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Abstract—This paper presents a new technique to design an 

inverse dynamic model for a delta robot experimental setup to 

obtain an accurate trajectory. The input/output data were 

collected using an NI DAQ card where the input is the random 

angles profile for the three-axis and the output is the 

corresponding measured torques. The inverse dynamic model 

was developed based on the deep neural network (NN) and the 

new COVID-19 optimization to find the optimal initial weights 

and bias values of the NN model. Due to the system uncertainty 

and nonlinearity, the inverse dynamic model is not enough to 

track accurately the preselected profile. So, the PD compensator 

is used to absorb the error deviation of the end effector. The 

experimental results show that the proposed inverse dynamic 

deep NN with PD compensator achieves good performance and 

high tracking accuracy. The suggested control was examined 

using two different methods. The spiral path is the first, with a 

root mean square error of 0.00258 m, while the parabola path is 

the second, with a root mean square error of 0.00152 m. 

Keywords—Parallel Robot; Delta Robot; Data Acquisition 

Tracking Control; System Identification. 

I. INTRODUCTION  

As technology advanced, parallel robots became more 

desirable in industrial applications where high speed, high 

accuracy, and high acceleration are required [1]-[4]. When 

compared to serial robots, parallel robots have clear 

advantages, such as their high speed and rigidity[5]-[9]. Delta 

robots are currently widely employed in the packaging 

business, the medical and pharmaceutical sectors, and 

surgery [10]-[12]. They are one of the most successful 

industrial parallel robots where it has high speed with 

satisfied accuracy. 

The precision of the mathematical models and the sensors 

used in the control loop determines the accuracy of the 

controllers created using these models However, after 

manufacture and assembly or because of joint wear and 

backlash from the prolonged operation, the mathematical 

modeling of a robot may differ from the real modeling [13]- 

[23]. 

So, the typical linear PID controller is unable to meet the 

need for precise trajectory in high-speed applications [14], 

[15]. The replacement to the PID control is the artificial 

intelligent control techniques such as neural networks and 

fuzzy PID control or the adaptive and robust control methods 

[24]-[34]. 

Recent research on deep learning and neural networks has 

shown that these techniques may be used for robotic control 

and that in some cases, neural networks can take the place of 

intricate mathematical modeling [35]-[37]. From data, neural 

networks can learn. They are qualified to estimate the 

mathematical modeling of a system since they can detect non-

linearity between input and output data [38]-[45]. 

A 3-DOF Delta parallel robot's simulation, kinematics 

analysis, and control have been investigated in [46]where the 

ability of the controllers to reject white noise disturbance 

applied to the system's input signals was demonstrated using 

simulation results [46]-[60].  

A real-time delta robot trajectory control system 

employing an inverse kinematic controller and neural 

networks has been presented in [2]. The results demonstrate 

that joint backlash's detrimental impact on trajectory tracking 

is diminished and the inaccuracy in trajectory tracking is 

constrained in the presence of external disturbance. The 

created method offers a novel method for controlling the 

inverse kinematics of a delta robot. 

The approach for system identification for a delta robot is 

suggested in [3]. The dynamic behavior of the parallel-link 

robot was theoretically modeled using the virtual work 

concept. The suggested parameter estimation approach is a 

very helpful tool that can successfully identify a high-quality 

analytic dynamic model for a parallel-link robot, according to 

experimental data. The deep NN models used in recent 

research for several serial robots sucesifully. 

In this work, an efficient inverse dynamic model for the 

experimental setup of a delta robot had been implemented 

based on the deep NN model using real-time measured data. 

The optimal values of the initial values of weights and bias 

were obtained using the COVID-19 optimization. Also, the 

PD compensator was added to absorb the error deviation of 

the inverse dynamic deep NN control. A comparative study 

between the two cases (with and without a compensator) had 

been investigated. Several trajectory profiles had been 

applied to measure the delta robot performance. The results 

demonstrate that the proposed Inverse dynamic deep NN with 

PD compensator can track accurately the preselected profile. 

