
Journal of Robotics and Control (JRC)

Volume 4, Issue 5, 2023

ISSN: 2715-5072, DOI: 10.18196/jrc.v4i5.18777 696

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Modified Q-Learning Algorithm for Mobile Robot

Path Planning Variation using Motivation Model

Hidayat 1, Agus Buono 2, Karlisa Priandana 3*, Sri Wahjuni 4
1, 2, 3, 4 Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia

3 Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, Indonesia
1 Department of Computer Engineering, Universitas Komputer Indonesia, Bandung, Indonesia

Email: 1 dedehidayat@apps.ipb.ac.id, 2 agusbuono@apps.ipb.ac.id, 3 karlisa@apps.ipb.ac.id, 4 my_juni04@apps.ipb.ac.id

*Corresponding Author

Abstract—Path planning is an essential algorithm in

autonomous mobile robots, including agricultural robots, to

find the shortest path and to avoid collisions with obstacles. Q-

Learning algorithm is one of the reinforcement learning

methods used for path planning. However, for multi-robot

system, this algorithm tends to produce the same path for each

robot. This research modifies the Q-Learning algorithm in

order to produce path variations by utilizing the motivation

model, i.e. achievement motivation, in which different

motivation parameters will result in different optimum paths.

The Motivated Q-Learning (MQL) algorithm proposed in this

study was simulated in an area with three scenarios, i.e. without

obstacles, uniform obstacles, and random obstacles. The results

showed that, in the determined scenario, the MQL can produce

2 to 4 variations of optimum path without any potential of

collisions (Jaccard similarity = 0%), in contrast to the Q-

Learning algorithm that can only produce one optimum path

variation. This result indicates that MQL can solve multi-robots

path planning problems, especially when the number of robots

is large, by reducing the possibility of collisions as well as

decreasing the problem of queues. However, the average

computational time of the MQL is slightly longer than that of

the Q-Learning.

Keywords—Mobile Robot; Motivated Q-Learning; Motivation

Model; Path Planning; Q-Learning Algorithm.

I. INTRODUCTION

Agricultural technology is rapidly advancing towards the

Agriculture 4.0 paradigm. Agriculture 4.0, in [1] chapter 2,

refers to the use of artificial intelligence, big data, Internet of

Things (IoT), and robotics to increase the efficiency of

activities in agricultural production activities. Javaid et al in

[2] mentioned the importance of implementing robotics in

smart farming. However, the change from traditional

technology to automated devices provides opportunities and

challenges [3], [4], including the use of agricultural robots

[5]–[11]. Oliveira et al [5] showed the notable advances in

mobile robotics and the advantages of investing in

technologies. The development of agricultural robotic

systems will continue to increase their efficiency and

robustness. Another research has also been involved to get

solutions for navigation problems on a mobile robot in

agriculture [12]–[15].

Autonomous navigation is an important aspect in the field

of agricultural robots [12], [16], which covers four key

requirements: mapping, localization, motion control, and

path planning. Path planning is an essential issue in robotic

problems. This task revolves around identifying rotational

actions and a series of translations to move from the initial

position to the goal while avoiding obstacles [17]. The

exploration of robotic path planning is a critical area of

investigation in the field of robotics, including in the use of

mobile robots in agricultural settings [6], [18].

Many intelligent optimization algorithms have been

offered to help robots optimize their paths. These algorithms

draw inspiration from natural phenomena or biological

groups, such as the ant colony algorithm (ACO) [19]–[28],

genetic algorithm (GA) [29]–[32], [33], [34], and particle

swarm optimization (PSO) [35]–[39] [40]. Other algorithms

such as fuzzy algorithm [41]–[46], A* algorithm [47]–[50],

cuckoo algorithm [51]–[53], improved artificial fish swarm

algorithm [54], modified probabilistic roadmap algorithm

[55], [56], artificial potential field algorithm [57]–[59] [69]–

[71], and hybrid algorithms [60]–[64] [57], [72] have also

been implemented in robot path planning. In addition,

reinforcement learning also has been used to solve path

planning problems, as seen in studies [65]–[69].

The Q-Learning algorithm is one of the reinforcement

learning algorithms that is currently employed in path

planning. It is a classical reinforcement learning algorithm

that has been implemented in several studies for producing

optimum path [68]–[75]. It is frequently used for path

planning on moving robots [69]–[72], [75], [76]. In general,

research studies indicated that the benefit of Q-Learning is

that it always produces an optimum path. However, the

drawback, when the Q-Learning algorithm is applied to

several robots in the same area with the same task, the

resulting paths tend to be relatively the same. Hence, these

paths have the potential for collisions between robots when

all robots move simultaneously.

The objective of this study is to modify the Q-Learning

algorithm by utilizing a motivation model to generate diverse

yet optimum path options for multiple mobile robots in the

same area. Previous studies have used motivation models in

the algorithms to influence agents in making decisions [77]–

[79]. In this study, the achievement motivation model [77] is

incorporated in the Q-learning algorithm to produce

variations of optimum path. We call this algorithm Motivated

Q-Learning (MQL) algorithm. By having more than one

optimum path, in the case where communication between

robots is not available, the possibility of collisions can be

reduced. In addition, in the case where the robots can

Journal of Robotics and Control (JRC) ISSN: 2715-5072 697

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

communicate with each other, the queuing problem can be

decreased.

II. METHOD

A. Reinforcement Learning (RL) and Q-Learning Algorithm

Reinforcement learning (RL) is one method in machine

learning. It is a method of taking action based on the reward

[80]. The rewards and penalties concepts are used to explore

an environment. Five important terms are used in the Q-

Learning algorithm, namely agent, state, action, reward, and

penalty. In this case, the agent is a mobile robot as an object

that moves in the environment. The position of the agent in

the environment is represented by state (S). The action (A)

represents movement the agent from one state to another

state. Rewards are positive values that are given if the agent

takes the correct action, while penalties are negative values

that are given if the agent takes the incorrect action. Through

exploration and exploitation, the agent gains experience. The

exploration allows the agent randomly to visit all state-action

pairs in the environment without considering the current

state. On the contrary, exploitation maximizes the reward

from the current state using the agent's acquired knowledge

to select actions. One type of RL method is the Q-Learning

algorithm [81].

On the Q-Learning algorithm, the Q values are stored in

a two-dimensional Q table for each state and potential action.

The algorithm chooses the action with the highest reward.

The equation (1) is the Q-Learning equation by Watkins [80]

to update the Q value.

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (1)

The position of agent (A) or state at time t is represented

by 𝑆𝑡. The agent action in state 𝑆𝑡 is represented by 𝐴𝑡. The

𝑅𝑡+1 is reward value that received after the agent executes

action 𝐴𝑡+1 in state 𝑆𝑡. The 𝑄(𝑆𝑡 , 𝐴𝑡) is generated by action

𝐴𝑡 in state 𝑆𝑡. The discount factor (𝛾) serves as a variable

determining the significance of upcoming rewards. Its value

ranges between 0 and 1. A value near 0 implies that the agent

prioritizes immediate rewards, while a value near 1 signifies

the agent's consideration of future rewards. The learning rate

(𝛼), ranging from 0 to 1, affects the pace of achieving

convergence. When 𝛼 is close to 0, convergence takes a long

time. Conversely, higher values prompt the agent to make

drastic adjustments to the Q value, hindering convergence

due to fluctuating outcomes. The pseudocode for Q-learning

is presented in Algorithm 1.

Algorithm 1 Q-Learning Algorithm
1: Initial 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠)
2: Looping for each episode:

3: Initial 𝑆
4: Loop for each step in the episode:

5: Select 𝐴 from 𝑆 by using policy from 𝑄

6: Take action 𝐴, observe 𝑅, 𝑆′

7: 𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎 𝑄(𝑆
′, 𝑎) – 𝑄(𝑆, 𝐴)]

8: 𝑆  𝑆′

9: Until 𝑆 is target

Initially, all values of 𝑄(𝑠, 𝑎) in the Q-table is set to zero.

The 𝑠 and 𝑎 refer to the state and action, respectively, which

are elements of the entire state space (𝒮+) and all possible

actions of that state 𝒜(𝑠). Then, initial state S is determined.

The Q value is updated in the looping section.

During the iterative procedure, an action (A) is chosen for

execution in the current state (S) based on the policy derived

from Q-values. Following this, the agent selects an action (A)

and observes both the reward (R) and the subsequent state

(S'). The Q-value in the Q-table is then updated using

equation (1). Additionally, the current state (S) is set to the

value of the next state (S'). This looping process persists until

the current state matches the target state.

Fig. 1 illustrates the process of Q-Learning. The state 𝑆𝑡
is denoted as the initial state (n), and the feasible actions (A)

are obtained from Q using the expression (𝛾𝑚𝑎𝑥𝑄(𝑆𝑡+1, 𝑎))
𝑎

.

