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Abstract—Path planning is an essential algorithm in 

autonomous mobile robots, including agricultural robots, to 

find the shortest path and to avoid collisions with obstacles. Q-

Learning algorithm is one of the reinforcement learning 

methods used for path planning. However, for multi-robot 

system, this algorithm tends to produce the same path for each 

robot. This research modifies the Q-Learning algorithm in 

order to produce path variations by utilizing the motivation 

model, i.e. achievement motivation, in which different 

motivation parameters will result in different optimum paths. 

The Motivated Q-Learning (MQL) algorithm proposed in this 

study was simulated in an area with three scenarios, i.e. without 

obstacles, uniform obstacles, and random obstacles. The results 

showed that, in the determined scenario, the MQL can produce 

2 to 4 variations of optimum path without any potential of 

collisions (Jaccard similarity = 0%), in contrast to the Q-

Learning algorithm that can only produce one optimum path 

variation. This result indicates that MQL can solve multi-robots 

path planning problems, especially when the number of robots 

is large, by reducing the possibility of collisions as well as 

decreasing the problem of queues. However, the average 

computational time of the MQL is slightly longer than that of 

the Q-Learning. 

Keywords—Mobile Robot; Motivated Q-Learning; Motivation 

Model; Path Planning; Q-Learning Algorithm. 

I. INTRODUCTION 

Agricultural technology is rapidly advancing towards the 

Agriculture 4.0 paradigm. Agriculture 4.0, in [1] chapter 2, 

refers to the use of artificial intelligence, big data, Internet of 

Things (IoT), and robotics to increase the efficiency of 

activities in agricultural production activities. Javaid et al in 

[2] mentioned the importance of implementing robotics in 

smart farming. However, the change from traditional 

technology to automated devices provides opportunities and 

challenges [3], [4], including the use of agricultural robots 

[5]–[11]. Oliveira et al [5] showed the notable advances in 

mobile robotics and the advantages of investing in 

technologies. The development of agricultural robotic 

systems will continue to increase their efficiency and 

robustness. Another research has also been involved to get 

solutions for  navigation problems on a mobile robot in 

agriculture [12]–[15]. 

Autonomous navigation is an important aspect in the field 

of agricultural robots [12], [16], which covers four key 

requirements: mapping, localization, motion control, and 

path planning. Path planning is an essential issue in robotic 

problems. This task revolves around identifying rotational 

actions and a series of translations to move from the initial 

position to the goal while avoiding obstacles [17]. The 

exploration of robotic path planning is a critical area of 

investigation in the field of robotics, including in the use of 

mobile robots in agricultural settings [6], [18]. 

Many intelligent optimization algorithms have been 

offered to help robots optimize their paths. These algorithms 

draw inspiration from natural phenomena or biological 

groups, such as the ant colony algorithm (ACO) [19]–[28], 

genetic algorithm (GA) [29]–[32], [33], [34], and particle 

swarm optimization (PSO) [35]–[39] [40]. Other algorithms 

such as fuzzy algorithm [41]–[46], A* algorithm [47]–[50], 

cuckoo algorithm [51]–[53], improved artificial fish swarm 

algorithm [54], modified probabilistic roadmap algorithm 

[55], [56], artificial potential field algorithm [57]–[59] [69]–

[71], and hybrid algorithms [60]–[64] [57], [72] have also 

been implemented in robot path planning. In addition, 

reinforcement learning also has been used to solve path 

planning problems, as seen in studies [65]–[69].  

The Q-Learning algorithm is one of the reinforcement 

learning algorithms that is currently employed in path 

planning. It is a classical reinforcement learning algorithm 

that has been implemented in several studies for producing 

optimum path [68]–[75]. It is frequently used for path 

planning on moving robots [69]–[72], [75], [76]. In general, 

research studies indicated that the benefit of Q-Learning is 

that it always produces an optimum path. However, the 

drawback, when the Q-Learning algorithm is applied to 

several robots in the same area with the same task, the 

resulting paths tend to be relatively the same. Hence, these 

paths have the potential for collisions between robots when 

all robots move simultaneously. 

The objective of this study is to modify the Q-Learning 

algorithm by utilizing a motivation model to generate diverse 

yet optimum path options for multiple mobile robots in the 

same area. Previous studies have used motivation models in 

the algorithms to influence agents in making decisions [77]–

[79]. In this study, the achievement motivation model [77] is 

incorporated in the Q-learning algorithm to produce 

variations of optimum path. We call this algorithm Motivated 

Q-Learning (MQL) algorithm. By having more than one 

optimum path, in the case where communication between 

robots is not available, the possibility of collisions can be 

reduced. In addition, in the case where the robots can 
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communicate with each other, the queuing problem can be 

decreased. 

II. METHOD 

A. Reinforcement Learning (RL) and Q-Learning Algorithm 

Reinforcement learning (RL) is one method in machine 

learning. It is a method of taking action based on the reward  

[80]. The rewards and penalties concepts are used to explore 

an environment. Five important terms are used in the Q-

Learning algorithm, namely agent, state, action, reward, and 

penalty. In this case, the agent is a mobile robot as an object 

that moves in the environment. The position of the agent in 

the environment is represented by state (S). The action (A) 

represents movement the agent from one state to another 

state. Rewards are positive values that are given if the agent 

takes the correct action, while penalties are negative values 

that are given if the agent takes the incorrect action. Through 

exploration and exploitation, the agent gains experience. The 

exploration allows the agent randomly to visit all state-action 

pairs in the environment without considering the current 

state. On the contrary, exploitation maximizes the reward 

from the current state using the agent's acquired knowledge 

to select actions. One type of RL method is the Q-Learning 

algorithm [81]. 

On the Q-Learning algorithm, the Q values are stored in 

a two-dimensional Q table for each state and potential action. 

The algorithm chooses the action with the highest reward. 