This article is organized as follows. The “Problem 

formulation” section introduces the experimental setup 

structure and the dynamics of the Delta robot. The “Inverse 
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Dynamic Control” section proposes the methodology for the 

development inverse dynamic model for an experimental 

delta robot. The “Delta robot performance” section presents 

the performance of the experimental setup of the delta robot 

using the proposed control techniques. The “Conclusions” 

section summarizes some significant conclusions. 

II. PROBLEM FORMULATION  

The experimental setup for the delta robot is illustrated in 

Fig. 1, which consists of two primary platforms. While the 

second platform is mobile, the first platform is fixed. Three 

independent, identical kinematic chains that are dispersed at 

a 120° angle connect the two platforms. Each drive is 

connected to the platform by two links that create a 

parallelogram. An output link may stay in a fixed orientation 

with respect to an input link thanks to a parallelogram. This 

type of architecture displays excellent high speed, low inertia, 

and precision performance. 

 

Fig. 1. Delta robot experimental setup 

Lagrangian mechanics is a version of classical mechanics 

that was developed in physics and is based on the stationary-

action principle. . The dynamic equations of the Delta robot 

manipulator are found through the use of the Lagrangian 

formulation and can be written as (1). 

𝝉1 = (𝛾2𝐼𝑚 + 𝐼1 + 𝑚2𝑟𝑓
2)�̈�1 − (𝑚1𝑟𝑓𝑐 + 𝑚2𝑟𝑓)𝑔𝑐𝜃1

− 2𝑟𝑓𝜆 1[(𝑥0𝑐𝜙1 + 𝑦0𝑠𝜙1 + 𝑏 − 𝑎)𝑠𝜃1 − 𝑧0𝑐𝜃1] 

𝝉2 = (𝛾2𝐼𝑚 + 𝐼1 + 𝑚2𝑟𝑓
2)�̈�2 − (𝑚1𝑟𝑓𝑐 + 𝑚2𝑟𝑓)𝑔𝑐𝜃2

− 2𝑟𝑓𝜆 2[(𝑥0𝑐𝜙2 + 𝑦0𝑠𝜙2 + 𝑏 − 𝑎)𝑠𝜃2 − 𝑧0𝑐𝜃2] 

𝝉3 = (𝛾2𝐼𝑚 + 𝐼1 + 𝑚2𝑟𝑓
2)�̈�3 − (𝑚1𝑟𝑓𝑐 + 𝑚2𝑟𝑓)𝑔𝑐𝜃3

− 2𝑟𝑓𝜆 3[(𝑥0𝑐𝜙3 + 𝑦0𝑠𝜙3 + 𝑏 − 𝑎)𝑠𝜃3 − 𝑧0𝑐𝜃3] 

 (1) 

Also, the values of delta robot parameters are demonstrated 

in Table I. 

TABLE I.  PARAMETERS AND THEIR VALUES OF THE TORQUE EQUATIONS 

(1) 

Parameter Value Parameter Value 

𝜆1 -15.1458 𝑟𝑓 366 mm 

𝜆2 -13.238 𝑟𝑓𝑐 183 mm 

𝜆3 -16.4696 𝛾 5:1 

�̈�1 15.02 rad/s2 𝐼𝑚 0.5x10-4 kgm2 

�̈�2 12.02 rad/s2 𝐼1 80x10-4 kgm2 

�̈�3 17.36 rad/s2 𝑚1 200 g 

𝑔 9.81 m/s2 𝑚2 400 g 

𝑋0 70.45 mm 𝑚𝑝 200 g 

𝑌0  -116.6 mm 𝑎 370 mm 

𝑍0 -819 mm 𝑏 40 mm 

𝜃1 variable 𝜙1 60o 

𝜃2 variable 𝜙2 180o 

𝜃3 variable 𝜙3 -60o 

 

Two stages may be used in the design of the controllers 

for the fine motion of the delta robot: the primary controller, 

which is nothing more than the manipulator's inverse 

dynamics inserted in the feedforward path to account for the 

nonlinear effects and which attempts to cancel the nonlinear 

terms in the model. However, since the system is susceptible 

to disturbances and the mathematical model utilized is 

typically not accurate, unwanted mistakes can be remedied 

using a second controller, or secondary controller, as shown 

in Fig. 2. 