This selected action transitions the agent to the subsequent

state (𝑆𝑡+1), acquiring a reward value (𝑅𝑡+1) in the process.

This sequence continues until convergence is achieved.

Fig. 1. Illustration of the Q-Learning process

B. Achievement Motivation Model

The motivation model is a model that can be applied to

agent intelligence to help identify, prioritize, choose, and

adapt to targeted goals. The application of a motivation model

in path planning algorithms can help mobile robots move

according to the given motivation, resulting in different path

variations in the same area and goal. One of the motivation

models proposed by Merrick and Shafi is achievement

motivation [77]. This motivation can be defined as the need

for success or achievement of excellence. According to [77],

achievement motivation is based on the estimation of the

probability of success and the difficulty of the task, which is

modeled by equation (2).

𝑇𝑎𝑐ℎ(𝐺) =
𝑆𝑎𝑐ℎ

1 + 𝑒
𝜌𝑎𝑐ℎ
+ (𝑀𝑎𝑐ℎ

+ −𝑃𝑠(𝐺))
−

𝑆𝑎𝑐ℎ

1 + 𝑒𝜌𝑎𝑐ℎ
− (𝑀𝑎𝑐ℎ

− −𝑃𝑠(𝐺))
 (2)

This model has six parameters 𝑃𝑠(𝐺), 𝑀𝑎𝑐ℎ
+ , 𝑀𝑎𝑐ℎ

− , 𝜌𝑎𝑐ℎ
+ ,

𝜌𝑎𝑐ℎ
− , and 𝑆𝑎𝑐ℎ. 𝑃𝑠(𝐺) is the subjective probability of

successfully achieving the goal 𝐺. 𝑀𝑎𝑐ℎ
+ is the sigmoid

turning point for approach motivation, and 𝑀𝑎𝑐ℎ
− is the

sigmoid turning point for avoidance motivation. 𝜌𝑎𝑐ℎ
+ is

gradient for approach and 𝜌𝑎𝑐ℎ
− is gradient for avoidance.

Finally, 𝑆𝑎𝑐ℎ is a measure of the relative strength of

achievement motivation.

When the approach turning point is to the left of the

avoidance turning point (i.e., 𝑀𝑎𝑐ℎ
+ < 𝑀𝑎𝑐ℎ

−), the resulting

tendency represents individuals who are motivated to

succeed. 𝑀𝑎𝑐ℎ
+ > 𝑀𝑎𝑐ℎ

− represents individuals motivated by

failure. 𝜌+ > 0 represents the gradient of approach to

success, while 𝜌− > 0 represents the gradient of avoiding

failure. The 𝑇𝑎𝑐ℎ value can be used in the development or

modification of artificial intelligence algorithms to influence

decision-making processes. Determining the value of the

Journal of Robotics and Control (JRC) ISSN: 2715-5072 698

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

variables can determine the value of the expected

motivational tendency. In this case, is the tendency of

achievement to avoid collision.

C. The Proposed Method

The proposed modified algorithm is presented in Fig. 2.

The reward achievement (𝑟𝑎𝑐ℎ) is used to affect the update of

the Q-value. 𝑅𝑛𝑒𝑤 is the new reward value from the initial

reward (𝑅𝑜𝑙𝑑) added to the reward achievement (𝑟𝑎𝑐ℎ). The

𝑟𝑎𝑐ℎ value is influenced by the probability value (P), 𝛼𝑎𝑐ℎ

value, and the K value, and also the 𝑇𝑎𝑐ℎ value. Based on

equation (3), P is proportional to 𝑟𝑎𝑐ℎ. This means that the

greater the value of P, the greater the value of 𝑟𝑎𝑐ℎ . However,

because 𝑇𝑎𝑐ℎ is negative (to model obstacles), the larger P,

the more negative 𝑟𝑎𝑐ℎ . The greater the K value, the more

negative 𝑟𝑎𝑐ℎ . K value and 𝛼𝑎𝑐ℎ value are used to affect the

size of the 𝑟𝑎𝑐ℎ value. In practice, 𝑟𝑎𝑐ℎ is used to update 𝑅𝑛𝑒𝑤

on the state used in the previous path. The more negative 𝑟𝑎𝑐ℎ ,

the stronger the state condition which is considered as an

obstacle or a state that cannot be passed, so that the next agent

is expected to find a new path as a path variation. Therefore,

equation (4) shows how the update in Q-value in the marked

state and the update in Q-value in the normal state

(unmarked) are calculated.

Fig. 2. The development of the Q-Learning algorithm that utilizes a

motivation model in the reward value

𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 + 𝑟𝑎𝑐ℎ = 𝑅𝑜𝑙𝑑 +
𝐾 ∙ 𝑃𝒂𝒄𝒉

𝑇𝑎𝑐ℎ
 (3)

𝑄(𝑆𝑡, 𝐴𝑡) =

{

 𝑠𝑖𝑔𝑛𝑒𝑑, 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[(𝑅𝑡+1 +

𝐾 ∙ 𝑃𝒂𝒄𝒉

𝑇𝑎𝑐ℎ
) +

 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 +

 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]

 (4)

Fig. 3 shows the flowchart of the MQL algorithm for

finding path variations based on the utilization of the

motivation model. In the first route search, the initial reward

value (step a) is used to update the Q value. After the process

of updating the value (step b) in the Q table is completed, the

agent will search for a route from the starting point to the

target point (step c) based on the value in the Q table. In step

d, if the first path (route 0) is found by the agent then the agent

will save the path as route 0 (step e) and continue searching

for the second path (route 1) by considering route 0, but if the

route 0 is not found then the algorithm will inform that the

route was not found (step f). In searching for the second path,

the reward value in the state in route 0 will be updated (step

g) using equation (4). Each reward on the state (route 0) will

be added with the 𝑟𝑎𝑐ℎvalue. Then the algorithm will execute

steps h, i, j, and k as well as steps b, c, d and e for route 1. If

route 1 is not found then the algorithm will go to step f to

inform that route was not found.

Fig. 3. MQL flowchart with reward value update

Likewise for the search for the next route variation, the

reward value in the state (for example, route 1) will be

updated by adding the 𝑟𝑎𝑐ℎ value to the old reward (step l).

Then the algorithm will execute steps m, n, o, and p as well

as steps b, c, d and e for route 2. If the path search does not

find the target point, then the search will be terminated with

a path not found notification. The pseudo code of MQL is

shown as in Algorithm 2.

Algorithm 2 MQL Algorithm
1: Initial 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠)

2: Initial 𝑀𝑎𝑐ℎ
+ , 𝑀𝑎𝑐ℎ

− , 𝜌𝑎𝑐ℎ
+ , 𝜌𝑎𝑐ℎ

− , and 𝑆𝑎𝑐ℎ for 𝑇𝑎𝑐ℎ
3: Initial 𝐾, and 𝛼𝑎𝑐ℎ for 𝑟𝑎𝑐ℎ

4: Initial 𝑃 for 𝑇𝑎𝑐ℎ and 𝑟𝑎𝑐ℎ

5: Calculate 𝑇𝑎𝑐ℎ and 𝑟𝑎𝑐ℎ

6: Initial 𝑆

6: Initial 𝑅

7: Initial 𝑅𝑜𝑢𝑡𝑒
8: Looping for each route:

9: Loop for each step in the episode:

10: Select 𝐴 from 𝑆 by using policy from 𝑄

11: Take action 𝐴, observe 𝑅, 𝑆′

12: 𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎 𝑄(𝑆
′, 𝑎) – 𝑄(𝑆, 𝐴)]

13: 𝑆  𝑆′

14: Until 𝑆 is target

15: Save 𝑅𝑜𝑢𝑡𝑒

16: Update 𝑅 by adding 𝑟𝑎𝑐ℎ to 𝑅
17: Until the route is not found

The MQL procedure is developed from the Q-Learning

procedure. In the MQL procedure, we add variables 𝑀𝑎𝑐ℎ
+ ,

𝑀𝑎𝑐ℎ
− , 𝜌𝑎𝑐ℎ

+ , 𝜌𝑎𝑐ℎ
− , and 𝑆𝑎𝑐ℎ, 𝑃, 𝐾, 𝛼𝑎𝑐ℎ to produce the 𝑇𝑎𝑐ℎ

and the 𝑟𝑎𝑐ℎ . The 𝑟𝑎𝑐ℎ will be added to reward 𝑅 in the state

used as the previous path.

Simulations were conducted in three areas with different

obstacle conditions to determine the performance of the

proposed method. Measurements in this research are the

number of path variations, computation time, and the number

of rewards for each path as well as the value of similarity

between paths. In addition, a comparison was made on the Q-

Learning algorithm.