The equation (1) is the Q-Learning equation by Watkins [80] 

to update the Q value. 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 +  𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] (1) 

The position of agent (A) or state at time t is represented 

by 𝑆𝑡. The agent action in state 𝑆𝑡 is represented by 𝐴𝑡. The 

𝑅𝑡+1 is reward value that received after the agent executes 

action 𝐴𝑡+1 in state 𝑆𝑡. The 𝑄(𝑆𝑡 , 𝐴𝑡) is generated by action 

𝐴𝑡 in state 𝑆𝑡. The discount factor (𝛾) serves as a variable 

determining the significance of upcoming rewards. Its value 

ranges between 0 and 1. A value near 0 implies that the agent 

prioritizes immediate rewards, while a value near 1 signifies 

the agent's consideration of future rewards. The learning rate 

(𝛼), ranging from 0 to 1, affects the pace of achieving 

convergence. When 𝛼 is close to 0, convergence takes a long 

time. Conversely, higher values prompt the agent to make 

drastic adjustments to the Q value, hindering convergence 

due to fluctuating outcomes. The pseudocode for Q-learning 

is presented in Algorithm 1.  

Algorithm 1 Q-Learning Algorithm 
1: Initial 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) 
2: Looping for each episode: 

3: Initial 𝑆 
4: Loop for each step in the episode: 

5:    Select 𝐴 from 𝑆 by using policy from 𝑄   

6:    Take action 𝐴, observe 𝑅, 𝑆′ 

7:    𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎 𝑄(𝑆
′, 𝑎) –  𝑄(𝑆, 𝐴)]  

8:    𝑆  𝑆′ 

9: Until 𝑆 is target 

 

Initially, all values of 𝑄(𝑠, 𝑎) in the Q-table is set to zero. 

The 𝑠 and 𝑎 refer to the state and action, respectively, which 

are elements of the entire state space (𝒮+) and all possible 

actions of that state 𝒜(𝑠). Then, initial state S is determined. 

The Q value is updated in the looping section. 

During the iterative procedure, an action (A) is chosen for 

execution in the current state (S) based on the policy derived 

from Q-values. Following this, the agent selects an action (A) 

and observes both the reward (R) and the subsequent state 

(S'). The Q-value in the Q-table is then updated using 

equation (1). Additionally, the current state (S) is set to the 

value of the next state (S'). This looping process persists until 

the current state matches the target state. 

Fig. 1 illustrates the process of Q-Learning. The state 𝑆𝑡 
is denoted as the initial state (n), and the feasible actions (A) 

are obtained from Q using the expression (𝛾𝑚𝑎𝑥𝑄(𝑆𝑡+1,  𝑎))
𝑎

. 

This selected action transitions the agent to the subsequent 

state (𝑆𝑡+1), acquiring a reward value (𝑅𝑡+1) in the process. 

This sequence continues until convergence is achieved. 

 

Fig. 1. Illustration of the Q-Learning process 

B. Achievement Motivation Model 

The motivation model is a model that can be applied to 

agent intelligence to help identify, prioritize, choose, and 

adapt to targeted goals. The application of a motivation model 

in path planning algorithms can help mobile robots move 

according to the given motivation, resulting in different path 

variations in the same area and goal. One of the motivation 

models proposed by Merrick and Shafi is achievement 

motivation [77]. This motivation can be defined as the need 

for success or achievement of excellence. According to [77], 

achievement motivation is based on the estimation of the 

probability of success and the difficulty of the task, which is 

modeled by equation (2). 

𝑇𝑎𝑐ℎ(𝐺) =
𝑆𝑎𝑐ℎ

1 + 𝑒
𝜌𝑎𝑐ℎ
+ (𝑀𝑎𝑐ℎ

+ −𝑃𝑠(𝐺))
−

𝑆𝑎𝑐ℎ

1 + 𝑒𝜌𝑎𝑐ℎ
− (𝑀𝑎𝑐ℎ

− −𝑃𝑠(𝐺))
 (2) 

This model has six parameters 𝑃𝑠(𝐺), 𝑀𝑎𝑐ℎ
+ , 𝑀𝑎𝑐ℎ

− , 𝜌𝑎𝑐ℎ
+ , 

𝜌𝑎𝑐ℎ
− , and 𝑆𝑎𝑐ℎ. 𝑃𝑠(𝐺) is the subjective probability of 

successfully achieving the goal 𝐺. 𝑀𝑎𝑐ℎ
+  is the sigmoid 

turning point for approach motivation, and 𝑀𝑎𝑐ℎ
−  is the 

sigmoid turning point for avoidance motivation. 𝜌𝑎𝑐ℎ
+  is 

gradient for approach and 𝜌𝑎𝑐ℎ
−  is gradient for avoidance. 

Finally, 𝑆𝑎𝑐ℎ  is a measure of the relative strength of 

achievement motivation. 

When the approach turning point is to the left of the 

avoidance turning point (i.e., 𝑀𝑎𝑐ℎ
+ < 𝑀𝑎𝑐ℎ

− ), the resulting 

tendency represents individuals who are motivated to 

succeed. 𝑀𝑎𝑐ℎ
+ > 𝑀𝑎𝑐ℎ

−  represents individuals motivated by 

failure. 𝜌+ > 0 represents the gradient of approach to 

success, while 𝜌− > 0 represents the gradient of avoiding 

failure. The 𝑇𝑎𝑐ℎ  value can be used in the development or 

modification of artificial intelligence algorithms to influence 

decision-making processes. Determining the value of the 
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variables can determine the value of the expected 

motivational tendency. In this case, is the tendency of 

achievement to avoid collision. 

C. The Proposed Method 

The proposed modified algorithm is presented in Fig. 2. 

The reward achievement (𝑟𝑎𝑐ℎ) is used to affect the update of 

the Q-value. 𝑅𝑛𝑒𝑤 is the new reward value from the initial 

reward (𝑅𝑜𝑙𝑑) added to the reward achievement (𝑟𝑎𝑐ℎ). The 

𝑟𝑎𝑐ℎ  value is influenced by the probability value (P), 𝛼𝑎𝑐ℎ 

value, and the K value, and also the 𝑇𝑎𝑐ℎ value. Based on 

equation (3), P is proportional to 𝑟𝑎𝑐ℎ. This means that the 

greater the value of P, the greater the value of 𝑟𝑎𝑐ℎ . However, 

because 𝑇𝑎𝑐ℎ  is negative (to model obstacles), the larger P, 

the more negative 𝑟𝑎𝑐ℎ . The greater the K value, the more 

negative 𝑟𝑎𝑐ℎ . K value and 𝛼𝑎𝑐ℎ value are used to affect the 

size of the 𝑟𝑎𝑐ℎ value. In practice, 𝑟𝑎𝑐ℎ is used to update 𝑅𝑛𝑒𝑤 

on the state used in the previous path. The more negative 𝑟𝑎𝑐ℎ , 

the stronger the state condition which is considered as an 

obstacle or a state that cannot be passed, so that the next agent 

is expected to find a new path as a path variation. Therefore, 

equation (4) shows how the update in Q-value in the marked 

state and the update in Q-value in the normal state 

(unmarked) are calculated. 

