, q̈)q̇2 +G2(q)]

(4)
By substituting (4) into (2)

M̄(q)q̈ + C̄(q, q̇)q̇1 + C̄2(q, q̇)q̇2 + Ḡ(q) = F1 (5)

where

M̄(q) = M11(q)−M12(q)M
−1
22 (q)M21(q)

C̄(q, q̇) = C11(q, q̇)−M12(q)M
−1
22 (q)c21(q, q̇)

C̄2(q, q̇) = C12(q, q̇)−M12(q)M
−1
22 (q)c22(q, q̇)

Ḡ(q) = G1(q)−M12(q)M
−1
22 (q)G2(q)

The matrix M̄(q) can be shown to be positive definite for
l ≥ 0 and |θy| ≤ π/2.

Then, by pre-compensating for the coupling term C̄2(q, q̇)q̇2.
So, F1 will be:

F1 = u+ C̄2(q, q̇)q̇2 (6)

where u is the input to be designed. Then, by substituting (6)
into equation (5), equation (5) becomes:

M̄(q)q̈ + C̄(q, q̇)q̇1 + Ḡ(q) = u (7)

III. SYSTEM CONTROL

A. Sliding Mode Control of 3D Overhead Crane

Using the sliding mode controller from [23], u is chosen to
be

u = Ĉ(q, q̇)[q̇1 + Ĝ(q)− M̂(q)(I3 − α2M
−1
22 (q)

× M21(q))
−1]× [(λ1 − α2M

−1
2 2(q)C21(q, q̇))q̇1

+ (λ2 − α2M
−1
22 (q)C22(q, q̇))q̇2 − α2M

−1
22 (q)G2(q)]

− K · sgn(s) (8)

where s is the sliding surface

s = ė1 + λ1e1 + α2ė2 + λ2e2 (9)
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the values of the positive-definite matrix K =
diag{K1,K2,K3} determine how fast s converges to
zero.
In order to reduce the chattering in the sliding mode controller,

the sign function is defined as sgn(s) =

{+1 if s > 0
0 if s = 0
−1 if s < 0

and

e1 = q1 − qd1 =

x− xd

y − yd
l − ld

 , e2 = q2 − qd2 =

[
θx
θy

]
,

λ1 =

λ11 0 0
0 λ12 0
0 0 λ13

 ,

λ2 =

λ21 0
0 λ22

0 0

 ,α2 =

α21 0
0 α22

0 0


where λ11, λ12,λ13, λ21, λ22, α21 and α22 are design param-
eters of the controller.

It can be seen from equation (8) that the sliding mode
controller depends on the C, G, and M matrices from the
system model, hence, the uncertainty in the model will affect
the performance of the controller which leads to the role of PSO
algorithm in identifying the uncertainties which are discussed
in the next section.

B. PSO

in 1995, James Kennedy and Russell Eberhart introduced
PSO. They inspired the algorithm by swarm behavior of animals
such as birds [65]. In the algorithm, each particle in the swarm
represents an agent or candidate solution. The algorithms starts
by placing the particles in random positions in the search space
moving in random directions. Then, the positions and velocity
of all the particles are updated in each iteration according
to its distance from the the global best position and local
best position, the global best is the overall best position ever
reached by the swarm while the local best of a particle is the
best position reached by the particle itself. The movements of
the particles allows the algorithm to discover better positions
(solutions) in the search space [66]. The goodness of the particle
position is measured using the fitness function. The fitness
function is a problem dependent function (differs from problem
to other) that measures how good the solution is. Fig. 2 shows
the flow chart of PSO Algorithm which can be summarized in
the following steps [67]:

Generate initial population,
velocities and weights 

Evaluate objective function J 

Set local bests X
j
* 

Search for the global best X**

Update particles velocities V
j
(t) 

Update particles positions X
j
(t) 

Evaluate objective function J 

Update local best for each particle X
j
* 

Update weights w(t) 

t = t + l 

Update global best X** 

Stopping
Criteria met?

Yes

No

Stop

Fig. 2. Flow Chart Showing the Flow of the PSO algorithm [67]

1. Randomized Initialization of the population P (0) with
n particles, each particle Xj(0) represents a candidate
solution.

P (0) = [X1(0), X2(0), ..., Xn(0)] (10)

Xj(0) can be described as following:

Xj(0) = [xj,1(0), xj,2(0), ..., xj,m(0)] (11)

xj,k is the position of the kth optimized parameter of the
jth particle, where j = [1, 2, ..., n], k = [1, 2, ...,m], and
m is the number of optimized parameters.
Each particle has a random velocity Vj(0) bounded within
a specified range.

Vj(0) = [vj,1(0), vj,2(0), ..., vj,m(0)] (12)

2. Fitness evaluation of each particle in the population using
the objective function J .

3. Updating the global best X∗∗ and individual bests X∗

based on the fitness of the particles.
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4. Updating the weights

w(t) = αw(t− 1) (13)

Where α is a positive constant ≤ 1.
5. Updating particles’ velocities.

vj,k(t) = w(t)vj,k(t− 1) + c1r1(x
∗
j,k(t− 1)

−xj,k(t− 1)) + c2r2(x
∗∗
k (t− 1)− xj,k(t− 1))

where x∗
j,k is the local best of the kth optimized parameter

of the jth particle, x∗∗
k is the kth optimized parameter of

the global best, c1 and c2 are positive constants, and r1
and r2 are random numbers between 0 and 1.