III. RESULTS AND DISCUSSION

A. The Change in the Value of 𝑟𝑎𝑐ℎ Based on 𝑃, 𝐾, and

𝛼𝑎𝑐ℎ

The change in the value of 𝑃, 𝐾, 𝛼𝑎𝑐ℎ and 𝑇𝑎𝑐ℎ have a

significant impact on the value of 𝑟𝑎𝑐ℎ . The given values for

variable 𝑃 range from 0.1 to 1 with a step of 0.1, the value of

Journal of Robotics and Control (JRC) ISSN: 2715-5072 699

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

𝐾 ranges from 5 to 50 with a step of 5, and the value of 𝛼𝑎𝑐ℎ

ranges from 1 to 3. Meanwhile, the value of 𝑇𝑎𝑐ℎ is obtained

based on the variables of the motivation model and the value

of 𝑃. Change 𝑟𝑎𝑐ℎvalue based on 𝑃, 𝐾, 𝛼𝑎𝑐ℎ are shown in

Table I, Table II, and Table III respectively. The lowest 𝑟𝑎𝑐ℎ

is -319.43, while the largest value is -2.94 (at 𝛼𝑎𝑐ℎ= 1), -0.29

(at 𝛼𝑎𝑐ℎ= 2) and -0.03 (at 𝛼𝑎𝑐ℎ= 3).

In addition, the graph showing the changes in the value of

𝑟𝑎𝑐ℎ , which is influenced by changes in the values of 𝑃, 𝐾,

𝛼𝑎𝑐ℎ and 𝑇𝑎𝑐ℎ, is displayed in Fig. 4, Fig. 5 and Fig. 6,

respectively. The graph shows that as the values of 𝛼𝑎𝑐ℎ, 𝑃

and 𝐾 increase, the 𝑟𝑎𝑐ℎ value decreases. At 𝐾 value is 5, the

decrease in 𝑟𝑎𝑐ℎ with respect to 𝑃 is not significant. The

lowest value of 𝑟𝑎𝑐ℎ occurs when 𝐾 is increased up to K=15,

reaching -95.83. The changes in r_ach that are close to linear

occur at 𝛼𝑎𝑐ℎ values of 1 and 2. Meanwhile, when 𝛼𝑎𝑐ℎ values

are 3, significant changes in 𝑟𝑎𝑐ℎ occur starting from 𝑃 =0.5.

These results showed that, in accordance to equation (3),

the larger the value of 𝐾, the greater the influence of the

constant on the probability of obtaining a larger reward.

However, if the 𝑇𝑎𝑐ℎ value is negative, increasing the 𝑃 value

of will weaken the 𝑟𝑎𝑐ℎ value. The greater the 𝛼𝑎𝑐ℎ value, the

greater the influence of the probability on the 𝑟𝑎𝑐ℎ value. If

the 𝑇𝑎𝑐ℎ value is negative, increasing the 𝛼𝑎𝑐ℎ value will also

weaken the 𝑟𝑎𝑐ℎ value. If the value of 𝑇𝑎𝑐ℎ is negative, the

greater the divisor in the equation, the smaller the 𝑟𝑎𝑐ℎ

obtained. In its application, the value of 𝑟𝑎𝑐ℎ is utilized to

update the reward value of the state that has been used in the

previous path. The more negative the 𝑟𝑎𝑐ℎ value, the stronger

the state condition which is considered as an obstacle, so that

the possibility of a collision is avoided.

Fig. 4. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 1

B. The MQL Simulation

The MQL algorithm was simulated on a computer device

with an Intel Core i5-3570 processor, clock speed of 3.4 GHz,

and 4GB of RAM. The software used was Jupyter Notebook

with Python 3.9 programming language. The simulation was

conducted in an 11x11 area (121 states) with several

scenarios, i.e. an obstacle-free area (scenario 1) and an area

with obstacles i.e. scenario 2, and scenario 3. The values of

learning rate (𝛼) and discount factor (𝛾) that used were 0.9.

The iteration used was 5000. The values of achievement

motivation model variables that used were 𝑀𝑎𝑐ℎ
+ = 0.7, 𝑀𝑎𝑐ℎ

− =

0.3, 𝜌𝑎𝑐ℎ
+ =𝜌𝑎𝑐ℎ

− = 2, and 𝑆𝑎𝑐ℎ= 1. These values will give a

tendency to avoid the failed. That means agent or robot will

avoid obstacles or states that have been used by another

agent. The value of P was alternated from 0.1 to 1. The testing

was conducted by providing the values of 𝑃, 𝐾, and 𝛼𝑎𝑐ℎ to

produce the values of 𝑇𝑎𝑐ℎ and 𝑟𝑎𝑐ℎ .

Fig. 5. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 2

Fig. 6. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 3

The initial reward value for each passable state was -1,

and the reward value for the target state was 999. Meanwhile,

the reward value for the obstacle state was -100. The rewards

used is defined as (5). Meanwhile, the reward value for the

obstacle state was -100. In the simulation, the initial state was

marked with green color, the target state was marked with

orange color, and the obstacle state was marked with black

color. Four paths are searched according to the four directions

of agent movement i.e. forward, backward, left and right. In

addition, four routes (simulation results) would be shown in

different colors (black = route 0, blue = route 1, brown = route

2, and red = route 3).

𝑟𝑒𝑤𝑎𝑟𝑑 = {

 999, 𝑡𝑎𝑟𝑔𝑒𝑡
 −1, 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒
−100, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 (5)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 700

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

TABLE I. THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 1

P
𝒓𝒂𝒄𝒉

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50

0.1 -2.94 -5.89 -8.83 -11.78 -14.72 -17.66 -20.61 -23.55 -26.50 -29.44

0.2 -5.52 -11.04 -16.55 -22.07 -27.59 -33.11 -38.63 -44.14 -49.66 -55.18

0.3 -7.90 -15.79 -23.69 -31.58 -39.48 -47.37 -55.27 -63.17 -71.06 -78.96

0.4 -10.23 -20.46 -30.69 -40.92 -51.15 -61.38 -71.61 -81.85 -92.08 -102.31

0.5 -12.67 -25.33 -38.00 -50.66 -63.33 -76.00 -88.66 -101.33 -114.00 -126.66

0.6 -15.35 -30.69 -46.04 -61.38 -76.73 -92.08 -107.42 -122.77 -138.11 -153.46

0.7 -18.42 -36.85 -55.27 -73.69 -92.12 -110.54 -128.96 -147.39 -165.81 -184.24

0.8 -22.07 -44.14 -66.22 -88.29 -110.36 -132.43 -154.50 -176.58 -198.65 -220.72

0.9 -26.50 -52.99 -79.49 -105.98 -132.48 -158.98 -185.47 -211.97 -238.46 -264.96

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43

TABLE II. THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 2

P
𝒓𝒂𝒄𝒉

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50

0.1 -0.29 -0.59 -0.88 -1.18 -1.47 -1.77 -2.06 -2.36 -2.65 -2.94

0.2 -1.10 -2.21 -3.31 -4.41 -5.52 -6.62 -7.73 -8.83 -9.93 -11.04

0.3 -2.37 -4.74 -7.11 -9.47 -11.84 -14.21 -16.58 -18.95 -21.32 -23.69

0.4 -4.09 -8.18 -12.28 -16.37 -20.46 -24.55 -28.65 -32.74 -36.83 -40.92

0.5 -6.33 -12.67 -19.00 -25.33 -31.67 -38.00 -44.33 -50.66 -57.00 -63.33

0.6 -9.21 -18.42 -27.62 -36.83 -46.04 -55.25 -64.45 -73.66 -82.87 -92.08

0.7 -12.90 -25.79 -38.69 -51.59 -64.48 -77.38 -90.28 -103.17 -116.07 -128.96

0.8 -17.66 -35.32 -52.97 -70.63 -88.29 -105.95 -123.60 -141.26 -158.92 -176.58

0.9 -23.85 -47.69 -71.54 -95.39 -119.23 -143.08 -166.92 -190.77 -214.62 -238.46

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43

TABLE III. THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 3

P
𝒓𝒂𝒄𝒉

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50

0.1 -0.03 -0.06 -0.09 -0.12 -0.15 -0.18 -0.21 -0.24 -0.26 -0.29

0.2 -0.22 -0.44 -0.66 -0.88 -1.10 -1.32 -1.55 -1.77 -1.99 -2.21

0.3 -0.71 -1.42 -2.13 -2.84 -3.55 -4.26 -4.97 -5.68 -6.40 -7.11

0.4 -1.64 -3.27 -4.91 -6.55 -8.18 -9.82 -11.46 -13.10 -14.73 -16.37

0.5 -3.17 -6.33 -9.50 -12.67 -15.83 -19.00 -22.17 -25.33 -28.50 -31.67

0.6 -5.52 -11.05 -16.57 -22.10 -27.62 -33.15 -38.67 -44.20 -49.72 -55.25

0.7 -9.03 -18.06 -27.08 -36.11 -45.14 -54.17 -63.19 -72.22 -81.25 -90.28

0.8 -14.13 -28.25 -42.38 -56.50 -70.63 -84.76 -98.88 -113.01 -127.14 -141.26

0.9 -21.46 -42.92 -64.39 -85.85 -107.31 -128.77 -150.23 -171.69 -193.16 -214.62

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43

Furthermore, the similarity of the states on path variations

was measured by the Jaccard similarity [82], [83] using

equation (6). The A and B variables represent the sequence of

states on route A and route B. The total states that are similar

between A and B divided by the number of states in A and B.