 

Fig. 2. Primary and secondary Delta robot control 

III. INVERSE DYNAMICS CONTROL  

The foundation of the inverse dynamic control technique 

is a control command that recognizes a priori system 

knowledge encoded in a dynamic model. The computed 

torque method is another name for this strategy. Joint angles, 

velocities, and accelerations are the desired trajectories 

because the control objective is trajectory tracking in a joint 

space. These are the tracking errors' definitions as equation 

(2) and (3). 

𝑒 = 𝑞𝑑 − 𝑞 (2) 

𝑒 . = 𝑞𝑑 − �̇�̇  (3) 

where the measurements of q and �̇� are required in the 

subsequent design. To conform to the inverse nonlinear NN 

control given in Fig. 3.  

The main idea of the program has been designed to make 

the NI DAQ 6009 generates a random analog output signal to 

the three motor drives (-5V to 5V) which can change the three 

axis of the delta robot from -160° to 160°. Also, the 

corresponding analog output signal data from the torque 

End 

effect

or 

Control 

panel 

Motors 
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sensor has been collected at the same time. The developed 

torque of the motor will fluctuate when the generated signal 

change continuously. The positive signal will cause the motor 

position to fluctuate in the forward direction, while the motor 

will fluctuate in the reverse direction through the negative 

voltage ranges. 

 
Fig. 3. Inverse control training structure 

 The camera, as shown in Fig. 4, is the most crucial sensor 

component. To offer sensory feedback in the form of vision, 

the Pixy 2 Camera was employed. Although this particular 

camera can determine an object's color, it cannot determine 

the object's topology. This camera can locate the end effector 

of a delta robot. So, using inverse kinematics calculations, 

one may determine the angles of linkages. 

 

Fig. 4. Pixy2 Camera 

Fig. 5 illustrates the generated position input signal to the 

motor driver which change randomly while Fig. 6, Fig. 7 and 

Fig.8 show the corresponding torque for each link. The input 

/output data will be collected and stored in excel sheet file 

and then this data will be used to develop inverse dynamic 

NN identified model for the experimental setup. 

 

Fig. 5. The random motions for the three axes of the delta robot 

 

Fig. 6. The measured output torque for link 1 

 

Fig. 7. The measured output torque for link 2 

 

Fig. 8. The measured output torque for link 3 

One of the first strategies described for using neural 

networks to control unknown nonlinear systems was training 

the network to serve as the system's inverse and using that as 

a controller.  

Assuming that the system to be controlled can be 

described by (4). 

𝑦(𝑡 + 1) = 𝑔[𝑦(𝑡),… , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡), … , 𝑢(𝑡 − 𝑚)] (4) 

The desired network is then the one that isolates the most 

recent control input, u(t) shown in (5). 

�̂�(𝑡) = �̂�−1[𝑦(𝑡 + 1), 𝑦(𝑡), … , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡),… , 𝑢(𝑡 − 𝑚)] 

 (5) 
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Assuming such a network has somehow been obtained, it 

can be used for controlling the system by substituting the 

output at time t+1 with the desired output, the reference, 

r(t+1). If the network represents the exact inverse, the control 

input produced by it will thus drive the system out at time t+1 

to r(t+1) as shown in Fig. 3.  