 
Fig. 2. The development of the Q-Learning algorithm that utilizes a 

motivation model in the reward value 

𝑅𝑛𝑒𝑤 = 𝑅𝑜𝑙𝑑 + 𝑟𝑎𝑐ℎ = 𝑅𝑜𝑙𝑑 +
𝐾 ∙ 𝑃𝒂𝒄𝒉

𝑇𝑎𝑐ℎ
 (3) 

𝑄(𝑆𝑡, 𝐴𝑡) =

{
  
 

  
 𝑠𝑖𝑔𝑛𝑒𝑑, 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[(𝑅𝑡+1 +

𝐾 ∙ 𝑃𝒂𝒄𝒉

𝑇𝑎𝑐ℎ
) +  

 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]
 

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 +                      

 𝛾𝑚𝑎𝑥
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)]

 (4) 

Fig. 3 shows the flowchart of the MQL algorithm for 

finding path variations based on the utilization of the 

motivation model. In the first route search, the initial reward 

value (step a) is used to update the Q value. After the process 

of updating the value (step b) in the Q table is completed, the 

agent will search for a route from the starting point to the 

target point (step c) based on the value in the Q table. In step 

d, if the first path (route 0) is found by the agent then the agent 

will save the path as route 0 (step e) and continue searching 

for the second path (route 1) by considering route 0, but if the 

route 0 is not found then the algorithm will inform that the 

route was not found (step f). In searching for the second path, 

the reward value in the state in route 0 will be updated (step 

g) using equation (4). Each reward on the state (route 0) will 

be added with the 𝑟𝑎𝑐ℎvalue. Then the algorithm will execute 

steps h, i, j, and k as well as steps b, c, d and e for route 1. If 

route 1 is not found then the algorithm will go to step f to 

inform that route was not found. 

 

Fig. 3. MQL flowchart with reward value update 

Likewise for the search for the next route variation, the 

reward value in the state (for example, route 1) will be 

updated by adding the 𝑟𝑎𝑐ℎ  value to the old reward (step l). 

Then the algorithm will execute steps m, n, o, and p as well 

as steps b, c, d and e for route 2. If the path search does not 

find the target point, then the search will be terminated with 

a path not found notification. The pseudo code of MQL is 

shown as in Algorithm 2. 

Algorithm 2 MQL Algorithm 
1:  Initial 𝑄(𝑠, 𝑎), for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) 

2:  Initial 𝑀𝑎𝑐ℎ
+ , 𝑀𝑎𝑐ℎ

− , 𝜌𝑎𝑐ℎ
+ , 𝜌𝑎𝑐ℎ

− , and 𝑆𝑎𝑐ℎ for 𝑇𝑎𝑐ℎ  
3:  Initial 𝐾, and 𝛼𝑎𝑐ℎ for 𝑟𝑎𝑐ℎ 

4:  Initial 𝑃 for 𝑇𝑎𝑐ℎ and 𝑟𝑎𝑐ℎ 

5:  Calculate 𝑇𝑎𝑐ℎ and 𝑟𝑎𝑐ℎ 

6:  Initial 𝑆 

6:  Initial 𝑅 

7:  Initial 𝑅𝑜𝑢𝑡𝑒 
8:  Looping for each route: 

9:  Loop for each step in the episode: 

10:    Select 𝐴 from 𝑆 by using policy from 𝑄   

11:    Take action 𝐴, observe 𝑅, 𝑆′ 

12:    𝑄(𝑆, 𝐴)𝑄(𝑆, 𝐴) + [R +  𝑚𝑎𝑥𝑎 𝑄(𝑆
′, 𝑎) –  𝑄(𝑆, 𝐴)]  

13:    𝑆  𝑆′ 

14:  Until 𝑆 is target  

15:   Save 𝑅𝑜𝑢𝑡𝑒 

16:   Update 𝑅 by adding 𝑟𝑎𝑐ℎ to 𝑅 
17: Until the route is not found 

 

The MQL procedure is developed from the Q-Learning 

procedure. In the MQL procedure, we add variables 𝑀𝑎𝑐ℎ
+ , 

𝑀𝑎𝑐ℎ
− , 𝜌𝑎𝑐ℎ

+ , 𝜌𝑎𝑐ℎ
− , and 𝑆𝑎𝑐ℎ, 𝑃, 𝐾, 𝛼𝑎𝑐ℎ to produce the 𝑇𝑎𝑐ℎ  

and the 𝑟𝑎𝑐ℎ . The 𝑟𝑎𝑐ℎ will be added to reward 𝑅 in the state 

used as the previous path. 

Simulations were conducted in three areas with different 

obstacle conditions to determine the performance of the 

proposed method. Measurements in this research are the 

number of path variations, computation time, and the number 

of rewards for each path as well as the value of similarity 

between paths. In addition, a comparison was made on the Q-

Learning algorithm. 

III. RESULTS AND DISCUSSION 

A. The Change in the Value of 𝑟𝑎𝑐ℎ Based on 𝑃, 𝐾, and 

𝛼𝑎𝑐ℎ 

The change in the value of 𝑃, 𝐾, 𝛼𝑎𝑐ℎ and 𝑇𝑎𝑐ℎ have a 

significant impact on the value of 𝑟𝑎𝑐ℎ . The given values for 

variable 𝑃 range from 0.1 to 1 with a step of 0.1, the value of 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 699 

 

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model 

𝐾 ranges from 5 to 50 with a step of 5, and the value of 𝛼𝑎𝑐ℎ 

ranges from 1 to 3. Meanwhile, the value of 𝑇𝑎𝑐ℎ is obtained 

based on the variables of the motivation model and the value 

of 𝑃. Change 𝑟𝑎𝑐ℎvalue based on 𝑃, 𝐾, 𝛼𝑎𝑐ℎ are shown in 

Table I, Table II, and Table III respectively. The lowest 𝑟𝑎𝑐ℎ 

is -319.43, while the largest value is -2.94 (at 𝛼𝑎𝑐ℎ= 1), -0.29 

(at 𝛼𝑎𝑐ℎ= 2) and -0.03 (at 𝛼𝑎𝑐ℎ= 3). 