𝑠𝑖𝑚(𝐴, 𝐵) =
𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑜𝑛 𝐴 𝑎𝑛𝑑 𝐵

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵
× 100%

 (6)

1. Scenario 1

Scenario 1 simulates path planning a single agent and

single target in an obstacle-free 11×11 area. Q-Learning

algorithm simulation result produced four paths (each 17

states). However, all paths tend to be similar. In contrast,

MQL simulation can produce several path variations. Table

IV shows the detailed results of MQL simulation, which was

run with different variations of 𝛼𝑎𝑐ℎ, P and K. Here, we

calculate the maximum number of paths with Jaccard

similarity = 0%, which we call “safe” path variations. At 𝛼𝑎𝑐ℎ

= 1, two safe path variations were produced in 1 simulations,

three safe path variations were produced in 44 simulations,

and four path variations were produced in 55 simulations. At

𝛼𝑎𝑐ℎ = 2, two safe path variations were produced in 1

simulations, three safe path variations were produced in 61

simulations, and four path variations were produced in 38

simulations. At 𝛼𝑎𝑐ℎ = 3, two safe path variations were

produced in 8 simulations, three safe path variations were

produced in 56 simulations, and four path variations were

produced in 36 simulations. Fig. 7 shows the recapitulation

graph of the number of safe path variation.

Fig. 7. The number of safe path variation in scenario 1

Journal of Robotics and Control (JRC) ISSN: 2715-5072 701

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

TABLE IV. THE NUMBER OF SAFE PATH VARIATIONS IN THE MOTIVATED

Q-LEARNING ALGORITHM SIMULATION IN SCENARIO 1

𝜶𝒂𝒄𝒉 P
K

5 10 15 20 25 30 35 40 45 50

1

0.1 4 3 4 3 4 3 4 3 4 4

0.2 3 4 3 4 4 4 3 3 3 4

0.3 4 3 4 3 3 4 3 4 4 4

0.4 4 4 3 3 3 4 3 4 4 4

0.5 3 4 4 4 4 3 4 4 4 4

0.6 3 3 4 3 3 4 3 4 4 3

0.7 4 3 4 4 4 4 4 4 4 3

0.8 3 3 4 4 3 3 3 3 4 3

0.9 3 4 2 4 4 4 3 3 4 3

1 4 4 3 4 3 3 3 4 3 3

2

0.1 2 3 4 4 4 3 3 4 3 4

0.2 3 4 4 4 3 3 3 3 3 3

0.3 3 3 3 4 3 3 4 3 4 4

0.4 4 3 3 3 4 3 3 3 4 4

0.5 4 3 3 3 3 3 3 4 4 4

0.6 3 3 4 3 3 3 3 3 4 3

0.7 3 3 3 4 4 3 4 4 3 4

0.8 3 4 3 3 3 3 3 4 3 3

0.9 4 4 3 3 4 4 4 3 3 4

1 3 4 3 3 4 3 3 4 3 3

3

0.1 2 3 2 2 2 2 2 3 2 2

0.2 3 4 3 4 3 3 3 3 3 3

0.3 3 3 4 4 4 4 3 3 3 3

0.4 4 3 3 3 3 3 4 4 4 4

0.5 4 4 3 3 3 3 3 3 3 3

0.6 3 4 3 3 3 4 3 4 3 3

0.7 4 4 4 3 3 3 3 4 3 3

0.8 3 4 3 3 4 3 3 3 3 3

0.9 3 4 4 4 4 4 4 3 4 3

1 4 3 4 3 4 4 3 4 4 4

Examples of paths produced by Q-Learning simulation

and safe path variations generated in the simulation (with 𝑃

= 0.7, 𝐾 = 25, and 𝛼𝑎𝑐ℎ = 2) are shown in Fig. 8(a) and Fig.

8(b), respectively. Even though the four paths MQL

simulation have different lengths, all of them do not have a

potential collision. Meanwhile, the average path-finding

computation time on the Q-Learning algorithm is 1.170 

0.04 seconds (95% confidence level), while the average path-

finding computation time on the MQL algorithm is 1.356 

0.21 seconds (95% confidence level). The computing time on

MQL is slightly longer than Q-Learning algorithm. The

average reward of Q-Learning simulation results is 983 while

in MQL is 981. The difference in the average reward is only

2 points. Table V shows the simulation results data in

scenario 1.

The similarity values for the states traversed by the routes

were calculated using Jaccard similarity. The similar states

between routes were counted and divided by the total number

of states between states (excluding the starting and target

states). The similarity value indicates the existence of similar

states and the potential for collision between routes. Table VI

shows the detailed similarity index values. The average

similarity value of the Q-Learning simulation results is

61.17%. It shows potential collision between routes. The

highest similarity occurs between routes 2 and 3 i.e. 100%. In

contrast, the average similarity value of MQL simulations is

0%. It indicates no potential collision between routes.

2. Scenario 2

In scenario 2, a simulation is conducted using an area with

seven rectangular obstacles. The Q-Learning algorithm

simulation resulted four routes and each path consists of 17

states. However, all paths are highly potential colliding. In

contrast, the MQL algorithm simulation can produce several

safe path variations without potential collisions (see Table

VII). The recapitulation graph of the number of the safe path

variations is shown in Fig. 9.

(a)

(b)

Fig. 8. An example of the route simulation results in scenario 1

Fig. 9. The number of safe variation path on an 11x11 area with obstacles

Journal of Robotics and Control (JRC) ISSN: 2715-5072 702

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

TABLE V. DATA FROM THE SIMULATION RESULTS IN SCENARIO 1

Algorithm Route State Sequence
State

Length

Total

Reward

Computation

Time (s)

QL

0
(1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (7, 8), (7, 7), (7, 6),

(7, 5), (7, 4), (7, 3), (7, 2), (7, 1), (8, 1), (9, 1)
17 983 1.188

1
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (4, 7), (4, 6), (4, 5), (4, 4), (4, 3),

(4, 2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.210

2
(1, 9), (2, 9), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (4, 5), (4, 4), (4, 3),

(4, 2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.130

3
(1, 9), (2, 9), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2),

(3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.152

MQL

0
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (4, 7), (5, 7), (5, 6), (6, 6), (6, 5),

(6, 4), (6, 3), (6, 2), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.192

1
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (6, 8), (6, 7), (7, 7), (7, 6),

(7, 5), (7, 4), (7, 3), (7, 2), (8, 2), (9, 2), (9, 1)
17 983 1.241

2
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (5, 9), (6, 9), (7, 9), (7,

8), (8, 8), (8, 7), (8, 6), (8, 5), (8, 4), (8, 3), (9, 3), (10, 3), (10, 2),

(10, 1), (9, 1)

21 979 1.323

3

(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (0, 3), (0, 2), (0, 1),

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0),
(9, 1)

21 979 1.666

TABLE VI. SIMILARITY STATE OF SCENARIO 1

Algo-

rithm

Jaccard similarity ➔ sim (route A, route B) in

%
𝒙̅

Sim

(0,1)

Sim

(0,2)

Sim

(0,3)

Sim

(1,2)

Sim

(1,3)