6. Updating particles’ positions.

xj,k(t) = vj,k(t) + xj,k(t− 1) (14)

7. If stopping criteria is not reached, repeat from step 2.

The advantage of using an evolutionary optimization tech-
nique like PSO is that it does not depend on the gradient of the
problem to be optimized; hence, it can be applied on a wide
range of optimization problems. In addition, PSO is a simple
and efficient algorithm in terms of speed and memory needed.
The algorithm is proven to perform well on genetic algorithm
benchmark problems [65].

C. Adaptive Sliding Mode with PSO Algorithm

In this section, we combine sliding mode control with PSO to
adaptively control the overhead crane with uncertain parameters
which are the masses of the crane itself (Mx,My & Ml) and
the viscous damping coefficients (Dx, Dy & Dl). Following is
the sequence of the control algorithm:

1. At time t = 0, the system has the initial values of q0.
2. Initial particles P0 and velocities V0 are randomly gener-

ated (Initial estimation of the uncertain parameters).
3. A random particle pi0 from the swarm is selected to

compute the estimation of the state in the next step q̂1.
4. Estimated states are used to compute the controller signals

ut+1 using Sliding mode equation (8).
5. The control is applied on the actual system to move to the

next state qt+1.
6. The fitness function is used to compare the estimation of

each particle with the previous w states of the actual sys-
tem, the fittest particle is selected to update the estimated
model.

7. If the stopping criteria is not met, repeat from step 4.

Fig. 3 shows the summary of the control algorithm, the PSO
is continuously identifying and updating the model which is
then used to calculate the control signals of the SM controller.

Reference StatesOverhead
Crane

Sliding Mode
Controller

Online PSO

PSO-Based Adaptive Sliding-Mode Control

Fig. 3. Adaptive Sliding Mode Control with PSO Algorithm

IV. SIMULATION RESULTS

Two scenarios were simulated to test the control scheme, one
when the desired trajectories of the crane are constant functions
in X-axis and Y -axis, the constant values change at a certain
point during the simulation Fig. 4–9. The other scenario is when
the desired trajectories are in a sinusoidal form Fig. 10–12.
The simulation was done using MATLAB software with custom
ordinary differential equations solver based on the Runge-Kutta
method in order to gain the full control over the simulation.
Table I shows the values of the parameters that are used in the
simulation.
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Fig. 4. System Response (scenario 1) Proposed Scheme
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Fig. 5. System Response (scenario 1), Algorithm Proposed in [23]
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TABLE I. SIMULATION PARAMETERS

Parameter Description Value

System’s Parameters

Mx Mass moving along X − axis 1440kg

My Mass moving along Y − axis 110kg

Ml Mass of the rope 100kg

m Mass of the load 400kg

Dx

Viscus damping coefficients

480kg/s

Dy 40kg/s

Dl 200kg/s

g Gravitational acceleration 9.8m/s2

SM Controller Parameters

λ11

Sliding-Mode design parameters

0.5λ12

λ13

λ21 −10
λ22

α21 0.1
α22

K1

Control convergence rate of the controller

1.5

K2 0.1

K3 0.5

PSO Parameters

n Population size 50
k Number of parameters to be optimized 6

Gmax Maximum number of iterations 350
Gnmax Maximum iterations without improvement 200
Wmax Maximum updating weight 1
Wmin Minimum updating weight 0.2
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Fig. 6. System Response (scenario 1), Proposed Scheme
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Fig. 7. System Response (scenario 1), Algorithm Proposed in [23]

Fig. 4, 5, 6, and 7 elucidate the resilience and merits of the
suggested sliding mode control grounded in Particle Swarm
Optimization (PSO) for managing the masses Mx, My , and Mz

of the system, along with the viscous damping coefficients Dx,
Dy , and Dz , in contrast to the sliding mode control expounded
in [23] devoid of system estimation and modeling.

V. CONCLUSION

In this work, the model of 3D overhead crane with changing
rope length was derived. And to overcome the uncertainty in
the system which are the system masses and viscus coefficients,
an adaptive sliding-mode control with PSO was proposed. The
simulation results shows that in both scenarios, the control
scheme was able to make the system follows the desired
trajectories as shown in Fig. 4 and 10 and the PSO was
successfully able to estimate the five parameters as shown in
Fig. 8 and 11. The control scheme allows to control of the crane
system without the need to measure all of its parameters which
could be a hard process in some cases. In addition, the scheme
can work with different types of reference trajectories.

Runge-Kutta methods are known for their accuracy and
stability in solving ODEs, making them valuable for precise
integration of dynamic equations in complex systems like the
3D crane. So, incorporating Runge-Kutta for solving ordinary
differential equations (ODEs) could indeed enhance trajectory
tracking within the nonlinear 3D crane system when coupled
with sliding mode control.

Additionally, the utilization of Particle Swarm Optimization
(PSO) to identify and optimize the system model is a notable
aspect. PSO can effectively handle uncertainties and aid in
identifying an accurate system model, thereby improving the
precision of the control strategy. When combined with the
integration power of Runge-Kutta, this approach presents a
comprehensive solution for enhancing trajectory tracking and
control within the nonlinear 3D crane system.
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