In addition, the graph showing the changes in the value of 

𝑟𝑎𝑐ℎ , which is influenced by changes in the values of 𝑃, 𝐾, 

𝛼𝑎𝑐ℎ and 𝑇𝑎𝑐ℎ, is displayed in Fig. 4, Fig. 5 and Fig. 6, 

respectively. The graph shows that as the values of 𝛼𝑎𝑐ℎ, 𝑃 

and 𝐾 increase, the 𝑟𝑎𝑐ℎ  value decreases. At 𝐾 value is 5, the 

decrease in 𝑟𝑎𝑐ℎ with respect to 𝑃 is not significant. The 

lowest value of 𝑟𝑎𝑐ℎ  occurs when 𝐾 is increased up to K=15, 

reaching -95.83. The changes in r_ach that are close to linear 

occur at 𝛼𝑎𝑐ℎ values of 1 and 2. Meanwhile, when 𝛼𝑎𝑐ℎ values 

are 3, significant changes in 𝑟𝑎𝑐ℎ occur starting from 𝑃 =0.5. 

These results showed that, in accordance to equation (3), 

the larger the value of 𝐾, the greater the influence of the 

constant on the  probability of obtaining a larger reward. 

However, if the 𝑇𝑎𝑐ℎ value is negative, increasing the 𝑃 value 

of will weaken the 𝑟𝑎𝑐ℎ  value. The greater the 𝛼𝑎𝑐ℎ value, the 

greater the influence of the probability on the 𝑟𝑎𝑐ℎ  value. If 

the 𝑇𝑎𝑐ℎ  value is negative, increasing the 𝛼𝑎𝑐ℎ value  will also 

weaken the 𝑟𝑎𝑐ℎ  value. If the value of 𝑇𝑎𝑐ℎ is negative, the 

greater the divisor in the equation, the smaller the 𝑟𝑎𝑐ℎ 

obtained. In its application, the value of 𝑟𝑎𝑐ℎ  is utilized to 

update the reward value of the state that has been used in the 

previous path. The more negative the 𝑟𝑎𝑐ℎ value, the stronger 

the state condition which is considered as an obstacle, so that 

the possibility of a collision is avoided. 

  

Fig. 4. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 1 

B. The MQL Simulation 

The MQL algorithm was simulated on a computer device 

with an Intel Core i5-3570 processor, clock speed of 3.4 GHz, 

and 4GB of RAM. The software used was Jupyter Notebook 

with Python 3.9 programming language. The simulation was 

conducted in an 11x11 area (121 states) with several 

scenarios, i.e. an obstacle-free area (scenario 1) and an area 

with obstacles i.e. scenario 2, and scenario 3. The values of 

learning rate (𝛼) and discount factor (𝛾) that used were 0.9. 

The iteration used was 5000. The values of achievement 

motivation model variables that used were 𝑀𝑎𝑐ℎ
+ = 0.7, 𝑀𝑎𝑐ℎ

− = 

0.3, 𝜌𝑎𝑐ℎ
+ =𝜌𝑎𝑐ℎ

− = 2, and 𝑆𝑎𝑐ℎ= 1. These values will give a 

tendency to avoid the failed. That means agent or robot will 

avoid obstacles or states that have been used by another 

agent. The value of P was alternated from 0.1 to 1. The testing 

was conducted by providing the values of 𝑃, 𝐾, and 𝛼𝑎𝑐ℎ to 

produce the values of 𝑇𝑎𝑐ℎ  and 𝑟𝑎𝑐ℎ . 

 

Fig. 5. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 2 

 

Fig. 6. The graph of 𝑟𝑎𝑐ℎ value for 𝑃 and 𝐾 changes in 𝛼𝑎𝑐ℎ = 3 

The initial reward value for each passable state was -1, 

and the reward value for the target state was 999. Meanwhile, 

the reward value for the obstacle state was -100. The rewards 

used is defined as (5). Meanwhile, the reward value for the 

obstacle state was -100. In the simulation, the initial state was 

marked with green color, the target state was marked with 

orange color, and the obstacle state was marked with black 

color. Four paths are searched according to the four directions 

of agent movement i.e. forward, backward, left and right. In 

addition, four routes (simulation results) would be shown in 

different colors (black = route 0, blue = route 1, brown = route 

2, and red = route 3). 

 

𝑟𝑒𝑤𝑎𝑟𝑑 = {

  999, 𝑡𝑎𝑟𝑔𝑒𝑡                 
   −1, 𝑓𝑟𝑒𝑒 𝑠𝑡𝑎𝑡𝑒         
−100, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒              

 (5) 
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TABLE I.  THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 1 