Sim

(2,3)
%

QL 43 36 36 76 76 100 61.17

MQL 0 0 0 0 0 0 0

TABLE VII. THE NUMBER OF SAFE PATH IN THE MOTIVATED Q-

LEARNING ALGORITHM SIMULATION IN SCENARIO 2

𝜶𝒂𝒄𝒉 P
K

5 10 15 20 25 30 35 40 45 50

1

0.1 3 3 3 3 4 2 2 2 3 2

0.2 4 3 4 3 4 3 2 3 4 3

0.3 3 3 3 2 3 3 3 3 3 2

0.4 3 3 4 4 2 3 3 3 3 4

0.5 3 3 4 2 3 3 3 4 4 3

0.6 3 3 2 3 3 3 3 4 3 3

0.7 3 4 2 2 3 3 4 3 3 3

0.8 3 4 4 3 3 3 4 4 3 3

0.9 3 3 3 4 4 3 3 3 3 3

1 3 3 3 4 3 4 3 3 3 3

2

0.1 4 4 2 2 2 3 3 3 4 3

0.2 3 4 3 3 3 4 3 3 4 3

0.3 4 2 3 3 3 2 2 3 3 3

0.4 4 3 3 4 3 4 3 4 3 3

0.5 3 4 3 4 3 3 3 3 3 2

0.6 3 2 3 4 3 3 2 3 2 3

0.7 4 3 3 3 3 3 3 3 2 3

0.8 3 4 3 4 3 3 3 3 2 2

0.9 4 3 4 2 2 3 3 3 4 3

1 3 3 3 2 2 4 3 4 3 2

3

0.1 1 2 2 1 2 2 2 3 3 4

0.2 4 3 4 3 4 2 4 3 2 3

0.3 4 3 3 4 4 3 4 3 3 3

0.4 2 3 3 3 2 3 2 4 3 4

0.5 3 3 3 3 3 4 2 2 3 2

0.6 3 3 4 4 4 4 3 2 3 2

0.7 2 2 4 2 3 2 4 3 4 3

0.8 3 3 3 3 2 4 3 3 3 3

0.9 2 2 4 2 3 2 4 4 3 3

1 4 2 3 3 3 4 3 3 3 2

Examples of paths produced by Q-Learning simulation

and safe path variations generated in the simulation (with P =

0.7, K = 25, and 𝛼𝑎𝑐ℎ = 2) are shown in Fig. 10(a) and Fig.

10(b), respectively. Even though the four paths have different

lengths, all of them do not have a potential collision.

Meanwhile, the average path-finding computation time on

the Q-Learning algorithm is 1.117  0.04 seconds (95%

confidence level), while the average path-finding

computation time on the MQL algorithm is 1.435  0.26

seconds (95% confidence level). The computing time on

MQL is slightly longer than Q-Learning. The average reward

for each path in the Q-Learning simulation results is 983

while in the MQL is 981. The difference in the average

reward is only 2 points. Table VIII shows the scenario 2

simulation results.

(a)

(b)

Fig. 10. An example of the scenario 2 simulation route with seven

rectangular obstacles

Journal of Robotics and Control (JRC) ISSN: 2715-5072 703

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

TABLE VIII. DATA FROM THE SIMULATION RESULTS IN SCENARIO 2

Algorithm Route State Sequence
State

Length

Total

Reward

Computation

Time (s)

QL

0
(1, 9), (2, 9), (2, 8), (3, 8), (4, 8), (5, 8), (5, 7), (5, 6), (5, 5), (5, 4), (5, 3), (6, 3), (6, 2),

(6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.173

1
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1),

(6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.094

2
(1, 9), (1, 8), (2, 8), (2, 7), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1),

(6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.092

3
(1, 9), (1, 8), (2, 8), (2, 7), (2, 6), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1),

(6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.108

MQL

0
(1, 9), (1, 8), (2, 8), (2, 7), (2, 6), (3, 6), (3, 5), (3, 4), (4, 4), (5, 4), (5, 3), (5, 2), (5, 1),

(6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.216

1
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (5, 7), (6, 7), (6, 6), (6, 5), (6, 4), (7, 4), (8, 4),

(8, 3), (8, 2), (9, 2), (9, 1)
17 983 1.253

2
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (5, 9), (6, 9), (6, 8), (7, 8), (8, 8), (8, 7),

(8, 6), (8, 5), (9, 5), (9, 4), (9, 3), (10, 3), (10, 2), (10, 1), (9, 1)
21 979 1.476

3
(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (1, 4), (2, 4), (2, 3), (2, 2), (2, 1), (2, 0),

(3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (9, 1)
21 979 1.794

The similarity value indicates the existence of similar

states and the potential for collision between routes. Table IX

shows the detail similarity index values. The average

similarity value for the Q-Learning simulation result is 50%.

It shows potential for collision between routes. In contrast,

the average similarity value for MQL simulations is 0%. It

indicates no potential collision among paths.

TABLE IX. SIMILARITY STATE OF SCENARIO 2

Algo-

rithm

Jaccard similarity ➔ sim(route A, route B) in % 𝒙̅

Sim

(0,1)

Sim

(0,2)

Sim

(0,3)

Sim

(1,2)

Sim

(1,3)

Sim

(2,3)
%

QL 20 15 15 87 76 87 50

MQL 0 0 0 0 0 0 0

3. Scenario 3

Scenario 3 is conducted in an area with randomize

obstacles. Q-Learning simulation is shown in Fig. 12a. The

MQL results show in Table X. The recapitulation graph of

the number of the safe path variations is shown in Fig. 11.

Fig. 12 shows the example routes from QL simulation

(Fig. 12(a)) and MQL simulation (Fig. 12a). Example path

safe variations in MQL created in the simulation with P = 0.7,

K = 30, and 𝛼𝑎𝑐ℎ = 2). Meanwhile, the average path-finding

computation time on the Q-Learning algorithm is 1.472 

0.14 seconds (95% confidence level), while the average path-

finding computation time on the MQL algorithm is 1.919 

0.71 seconds (95% confidence level). Thus, the computing

time of MQL algorithm is slightly longer than Q-Learning

algorithm. The average reward for each path in the Q-

Learning simulation results is 983 while in the MQL is 981.

The difference in the average reward is only 2 points.

Simulation results (scenario 3) is shown in Table X and Table

XI.

Table XII displays the level of similarity between paths in

the scenario-3 simulation. The Q-Learning simulation has an

average similarity of 68.33%. It suggests a risk of collision

between paths. In contrast, the similarity of the MQL is 0%.

It indicates that included the motivation model can produce

routes without the potential collision.

TABLE X. THE NUMBER OF SAFE PATH IN THE MOTIVATED Q-LEARNING

ALGORITHM SIMULATION IN SCENARIO 3

𝜶𝒂𝒄𝒉 P
K

5 10 15 20 25 30 35 40 45 50

1

0.1 4 3 4 3 3 3 3 3 3 4

0.2 3 3 3 4 3 3 3 3 3 2

0.3 3 4 3 4 4 4 3 4 3 2

0.4 4 3 4 4 4 3 2 3 3 3

0.5 4 3 4 3 3 3 4 3 2 3

0.6 4 3 4 4 3 4 3 3 3 3

0.7 3 4 3 3 3 3 3 3 2 2

0.8 4 3 2 4 3 2 3 3 3 2

0.9 3 4 3 3 3 2 3 3 3 2

1 3 3 2 3 2 3 3 3 2 3

2

0.1 2 3 4 3 3 4 3 4 3 3

0.2 3 3 4 4 3 3 3 3 3 4

0.3 3 4 3 4 3 3 2 3 4 3

0.4 3 4 4 3 3 4 3 4 3 3

0.5 3 4 4 4 3 4 4 3 3 3

0.6 4 4 3 3 3 4 3 3 3 4

0.7 4 3 3 3 3 4 3 3 2 2

0.8 3 3 3 3 3 3 3 3 2 3

0.9 3 3 3 3 3 3 3 3 2 3

1 3 4 3 3 3 2 2 3 3 2

3

0.1 2 2 2 1 1 2 2 3 3 2

0.2 2 2 4 3 3 3 3 3 3 3

0.3 3 4 3 3 3 3 4 3 4 4

0.4 3 3 3 4 4 3 4 3 3 3

0.5 3 4 3 3 3 3 4 3 4 4

0.6 3 3 3 4 4 3 3 3 4 3

0.7 4 3 4 3 3 3 4 3 3 3

0.8 4 3 3 3 3 3 3 2 2 3

0.9 3 3 2 3 3 3 3 3 2 3

1 3 4 2 3 3 3 3 2 2 2

Fig. 11. The number of safe variation path on the area with randomize

obstacles

Journal of Robotics and Control (JRC) ISSN: 2715-5072 704

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

TABLE XI. DATA FROM THE SIMULATION RESULTS IN SCENARIO 3

Algorithm Route State Sequence
State

Length

Total

Reward

Computation

Time (s)

QL

0
(1, 9), (1, 8), (1, 7), (1, 6), (2, 6), (2, 5), (2, 4), (3, 4), (3, 3), (4, 3), (4,

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.435

1
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4,

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.366

2
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4,

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.408

3
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4,

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.679

MQL

0
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (4, 3), (4,

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1)
17 983 1.482

1
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (5, 7), (6, 7), (6, 6), (7, 6), (7,

5), (7, 4), (7, 3), (7, 2), (8, 2), (9, 2), (9, 1)
17 983 1.423

2
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10),
(9, 10), (9, 9), (10, 9), (10, 8), (10, 7), (10, 6), (10, 5), (10, 4), (10, 3),

(10, 2), (10, 1), (9, 1)

21 979 1.792

3
(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (0, 3), (0, 2), (0, 1), (0,

0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (9, 1)
21 979 2.980

TABLE XII. SIMILARITY STATE OF SCENARIO 3

Algo-

rithm

Jaccard similarity ➔ sim(route A, route B) in % 𝒙̅

Sim

(0,1)

Sim

(0,2)

Sim

(0,3)

Sim

(1,2)

Sim

(1,3)

Sim

(2,3)
%

QL 50 43 43 87 87 100 68.33

MQL 0 0 0 0 0 0 0

(a)

(b)

Fig. 12. An example of the scenario-3 simulation route with randomize

shaped obstacles

The simulation results show that the MQL algorithm has

succeeded in generating 2 to 4 safe path variations in the same

area and goal. The Jaccard similarity every between two safe

path variations is 0%. It indicates that these safe paths are not

potentially collision. However, the computational time of

MQL is significantly longer than Q-Learning both in areas

without obstacles and in areas with obstacles. The average

difference in the total rewards collected by each MQL path

(in this case) is two points smaller than the Q-Learning.