P 
𝒓𝒂𝒄𝒉 

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50 

0.1 -2.94 -5.89 -8.83 -11.78 -14.72 -17.66 -20.61 -23.55 -26.50 -29.44 

0.2 -5.52 -11.04 -16.55 -22.07 -27.59 -33.11 -38.63 -44.14 -49.66 -55.18 

0.3 -7.90 -15.79 -23.69 -31.58 -39.48 -47.37 -55.27 -63.17 -71.06 -78.96 

0.4 -10.23 -20.46 -30.69 -40.92 -51.15 -61.38 -71.61 -81.85 -92.08 -102.31 

0.5 -12.67 -25.33 -38.00 -50.66 -63.33 -76.00 -88.66 -101.33 -114.00 -126.66 

0.6 -15.35 -30.69 -46.04 -61.38 -76.73 -92.08 -107.42 -122.77 -138.11 -153.46 

0.7 -18.42 -36.85 -55.27 -73.69 -92.12 -110.54 -128.96 -147.39 -165.81 -184.24 

0.8 -22.07 -44.14 -66.22 -88.29 -110.36 -132.43 -154.50 -176.58 -198.65 -220.72 

0.9 -26.50 -52.99 -79.49 -105.98 -132.48 -158.98 -185.47 -211.97 -238.46 -264.96 

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43 

TABLE II.  THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 2 

P 
𝒓𝒂𝒄𝒉 

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50 

0.1 -0.29 -0.59 -0.88 -1.18 -1.47 -1.77 -2.06 -2.36 -2.65 -2.94 

0.2 -1.10 -2.21 -3.31 -4.41 -5.52 -6.62 -7.73 -8.83 -9.93 -11.04 

0.3 -2.37 -4.74 -7.11 -9.47 -11.84 -14.21 -16.58 -18.95 -21.32 -23.69 

0.4 -4.09 -8.18 -12.28 -16.37 -20.46 -24.55 -28.65 -32.74 -36.83 -40.92 

0.5 -6.33 -12.67 -19.00 -25.33 -31.67 -38.00 -44.33 -50.66 -57.00 -63.33 

0.6 -9.21 -18.42 -27.62 -36.83 -46.04 -55.25 -64.45 -73.66 -82.87 -92.08 

0.7 -12.90 -25.79 -38.69 -51.59 -64.48 -77.38 -90.28 -103.17 -116.07 -128.96 

0.8 -17.66 -35.32 -52.97 -70.63 -88.29 -105.95 -123.60 -141.26 -158.92 -176.58 

0.9 -23.85 -47.69 -71.54 -95.39 -119.23 -143.08 -166.92 -190.77 -214.62 -238.46 

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43 

TABLE III.  THE CHANGE IN THE VALUE OF 𝑟𝑎𝑐ℎ AT 𝛼𝑎𝑐ℎ = 3 

P 
𝒓𝒂𝒄𝒉 

K=5 K=10 K=15 K=20 K=25 K=30 K=35 K=40 K=45 K=50 

0.1 -0.03 -0.06 -0.09 -0.12 -0.15 -0.18 -0.21 -0.24 -0.26 -0.29 

0.2 -0.22 -0.44 -0.66 -0.88 -1.10 -1.32 -1.55 -1.77 -1.99 -2.21 

0.3 -0.71 -1.42 -2.13 -2.84 -3.55 -4.26 -4.97 -5.68 -6.40 -7.11 

0.4 -1.64 -3.27 -4.91 -6.55 -8.18 -9.82 -11.46 -13.10 -14.73 -16.37 

0.5 -3.17 -6.33 -9.50 -12.67 -15.83 -19.00 -22.17 -25.33 -28.50 -31.67 

0.6 -5.52 -11.05 -16.57 -22.10 -27.62 -33.15 -38.67 -44.20 -49.72 -55.25 

0.7 -9.03 -18.06 -27.08 -36.11 -45.14 -54.17 -63.19 -72.22 -81.25 -90.28 

0.8 -14.13 -28.25 -42.38 -56.50 -70.63 -84.76 -98.88 -113.01 -127.14 -141.26 

0.9 -21.46 -42.92 -64.39 -85.85 -107.31 -128.77 -150.23 -171.69 -193.16 -214.62 

1 -31.94 -63.89 -95.83 -127.77 -159.72 -191.66 -223.60 -255.55 -287.49 -319.43 

 

Furthermore, the similarity of the states on path variations 

was measured by the Jaccard similarity [82], [83] using 

equation (6). The A and B variables represent the sequence of 

states on route A and route B. The total states that are similar 

between A and B divided by the number of states in A and B. 

𝑠𝑖𝑚(𝐴, 𝐵) =
𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 𝑜𝑛 𝐴 𝑎𝑛𝑑 𝐵

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑖𝑛 𝐴 𝑎𝑛𝑑 𝐵
× 100% 

 (6) 

1. Scenario 1 

Scenario 1 simulates path planning a single agent and 

single target in an obstacle-free 11×11 area. Q-Learning 

algorithm simulation result produced four paths (each 17 

states). However, all paths tend to be similar. In contrast, 

MQL simulation can produce several path variations. Table 

IV shows the detailed results of MQL simulation, which was 

run with different variations of 𝛼𝑎𝑐ℎ, P and K. Here, we 

calculate the maximum number of paths with Jaccard 

similarity = 0%, which we call “safe” path variations. At 𝛼𝑎𝑐ℎ 

= 1, two safe path variations were produced in 1 simulations, 

three safe path variations were produced in 44 simulations, 

and four path variations were produced in 55 simulations. At 

𝛼𝑎𝑐ℎ = 2, two safe path variations were produced in 1 

simulations, three safe path variations were produced in 61 

simulations, and four path variations were produced in 38 

simulations. At 𝛼𝑎𝑐ℎ = 3, two safe path variations were 

produced in 8 simulations, three safe path variations were 

produced in 56 simulations, and four path variations were 

produced in 36 simulations. Fig. 7 shows the recapitulation 

graph of the number of safe path variation.  

 

Fig. 7. The number of safe path variation in scenario 1 
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TABLE IV.  THE NUMBER OF SAFE PATH VARIATIONS IN THE MOTIVATED 