In principal, the simulation results show that MQL can be

applied to several robots with a same task, operating in the

same area. However, the algorithm can only provide a

maximum of four path variations, due to the assumption that

the robot can only move forward, backward, left and right. In

the real implementation, the robot may have more flexibility

to move to other directions. Further study is required to

analyze whether this additional flexibility will result in more

path variations. In addition, the parameters in achievement

motivation may need to be re-evaluated for this purpose.

IV. CONCLUSION

We have presented the MQL algorithm that utilizes a

motivation achievement to find safe path variations in an

unknown environment. The achievement motivation

succeeded in influencing the reward value in the state that is

used as a path before. This update reward makes the state as

an obstacle so that the MQL will avoid that state and find

other states for a new route and avoid collision with the last

paths. The simulation results show that the MQL algorithm

generated 2 to 4 safe path variations (Jaccard similarity =

0%). On the contrary, the Q-Learning algorithm tends to

produce the same path for each robot so that is potential

collisions. However, the computation time of MQL is slightly

longer than Q-Learning. In principal, the simulation results

show that MQL can be implemented to multi robots with a

same goal in the same area. We hope MQL can solve multi-

robot path planning problems by reducing the possibility of

collisions as well as decreasing the problem of queues. It can

only provide maximum 4 path safe variations because the

robot can only move in 4 directions i.e. forward, backward,

left and right. Further study is needed to add flexibility robot

movement to other directions (i.e. forward left, forward right,

backward left and backward right) and to analyze whether

this additional flexibility will result in more path variations.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 705

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

In addition, the achievement motivation parameters need to

be re-evaluated for this purpose and simulated in wide area.

ACKNOWLEDGEMENT

This work is partly supported by the Ministry of

Education, Culture, Research, and Technology of Indonesia

through the Directorate of Research and Innovation, IPB

University, research grant Penelitian Dasar Unggulan

Perguruan Tinggi (PDUPT) No. 001/E5/PG.02.00.PL/2023

jo 15853/IT3.D10/PT.01.02/P/T/2023.

REFERENCES

[1] S. S. Valle and J. Kienzle, “Agriculture 4.0 - Agricultural robotics and

automated equipment for sustainable crop production,” in Integrated
Crop Management, vol. 24, no. 24, p. 40, 2020.

[2] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing smart

farming through the applications of Agriculture 4.0 technologies,” Int.
J. Intell. Networks, vol. 3, pp. 150–164, 2022, doi:
10.1016/j.ijin.2022.09.004.

[3] M. B. Ahsan, G. Leifeng, F. Mohammad, S. Azam, B. Xu, and S. J.

Rayhan, “Barriers, Challenges, and Requirements for ICT Usage

among Sub-Assistant Agricultural Officers in Bangladesh : Toward
Sustainability in Agriculture,” Sustainability, vol. 15, no. 782, pp. 1–
29, 2023, doi: 10.3390/su15010782.

[4] S. Ruzzante, R. Labarta, and A. Bilton, “Adoption of agricultural

technology in the developing world: A meta-analysis of the empirical

literature,” World Development, vol. 146, p. 105599, 2021, doi:
10.1016/j.worlddev.2021.105599.

[5] L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in

agriculture robotics: A state-of-the-art review and challenges ahead,”
Robotics, vol. 10, no. 2, pp. 1–31, 2021, doi:

10.3390/robotics10020052.

[6] L. C. Santos, F. N. Santos, E. J. Solteiro Pires, A. Valente, P. Costa and

S. Magalhães, "Path Planning for ground robots in agriculture: a short

review," 2020 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pp. 61-66, 2020, doi:
10.1109/ICARSC49921.2020.9096177.

[7] S. Chakraborty, D. Elangovan, P. L. Govindarajan, M. F. ELnaggar,
M. M. Alrashed, and S. Kamel, “A Comprehensive Review of Path

Planning for Agricultural Ground Robots,” Sustain., vol. 14, no. 15, pp.
1–19, 2022, doi: 10.3390/su14159156.

[8] C. Cheng, J. Fu, H. Su, and L. Ren, “Recent Advancements in

Agriculture Robots: Benefits and Challenge,” Machines, vol. 11, no.
48, pp. 1–24, 2023, doi: https://doi.org/10.3390/machines11010048.

[9] Q. Yang, X. Du, Z. Wang, Z. Meng, Z. Ma, and Q. Zhang, “A review

of core agricultural robot technologies for crop productions,” Comput.
Electron. Agric., vol. 206, p. 107701, 2023, doi:

10.1016/j.compag.2023.107701.

[10] P. Gonzalez-de-Santos, R. Fernández, D. Sepúlveda, E. Navas, L.

Emmi, and M. Armada, “Field Robots for Intelligent Farms—Inhering

Features from Industry,” Agronomy, vol. 10, no. 11, p. 1638, 2020, doi:
10.3390/agronomy10111638.

[11] V. Marinoudi, C. G. Sørensen, S. Pearson, and D. Bochtis, “Robotics
and labour in agriculture. A context consideration,” Biosyst. Eng., vol.
184, pp. 111–121, 2019, doi: 10.1016/j.biosystemseng.2019.06.013.

[12] X. Gao et al., “Review of wheeled mobile robots’ navigation problems
and application prospects in agriculture,” IEEE Access, vol. 6, pp.
49248–49268, 2018, doi: 10.1109/ACCESS.2018.2868848.

[13] J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation path

extraction for greenhouse cucumber-picking robots using the

prediction-point Hough transform,” Comput. Electron. Agric., vol. 180,
p. 105911, 2021, doi: 10.1016/j.compag.2020.105911.

[14] A. Loganathan and N. S. Ahmad, “A systematic review on recent

advances in autonomous mobile robot navigation,” Eng. Sci. Technol.
an Int. J., vol. 40, p. 101343, 2023, doi: 10.1016/j.jestch.2023.101343.

[15] I. Nizar and M. Mestari, “Mobile Robot Autonomous Navigation: A
Path Planning Approach,” IFAC-PapersOnLine, vol. 55, no. 12, pp.
610–615, 2022, doi: 10.1016/j.ifacol.2022.07.379.

[16] Y. Bai, B. Zhang, N. Xu, J. Zhou, J. Shi, and Z. Diao, “Vision-based

navigation and guidance for agricultural autonomous vehicles and

robots: A review,” Comput. Electron. Agric., vol. 205, p. 107584, 2023,
doi: 10.1016/j.compag.2022.107584.

[17] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic
approaches in robot path planning: A survey,” Rob. Auton. Syst., vol.
86, pp. 13–28, 2016, doi: 10.1016/j.robot.2016.08.001.

[18] M. S. Abed, O. F. Lutfy, and Q. F. Al-Doori, “A Review on Path

Planning Algorithms for Mobile Robots,” Eng. Technol. J., vol. 39, no.
5, pp. 804–820, 2021, doi: 10.30684/etj.v39i5A.1941.

[19] H. Tian, “Research on Robot Path Planning Based on Improved Ant

Colony Algorithm,” Int. J. Comput. Sci. Math., vol. 13, no. 1, pp. 80–
92, 2021, doi: 10.1088/1742-6596/1992/3/032050.

[20] L. Wu, X. Huang, J. Cui, C. Liu, and W. Xiao, “Modified adaptive ant

colony optimization algorithm and its application for solving path
planning of mobile robot,” Expert Syst. Appl., vol. 215, p. 119410,
2023, doi: 10.1016/j.eswa.2022.119410.

[21] C. Liu et al., “An improved heuristic mechanism ant colony

optimization algorithm for solving path planning,” Knowledge-Based
Syst., vol. 271, p. 110540, 2023, doi: 10.1016/j.knosys.2023.110540.

[22] M. Morin, I. Abi-Zeid, and C.-G. Quimper, “Ant colony optimization

for path planning in search and rescue operations,” Eur. J. Oper. Res.,
vol. 305, no. 1, pp. 53–63, 2023, doi: 10.1016/j.ejor.2022.06.019.

[23] C. Miao, G. Chen, C. Yan, and Y. Wu, “Path planning optimization of

indoor mobile robot based on adaptive ant colony algorithm,” Comput.
Ind. Eng., vol. 156, p. 107230, 2021.

[24] D. Di Caprio, A. Ebrahimnejad, H. Alrezaamiri, and F. J. Santos-

Arteaga, “A novel ant colony algorithm for solving shortest path
problems with fuzzy arc weights,” Alexandria Eng. J., vol. 61, no. 5,
pp. 3403–3415, 2022, doi: 10.1016/j.aej.2021.08.058.

[25] H.-J. Wang, Y. Fu, Z.-Q. Zhao, and Y.-J. Yue, “An Improved Ant

Colony Algorithm of Robot Path Planning for Obstacle Avoidance,” J.
Robot., vol. 2019, pp. 1–8, 2019, doi: 10.1155/2019/6097591.

[26] X. Pu, C. Xiong, L. Ji, and L. Zhao, “3D path planning for a robot based

on improved ant colony algorithm,” Evol. Intell., pp. 1-11, 2020, doi:
10.1007/s12065-020-00397-6.

[27] Y. Xue, Y. Chen, Z. Ding, X. Huang, and D. Xi, "Robot path planning

based on improved ant colony algorithm," 2021 Power System and
Green Energy Conference (PSGEC), pp. 129-133, 2021, doi:
10.1109/PSGEC51302.2021.9541872.

[28] T. Wang, L. Zhao, Y. Jia, and J. Wang, “Robot Path Planning Based
on Improved Ant Colony Algorithm,” 2018 WRC Symposium on

Advanced Robotics and Automation (WRC SARA), pp. 70–76, 2018,
doi: 10.1109/WRC-SARA.2018.8584217.

[29] R. Sarkar, D. Barman, and N. Chowdhury, “Domain knowledge based

genetic algorithms for mobile robot path planning having single and
multiple targets,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 7,
pp. 4269–4283, 2022, doi: 10.1016/j.jksuci.2020.10.010.

[30] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm based

approach for autonomous mobile robot path planning,” Procedia

Comput. Sci., vol. 127, pp. 180–189, 2018, doi:
10.1016/j.procs.2018.01.113.

[31] K. Hao, J. Zhao, Z. Li, Y. Liu, and L. Zhao, “Dynamic path planning

of a three-dimensional underwater AUV based on an adaptive genetic
algorithm,” Ocean Eng., vol. 263, p. 112421, 2022, doi:
10.1016/j.oceaneng.2022.112421.

[32] W. Rahmaniar and A. E. Rakhmania, “Mobile Robot Path Planning in

a Trajectory with Multiple Obstacles Using Genetic Algorithms,” J.

Robot. Control, vol. 3, no. 1, pp. 1–7, 2022, doi:
10.18196/jrc.v3i1.11024.

[33] M. Fan, J. He, S. Ding, Y. Ding, M. Li, and L. Jiang, “Research and

implementation of multi-robot path planning based on genetic
algorithm,” 2021 5th International Conference on Automation, Control

and Robots (ICACR), pp. 140–144, 2021, doi:
10.1109/ICACR53472.2021.9605194.

[34] A. López-González, J. A. Meda Campaña, E. G. Hernández Martínez,

and P. P. Contro, “Multi robot distance based formation using Parallel
Genetic Algorithm,” Appl. Soft Comput., vol. 86, p. 105929, 2020, doi:
10.1016/j.asoc.2019.105929.

[35] A. Al Hilli, M. Al-Ibadi, A. M. Alfadhel, S. H. Abdulshaheed, and A.
H. Hadi, “Optimal path finding in stochastic quasi-dynamic

environments using particle swarm optimization,” Expert Syst. Appl.,

Journal of Robotics and Control (JRC) ISSN: 2715-5072 706

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

vol. 186, p. 115706, 2021, doi: 10.1016/j.eswa.2021.115706.

[36] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A Robust Path Planning

for Mobile Robot Using Smart Particle Swarm Optimization,”

Procedia Comput. Sci., vol. 133, pp. 290–297, 2018, doi:
10.1016/j.procs.2018.07.036.

[37] P. B. Fernandes, R. C. L. Oliveira, and J. V. Fonseca Neto, “Trajectory
planning of autonomous mobile robots applying a particle swarm

optimization algorithm with peaks of diversity,” Appl. Soft Comput.,
vol. 116, p. 108108, 2022, doi: 10.1016/j.asoc.2021.108108.

[38] S. Lin, A. Liu, J. Wang, and X. Kong, “An intelligence-based hybrid

PSO-SA for mobile robot path planning in warehouse,” J. Comput.
Sci., vol. 67, p. 101938, 2023, doi: 10.1016/j.jocs.2022.101938.

[39] B. Alkhlidi, A. T. Abdulsadda, and A. Al Bakri, “Optimal robotic path

planning using intelligent search algorithms,” J. Robot. Control, vol. 2,
no. 6, pp. 519–526, 2021, doi: 10.18196/jrc.26132.

[40] P. K. Das and P. K. Jena, “Multi-robot path planning using improved

particle swarm optimization algorithm through novel evolutionary

operators,” Appl. Soft Comput. J., vol. 92, p. 106312, 2020, doi:
10.1016/j.asoc.2020.106312.

[41] M. Samadi Gharajeh and H. B. Jond, “An intelligent approach for

autonomous mobile robots path planning based on adaptive neuro-

fuzzy inference system,” Ain Shams Eng. J., vol. 13, no. 1, p. 101491,
2022, doi: 10.1016/j.asej.2021.05.005.

[42] C. Ntakolia, S. Moustakidis, and A. Siouras, “Autonomous path
planning with obstacle avoidance for smart assistive systems,” Expert

Syst. Appl., vol. 213, p. 119049, 2023, doi:
10.1016/j.eswa.2022.119049.

[43] R. Zhen, P. Lv, Z. Shi, and G. Chen, “A novel fuzzy multi-factor

navigational risk assessment method for ship route optimization in

costal offshore wind farm waters,” Ocean Coast. Manag., vol. 232, p.
106428, 2023, doi: 10.1016/j.ocecoaman.2022.106428.

[44] T. Shen and J. Zhai, "Reactive Obstacle Avoidance Strategy Based on
Fuzzy Neural Network and Arc Trajectory," 2019 Chinese Automation

Congress (CAC), pp. 4792-4796, 2019, doi:
10.1109/CAC48633.2019.8996374.

[45] N. Awad, A. Lasheen, M. Elnaggar, and A. Kamel, “Model predictive

control with fuzzy logic switching for path tracking of autonomous

vehicles,” ISA Trans., vol. 129, pp. 193–205, 2022, doi:
10.1016/j.isatra.2021.12.022.

[46] N. Rinanto, I. Marzuqi, A. Khumaidi, and S. T. Sarena, “Obstacle
Avoidance using Fuzzy Logic Controller on Wheeled Soccer Robot,”

J. Ilm. Tek. Elektro Komput. dan Inform., vol. 5, no. 1, pp. 26–35, 2019,
doi: 10.26555/jiteki.v5i1.13298.

[47] O. O. Martins, A. A. Adekunle, O. M. Olaniyan, and B. O. Bolaji, “An

Improved multi-objective a-star algorithm for path planning in a large

workspace: Design, Implementation, and Evaluation,” Sci. African,
vol. 15, p. e01068, 2022, doi: 10.1016/j.sciaf.2021.e01068.

[48] L. Pasandi, M. Hooshmand, and M. Rahbar, “Modified A* Algorithm
integrated with ant colony optimization for multi-objective route-

finding; case study: Yazd,” Appl. Soft Comput., vol. 113, p. 107877,
2021, doi: 10.1016/j.asoc.2021.107877.

[49] J. P. Vasconez et al., “Comparison of path planning methods for robot

robot navigation in simulated agricultural environments,” The 1st
International Workshop on Human-Centric Innovation and

Computational Intelligence (IWHICI 2023), vol. 220, pp. 898–903,
2023, doi: 10.1016/j.procs.2023.03.122.

[50] X. Zhong, J. Tian, H. Hu, and X. Peng, “Hybrid path planning based

on safe A* algorithm and adaptive window approach for mobile robot

in large-scale dynamic environment,” J. Intell. Robot. Syst. Theory
Appl., vol. 99, no. 1, pp. 65–77, 2020, doi: 10.1007/s10846-019-01112-
z.

[51] S. Hosseininejad and C. Dadkhah, “Mobile robot path planning in

dynamic environment based on cuckoo optimization algorithm,” Int. J.

Adv. Robot. Syst., vol. 16, no. 2, pp. 1–13, 2019, doi:
10.1177/1729881419839575.