Q-LEARNING ALGORITHM SIMULATION IN SCENARIO 1 

𝜶𝒂𝒄𝒉 P 
K 

5 10 15 20 25 30 35 40 45 50 

1 

0.1 4 3 4 3 4 3 4 3 4 4 

0.2 3 4 3 4 4 4 3 3 3 4 

0.3 4 3 4 3 3 4 3 4 4 4 

0.4 4 4 3 3 3 4 3 4 4 4 

0.5 3 4 4 4 4 3 4 4 4 4 

0.6 3 3 4 3 3 4 3 4 4 3 

0.7 4 3 4 4 4 4 4 4 4 3 

0.8 3 3 4 4 3 3 3 3 4 3 

0.9 3 4 2 4 4 4 3 3 4 3 

1 4 4 3 4 3 3 3 4 3 3 

2 

0.1 2 3 4 4 4 3 3 4 3 4 

0.2 3 4 4 4 3 3 3 3 3 3 

0.3 3 3 3 4 3 3 4 3 4 4 

0.4 4 3 3 3 4 3 3 3 4 4 

0.5 4 3 3 3 3 3 3 4 4 4 

0.6 3 3 4 3 3 3 3 3 4 3 

0.7 3 3 3 4 4 3 4 4 3 4 

0.8 3 4 3 3 3 3 3 4 3 3 

0.9 4 4 3 3 4 4 4 3 3 4 

1 3 4 3 3 4 3 3 4 3 3 

3 

0.1 2 3 2 2 2 2 2 3 2 2 

0.2 3 4 3 4 3 3 3 3 3 3 

0.3 3 3 4 4 4 4 3 3 3 3 

0.4 4 3 3 3 3 3 4 4 4 4 

0.5 4 4 3 3 3 3 3 3 3 3 

0.6 3 4 3 3 3 4 3 4 3 3 

0.7 4 4 4 3 3 3 3 4 3 3 

0.8 3 4 3 3 4 3 3 3 3 3 

0.9 3 4 4 4 4 4 4 3 4 3 

1 4 3 4 3 4 4 3 4 4 4 

 

Examples of paths produced by Q-Learning simulation 

and safe path variations generated in the simulation (with 𝑃 

= 0.7, 𝐾 = 25, and 𝛼𝑎𝑐ℎ = 2) are shown in Fig. 8(a) and Fig. 

8(b), respectively. Even though the four paths MQL 

simulation have different lengths, all of them do not have a 

potential collision. Meanwhile, the average path-finding 

computation time on the Q-Learning algorithm is 1.170  

0.04 seconds (95% confidence level), while the average path-

finding computation time on the MQL algorithm is 1.356  

0.21 seconds (95% confidence level). The computing time on 

MQL is slightly longer than Q-Learning algorithm. The 

average reward of Q-Learning simulation results is 983 while 

in MQL is 981. The difference in the average reward is only 

2 points. Table V shows the simulation results data in 

scenario 1. 

The similarity values for the states traversed by the routes 

were calculated using Jaccard similarity. The similar states 

between routes were counted and divided by the total number 

of states between states (excluding the starting and target 

states). The similarity value indicates the existence of similar 

states and the potential for collision between routes. Table VI 

shows the detailed similarity index values. The average 

similarity value of the Q-Learning simulation results is 

61.17%. It shows potential collision between routes. The 

highest similarity occurs between routes 2 and 3 i.e. 100%. In 

contrast, the average similarity value of MQL simulations is 

0%. It indicates no potential collision between routes. 

2. Scenario 2 

In scenario 2, a simulation is conducted using an area with 

seven rectangular obstacles. The Q-Learning algorithm 

simulation resulted four routes and each path consists of 17 

states. However, all paths are highly potential colliding. In 

contrast, the MQL algorithm simulation can produce several 

safe path variations without potential collisions (see Table 

VII). The recapitulation graph of the number of the safe path 

variations is shown in Fig. 9. 

 

(a) 

 

(b) 

Fig. 8. An example of the route simulation results in scenario 1 

 

Fig. 9. The number of safe variation path on an 11x11 area with obstacles
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TABLE V.  DATA FROM THE SIMULATION RESULTS IN SCENARIO 1 

Algorithm Route State Sequence 
State 

Length 

Total 

Reward 

Computation 

Time (s) 

QL 

0 
(1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (7, 8), (7, 7), (7, 6), 

(7, 5), (7, 4), (7, 3), (7, 2), (7, 1), (8, 1), (9, 1) 
17 983 1.188 

1 
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (4, 7), (4, 6), (4, 5), (4, 4), (4, 3), 

(4, 2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.210 

2 
(1, 9), (2, 9), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (4, 5), (4, 4), (4, 3), 

(4, 2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.130 

3 
(1, 9), (2, 9), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), 

(3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.152 

MQL 

0 
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (4, 7), (5, 7), (5, 6), (6, 6), (6, 5), 

(6, 4), (6, 3), (6, 2), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.192 

1 
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (6, 8), (6, 7), (7, 7), (7, 6), 

(7, 5), (7, 4), (7, 3), (7, 2), (8, 2), (9, 2), (9, 1) 
17 983 1.241 

2 
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (5, 9), (6, 9), (7, 9), (7, 

8), (8, 8), (8, 7), (8, 6), (8, 5), (8, 4), (8, 3), (9, 3), (10, 3), (10, 2), 

(10, 1), (9, 1) 

21 979 1.323 

3 

(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (0, 3), (0, 2), (0, 1), 

(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), 
(9, 1) 

21 979 1.666 

 

TABLE VI.  SIMILARITY STATE OF SCENARIO 1 

Algo-

rithm 

Jaccard similarity ➔ sim (route A, route B) in 

% 
𝒙̅ 

Sim 

(0,1) 

Sim 

(0,2) 

Sim 

(0,3) 

Sim 

(1,2) 

Sim 

(1,3) 

Sim 

(2,3) 
% 

QL 43 36 36 76 76 100 61.17 

MQL 0 0 0 0 0 0 0 

TABLE VII.  THE NUMBER OF SAFE PATH IN THE MOTIVATED Q-

LEARNING ALGORITHM SIMULATION IN SCENARIO 2 

𝜶𝒂𝒄𝒉 P 
K 

5 10 15 20 25 30 35 40 45 50 

1 

0.1 3 3 3 3 4 2 2 2 3 2 

0.2 4 3 4 3 4 3 2 3 4 3 

0.3 3 3 3 2 3 3 3 3 3 2 

0.4 3 3 4 4 2 3 3 3 3 4 

0.5 3 3 4 2 3 3 3 4 4 3 

0.6 3 3 2 3 3 3 3 4 3 3 

0.7 3 4 2 2 3 3 4 3 3 3 

0.8 3 4 4 3 3 3 4 4 3 3 

0.9 3 3 3 4 4 3 3 3 3 3 

1 3 3 3 4 3 4 3 3 3 3 

2 

0.1 4 4 2 2 2 3 3 3 4 3 

0.2 3 4 3 3 3 4 3 3 4 3 

0.3 4 2 3 3 3 2 2 3 3 3 

0.4 4 3 3 4 3 4 3 4 3 3 

0.5 3 4 3 4 3 3 3 3 3 2 

0.6 3 2 3 4 3 3 2 3 2 3 

0.7 4 3 3 3 3 3 3 3 2 3 

0.8 3 4 3 4 3 3 3 3 2 2 

0.9 4 3 4 2 2 3 3 3 4 3 

1 3 3 3 2 2 4 3 4 3 2 

3 

0.1 1 2 2 1 2 2 2 3 3 4 

0.2 4 3 4 3 4 2 4 3 2 3 

0.3 4 3 3 4 4 3 4 3 3 3 

0.4 2 3 3 3 2 3 2 4 3 4 

0.5 3 3 3 3 3 4 2 2 3 2 

0.6 3 3 4 4 4 4 3 2 3 2 

0.7 2 2 4 2 3 2 4 3 4 3 

0.8 3 3 3 3 2 4 3 3 3 3 

0.9 2 2 4 2 3 2 4 4 3 3 

1 4 2 3 3 3 4 3 3 3 2 

 