[52] J. Yu, Y. Wang, X. Ruan, G. Zuo, and C. Li, “AGV multi-objective

path planning method based on improved cuckoo algorithm,” 2019
IEEE 4th Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC), pp. 556–561, 2019, doi:
10.1109/IAEAC47372.2019.8997687.

[53] J. Wang, X. Shang, T. Guo, J. Zhou, S. Jia and C. Wang, "Optimal Path

Planning Based on Hybrid Genetic-Cuckoo Search Algorithm," 2019

6th International Conference on Systems and Informatics (ICSAI), pp.

165-169, 2019, doi: 10.1109/ICSAI48974.2019.9010519.

[54] L. Zhao, F. Wang, and Y. Bai, “Route planning for autonomous vessels

based on improved artificial fish swarm algorithm,” Ships Offshore
Struct., vol. 18, no. 6, pp. 897-906, 2022, doi:
10.1080/17445302.2022.2081423.

[55] S. Kumar and A. Sikander, “A modified probabilistic roadmap

algorithm for efficient mobile robot path planning,” Eng. Optim., vol.

55, no. 9, pp. 1616-1634, 2022, doi:
10.1080/0305215X.2022.2104840.

[56] J. C. Mohanta and A. Keshari, “A knowledge based fuzzy-probabilistic

roadmap method for mobile robot navigation,” Appl. Soft Comput., vol.
79, pp. 391–409, 2019, doi: 10.1016/j.asoc.2019.03.055.

[57] M. S. Das, S. Sanyal, and S. Mandal, “Navigation of Multiple Robots
in Formative Manner in an Unknown Environment using Artificial

Potential Field Based Path Planning Algorithm,” Ain Shams Eng. J.,
vol. 13, no. 5, p. 101675, 2022, doi: 10.1016/j.asej.2021.101675.

[58] Z. Wu, J. Dai, B. Jiang, and H. R. Karimi, “Robot path planning based

on artificial potential field with deterministic annealing,” ISA Trans.,
vol. 112, p. 106640, 2023, doi: 10.1016/j.ast.2021.106640.

[59] A. Lazarowska, “Discrete Artificial Potential Field Approach to

Mobile Robot Path Planning,” IFAC-PapersOnLine, vol. 52, no. 8, pp.
334–337, 2019, doi: 10.1016/j.ifacol.2019.08.083.

[60] F. Sui, X. Tang, Z. Dong, X. Gan, P. Luo, and J. Sun, “ACO+PSO+A*:
A bi-layer hybrid algorithm for multi-task path planning of an AUV,”

Comput. Ind. Eng., vol. 175, p. 108905, 2023, doi:
10.1016/j.cie.2022.108905.

[61] B. Sahu, P. Kumar Das, and R. Kumar, “A Modified Cuckoo Search

Algorithm implemented with SCA and PSO for Multi-robot

Cooperation and Path Planning,” Cogn. Syst. Res., vol. 79, pp. 24-42,
2023, doi: 10.1016/j.cogsys.2023.01.005.

[62] F. Gul, I. Mir, D. Alarabiat, H. M. Alabool, L. Abualigah, and S. Mir,
“Implementation of bio-inspired hybrid algorithm with mutation

operator for robotic path planning,” J. Parallel Distrib. Comput., vol.
169, pp. 171–184, 2022, doi: 10.1016/j.jpdc.2022.06.014.

[63] D. Zhang, Y. Yin, R. Luo, and S. Zou, “Hybrid IACO-A*-PSO

optimization algorithm for solving multiobjective path planning

problem of mobile robot in radioactive environment,” Prog. Nucl.
Energy, vol. 159, p. 104651, 2023, doi:
10.1016/j.pnucene.2023.104651.

[64] X. Pu, C. Xiong and L. Zhao, "Path Planning for Robot Based on

IACO-SFLA Hybrid Algorithm," 2020 Chinese Control And Decision

Conference (CCDC), pp. 4886-4893, 2020, doi:
10.1109/CCDC49329.2020.9164671.

[65] G. Kulathunga, “A Reinforcement Learning based Path Planning

Approach in 3D Environment,” Procedia Comput. Sci., vol. 212, pp.
152–160, 2021, doi: 10.1016/j.procs.2022.10.217.

[66] F. Gismondi, C. Possieri, and A. Tornambe, “A solution to the path
planning problem via algebraic geometry and reinforcement learning,”

J. Franklin Inst., vol. 359, no. 2, pp. 1732–1754, 2022, doi:
10.1016/j.jfranklin.2021.12.003.

[67] X. Zhang, S. Xia, X. Li, and T. Zhang, “Multi-objective particle swarm

optimization with multi-mode collaboration based on reinforcement
learning for path planning of unmanned air vehicles,” Knowledge-

Based Syst., vol. 250, p. 109075, 2022, doi:
10.1016/j.knosys.2022.109075.

[68] E. S. Low, P. Ong, C. Y. Low, and R. Omar, “Modified Q-learning

with distance metric and virtual target on path planning of mobile

robot,” Expert Syst. Appl., vol. 199, p. 117191, 2022, doi:
10.1016/j.eswa.2022.117191.

[69] L. D. Hanh and V. D. Cong, “Path following and avoiding obstacle for
mobile robot under dynamic environments using reinforcement

learning,” J. Robot. Control, vol. 4, no. 2, pp. 157–164, 2023, doi:
10.18196/jrc.v4i2.17368.

[70] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path planning

of a mobile robot using improved Q-Learning,” Rob. Auton. Syst., vol.
115, pp. 143–161, 2019, doi: 10.1016/j.robot.2019.02.013.

[71] S. Gu, “An algorithm for path planning based on improved Q-

Learning,” in The Genetic and Evolutionary Computing, pp. 20–29,
2019, doi: 10.1007/978-981-15-3308-2_3.

[72] S. Gu and G. Mao, “An improved Q-Learning algorithm for path

Journal of Robotics and Control (JRC) ISSN: 2715-5072 707

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model

planning in maze environments,” Intelligent Systems and Applications,

vol. 1251, no. 2, pp. 545–557, 2020, doi: 10.1007/978-3-030-55187-
2_40.

[73] M. Zhao, H. Lu, S. Yang, and F. Guo, “The experience-memory Q-
Learning algorithm for robot path planning in unknown environment,”

IEEE Access, vol. 8, pp. 47824–47844, 2020, doi:
10.1109/ACCESS.2020.2978077.

[74] C. Yan and X. Xiang, “A Path Planning Algorithm for UAV Based on

Improved Q-Learning,” in 2nd International Conference on Robotics
and Automation Sciences (ICRAS), pp. 46–50, 2018, doi:
10.1109/ICRAS.2018.8443226.

[75] T. Zhang, X. Huo, S. Chen, B. Yang and G. Zhang, "Hybrid Path
Planning of A Quadrotor UAV Based on Q-Learning Algorithm," 2018

37th Chinese Control Conference (CCC), pp. 5415-5419, 2018, doi:
10.23919/ChiCC.2018.8482604.

[76] H. Hidayat, A. Buono, K. Priandana, and S. Wahjuni, “Modified Q-

Learning algorithm for mobile robot real-time path planning using

reduced states,” RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7,
no. 3, pp. 628–636, 2023, doi: 10.29207/resti.v7i3.4949.

[77] K. E. Merrick and K. Shafi, “Achievement, affiliation, and power:
Motive profiles for artificial agents,” Adapt. Behav., vol. 19, no. 1, pp.

40–62, 2011, doi: 10.1177/1059712310395953.

[78] M. K. D. Hardhienata, V. Ugrinovskii, and K. E. Merrick, “Task

allocation under communication constraints using motivated Particle

Swarm Optimization,” in IEEE Congress on Evolutionary
Computation (CEC), pp. 3135–3142, 2014, doi:
10.1109/CEC.2014.6900560.

[79] M. K. D. Hardhienata, K. E. Merrick and V. Ugrinovskii, "Task

allocation in multi-agent systems using models of motivation and

leadership," 2012 IEEE Congress on Evolutionary Computation, pp. 1-
8, 2012, doi: 10.1109/CEC.2012.6256114.

[80] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
introduction. MIT Press, 2018.

[81] C. J. C. H. Watkins, “Technical Note Q-Learning,” Mach. Learn., vol.
8, pp. 279–292, 1992, doi: 10.1109/ICCC49849.2020.9238991.

[82] P. Jaccard, “The distribution of the flora in the Alpine Zone,” New

Phytol., vol. 11, no. 2, pp. 37–50, 1912, doi: 10.1111/j.1469-
8137.1912.tb05611.x.

[83] H. Seifoddini and M. Djassemi, “The production data-based similarity

coefficient versus Jaccard’s similarity coefficient,” Comput. Ind. Eng.,
vol. 21, no. 1–4, pp. 263–266, 1991, doi: 10.1016/0360-
8352(91)90099-R.