Examples of paths produced by Q-Learning simulation 

and safe path variations generated in the simulation (with P = 

0.7, K = 25, and 𝛼𝑎𝑐ℎ = 2) are shown in Fig. 10(a) and Fig. 

10(b), respectively. Even though the four paths have different 

lengths, all of them do not have a potential collision. 

Meanwhile, the average path-finding computation time on 

the Q-Learning algorithm is 1.117  0.04 seconds (95% 

confidence level), while the average path-finding 

computation time on the MQL algorithm is 1.435  0.26 

seconds (95% confidence level). The computing time on 

MQL is slightly longer than Q-Learning.  The average reward 

for each path in the Q-Learning simulation results is 983 

while in the MQL is 981. The difference in the average 

reward is only 2 points. Table VIII shows the scenario 2 

simulation results. 

 

(a) 

 

(b) 

Fig. 10. An example of the scenario 2 simulation route with seven 

rectangular obstacles
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TABLE VIII.  DATA FROM THE SIMULATION RESULTS IN SCENARIO 2 

Algorithm Route State Sequence 
State 

Length 

Total 

Reward 

Computation 

Time (s) 

QL 

0 
(1, 9), (2, 9), (2, 8), (3, 8), (4, 8), (5, 8), (5, 7), (5, 6), (5, 5), (5, 4), (5, 3), (6, 3), (6, 2), 

(6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.173 

1 
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1), 

(6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.094 

2 
(1, 9), (1, 8), (2, 8), (2, 7), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1), 

(6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.092 

3 
(1, 9), (1, 8), (2, 8), (2, 7), (2, 6), (3, 6), (3, 5), (3, 4), (3, 3), (3, 2), (3, 1), (4, 1), (5, 1), 

(6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.108 

MQL 

0 
(1, 9), (1, 8), (2, 8), (2, 7), (2, 6), (3, 6), (3, 5), (3, 4), (4, 4), (5, 4), (5, 3), (5, 2), (5, 1), 

(6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.216 

1 
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (5, 7), (6, 7), (6, 6), (6, 5), (6, 4), (7, 4), (8, 4), 

(8, 3), (8, 2), (9, 2), (9, 1) 
17 983 1.253 

2 
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (5, 9), (6, 9), (6, 8), (7, 8), (8, 8), (8, 7), 

(8, 6), (8, 5), (9, 5), (9, 4), (9, 3), (10, 3), (10, 2), (10, 1), (9, 1) 
21 979 1.476 

3 
(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (1, 4), (2, 4), (2, 3), (2, 2), (2, 1), (2, 0), 

(3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (9, 1) 
21 979 1.794 

The similarity value indicates the existence of similar 

states and the potential for collision between routes. Table IX 

shows the detail similarity index values. The average 

similarity value for the Q-Learning simulation result is 50%. 

It shows potential for collision between routes. In contrast, 

the average similarity value for MQL simulations is 0%. It 

indicates no potential collision among paths. 

TABLE IX.  SIMILARITY STATE OF SCENARIO 2 

Algo-

rithm 

Jaccard similarity ➔ sim(route A, route B) in % 𝒙̅ 

Sim 

(0,1) 

Sim 

(0,2) 

Sim 

(0,3) 

Sim 

(1,2) 

Sim 

(1,3) 

Sim 

(2,3) 
% 

QL 20 15 15 87 76 87 50 

MQL 0 0 0 0 0 0 0 

 

3. Scenario 3 

Scenario 3 is conducted in an area with randomize 

obstacles. Q-Learning simulation is shown in Fig. 12a. The 

MQL results show in Table X. The recapitulation graph of 

the number of the safe path variations is shown in Fig. 11. 

Fig. 12 shows the example routes from QL simulation 

(Fig. 12(a)) and MQL simulation (Fig. 12a). Example path 

safe variations in MQL created in the simulation with P = 0.7, 

K = 30, and 𝛼𝑎𝑐ℎ = 2). Meanwhile, the average path-finding 

computation time on the Q-Learning algorithm is 1.472  

0.14 seconds (95% confidence level), while the average path-

finding computation time on the MQL algorithm is 1.919  

0.71 seconds (95% confidence level). Thus, the computing 

time of MQL algorithm is slightly longer than Q-Learning 

algorithm. The average reward for each path in the Q-

Learning simulation results is 983 while in the MQL is 981. 

The difference in the average reward is only 2 points. 

Simulation results (scenario 3) is shown in Table X and Table 

XI. 

Table XII displays the level of similarity between paths in 

the scenario-3 simulation. The Q-Learning simulation has an 

average similarity of 68.33%. It suggests a risk of collision 

between paths. In contrast, the similarity of the MQL is 0%. 

It indicates that included the motivation model can produce 

routes without the potential collision. 

 

TABLE X.  THE NUMBER OF SAFE PATH IN THE MOTIVATED Q-LEARNING 

ALGORITHM SIMULATION IN SCENARIO 3 

𝜶𝒂𝒄𝒉 P 
K 

5 10 15 20 25 30 35 40 45 50 

1 

0.1 4 3 4 3 3 3 3 3 3 4 

0.2 3 3 3 4 3 3 3 3 3 2 

0.3 3 4 3 4 4 4 3 4 3 2 

0.4 4 3 4 4 4 3 2 3 3 3 

0.5 4 3 4 3 3 3 4 3 2 3 

0.6 4 3 4 4 3 4 3 3 3 3 

0.7 3 4 3 3 3 3 3 3 2 2 

0.8 4 3 2 4 3 2 3 3 3 2 

0.9 3 4 3 3 3 2 3 3 3 2 

1 3 3 2 3 2 3 3 3 2 3 

2 

0.1 2 3 4 3 3 4 3 4 3 3 

0.2 3 3 4 4 3 3 3 3 3 4 

0.3 3 4 3 4 3 3 2 3 4 3 

0.4 3 4 4 3 3 4 3 4 3 3 

0.5 3 4 4 4 3 4 4 3 3 3 

0.6 4 4 3 3 3 4 3 3 3 4 

0.7 4 3 3 3 3 4 3 3 2 2 

0.8 3 3 3 3 3 3 3 3 2 3 

0.9 3 3 3 3 3 3 3 3 2 3 

1 3 4 3 3 3 2 2 3 3 2 

3 

0.1 2 2 2 1 1 2 2 3 3 2 

0.2 2 2 4 3 3 3 3 3 3 3 

0.3 3 4 3 3 3 3 4 3 4 4 

0.4 3 3 3 4 4 3 4 3 3 3 

0.5 3 4 3 3 3 3 4 3 4 4 

0.6 3 3 3 4 4 3 3 3 4 3 

0.7 4 3 4 3 3 3 4 3 3 3 

0.8 4 3 3 3 3 3 3 2 2 3 

0.9 3 3 2 3 3 3 3 3 2 3 

1 3 4 2 3 3 3 3 2 2 2 

 

 

Fig. 11. The number of safe variation path on the area with randomize 

obstacles
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TABLE XI.  DATA FROM THE SIMULATION RESULTS IN SCENARIO 3 

Algorithm Route State Sequence 
State 

Length 

Total 

Reward 

Computation 

Time (s) 

QL 

0 
(1, 9), (1, 8), (1, 7), (1, 6), (2, 6), (2, 5), (2, 4), (3, 4), (3, 3), (4, 3), (4, 

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.435 

1 
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4, 

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.366 

2 
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4, 

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.408 

3 
(1, 9), (1, 8), (1, 7), (1, 6), (1, 5), (1, 4), (2, 4), (3, 4), (3, 3), (4, 3), (4, 

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.679 

MQL 

0 
(1, 9), (1, 8), (2, 8), (3, 8), (3, 7), (3, 6), (3, 5), (3, 4), (3, 3), (4, 3), (4, 

2), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1) 
17 983 1.482 

1 
(1, 9), (2, 9), (3, 9), (4, 9), (4, 8), (5, 8), (5, 7), (6, 7), (6, 6), (7, 6), (7, 

5), (7, 4), (7, 3), (7, 2), (8, 2), (9, 2), (9, 1) 
17 983 1.423 

2 
(1, 9), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), 
(9, 10), (9, 9), (10, 9), (10, 8), (10, 7), (10, 6), (10, 5), (10, 4), (10, 3), 

(10, 2), (10, 1), (9, 1) 

21 979 1.792 

3 
(1, 9), (0, 9), (0, 8), (0, 7), (0, 6), (0, 5), (0, 4), (0, 3), (0, 2), (0, 1), (0, 

0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (9, 1) 
21 979 2.980 

TABLE XII.  SIMILARITY STATE OF SCENARIO 3 

Algo-

rithm 

Jaccard similarity ➔ sim(route A, route B) in % 𝒙̅ 

Sim 

(0,1) 

Sim 

(0,2) 

Sim 

(0,3) 

Sim 

(1,2) 

Sim 

(1,3) 

Sim 

(2,3) 
% 

QL 50 43 43 87 87 100 68.33 

MQL 0 0 0 0 0 0 0 

 

 

(a) 

 

(b) 

Fig. 12. An example of the scenario-3 simulation route with randomize 

shaped obstacles 

The simulation results show that the MQL algorithm has 

succeeded in generating 2 to 4 safe path variations in the same 

area and goal. The Jaccard similarity every between two safe 

path variations is 0%. It indicates that these safe paths are not 

potentially collision. However, the computational time of 

MQL is significantly longer than Q-Learning both in areas 

without obstacles and in areas with obstacles. The average 

difference in the total rewards collected by each MQL path 

(in this case) is two points smaller than the Q-Learning. 

In principal, the simulation results show that MQL can be 

applied to several robots with a same task, operating in the 

same area. However, the algorithm can only provide a 

maximum of four path variations, due to the assumption that 

the robot can only move forward, backward, left and right. In 

the real implementation, the robot may have more flexibility 

to move to other directions. Further study is required to 

analyze whether this additional flexibility will result in more 

path variations. In addition, the parameters in achievement 

motivation may need to be re-evaluated for this purpose. 

IV. CONCLUSION  

We have presented the MQL algorithm that utilizes a 

motivation achievement to find safe path variations in an 

unknown environment. The achievement motivation 

succeeded in influencing the reward value in the state that is 

used as a path before. This update reward makes the state as 

an obstacle so that the MQL will avoid that state and find 

other states for a new route and avoid collision with the last 

paths. The simulation results show that the MQL algorithm 

generated 2 to 4 safe path variations (Jaccard similarity = 

0%). On the contrary, the Q-Learning algorithm tends to 

produce the same path for each robot so that is potential 

collisions. However, the computation time of MQL is slightly 

longer than Q-Learning. In principal, the simulation results 

show that MQL can be implemented to multi robots with a 

same goal in the same area. We hope MQL can solve multi-

robot path planning problems by reducing the possibility of 

collisions as well as decreasing the problem of queues. It can 

only provide maximum 4 path safe variations because the 

robot can only move in 4 directions i.e. forward, backward, 

left and right. Further study is needed to add flexibility robot 

movement to other directions (i.e. forward left, forward right, 

backward left and backward right) and to analyze whether 

this additional flexibility will result in more path variations. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 705 

 

Hidayat, Modified Q-Learning Algorithm for Mobile Robot Path Planning Variation using Motivation Model 

In addition, the achievement motivation parameters need to 

be re-evaluated for this purpose and simulated in wide area. 
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