The most straightforward way of training a network as the 

inverse of a system is to approach the problem as a system 

identification problem. A network architecture is selected, 

and the network is trained offline. The difference from the 

system identification lies in the choice of regressors and 

network output. They are now selected as shown in equation 

(6). The network is then trained to minimize the criterion. 

𝑗(𝜃, 𝑍𝑁) =
1

2𝑁
∑[𝑢(𝑡) − �̂�(𝑡/𝜃)]2
𝑁

𝑡=1

 (6) 

The fact that general training is fundamentally not a 

model-based design method is an appealing aspect of it. This 

should be taken to mean that the controller can be inferred 

directly from a piece of data without the need for a system 

model. 

 One should not be confused by the assumption that the 

reference is known one step in advance. This was just used as 

a pedagogical notation. The closed-loop transfer function 

from reference to the output of the system is in fact shown in 

(7). 

𝐻(𝑞−1) = 𝑞−1 (7) 

One can interpret this as if the controller is linearizing the 

system, resulting in a dead-beat controller: the system output 

will follow the reference signal exactly exact for a delay of 

one sampling period. If the system has a time delay exceeding 

one, using inverse models for control becomes slightly more 

complicated as in the case of the delta robot system. A dead-

beat controller is still obtained but now the closed-loop 

transfer function becomes 𝐻(𝑞−1) = 𝑞−𝑑, with d being the 

time delay. The principle for handling time delays is outlined 

in the following. Assume that the system is governed by (8). 

𝑦(𝑡 + 𝑑) = 𝑔[𝑦(𝑡 + 𝑑 − 1), … , 𝑦(𝑡 + 𝑑
− 𝑛), 𝑢(𝑡), … , 𝑢(𝑡 − 𝑚)] 

 (8) 

Once again, a network is trained as the inverse model in (9). 

�̂�(𝑡) = �̂�−1[𝑦(𝑡 + 𝑑), 𝑦(𝑡 + 𝑑 − 1),… , 𝑦(𝑡), … , 𝑦(𝑡 + 𝑑
− 𝑛), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑚)] 

 (9) 

Analogous to the case considered before, y(t+d) is 

substituted for the desired output at time t+d. this leaves d-1 

unknown quantities: 

{𝑦(𝑡 + 1), … , 𝑦(𝑡 + 𝑑 − 1)} 

A solution to this problem is to insert predictions of the 

unknown outputs which implies that one or more networks 

are trained to provide the necessary predictions. 

Alternatively, the predictor can be “incorporated” into the 

inverse model directly. Assume for example that the time 

delay d=2. In this case, there will be one unknown quantity, 

namely y(t+1). The prediction of this takes the form equation 

(10). 

𝑦(𝑡 + 1) ≅ �̂�(𝑡 + 1)
= 𝑔1̂[𝑦(𝑡), … , 𝑦(𝑡 + 1 − 𝑛), 𝑢(𝑡
− 1), … , 𝑢(𝑡 − 𝑚 − 1)] 

 (10) 

The inverse model is then trained by using as regressors 

the union of regressors from (4) and (10), then the equation 

obtained in (11). 

�̂�(𝑡) = �̂�−1[𝑦(𝑡 + 2), 𝑦(𝑡), … , 𝑦(𝑡 + 2 − 𝑛), … , 𝑦(𝑡 + 1
− 𝑛), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑚), 𝑢(𝑡 − 𝑚
− 1)] 

 (11) 

When d>2, it is straightforward to proceed in a similar 

fashion. 

1- Conduct an experiment to generate a data set.  

2- Initialize the inverse model with general training. 

 Use for example the Levenberg-Marquardt method. 

3- Proceed with specialized training “offline” by using the 

model of the system instead of the actual system. Apply a 

recursive Gauss-Newton algorithm with forgetting for 

rapid convergence but be careful with “covariance blow-

up.” 

4- Conclude the session with online specialized training. 

Terminate the training algorithm when an acceptable 

model-following behavior has been achieved. 

 

In order to increase the accuracy of the resultant model, 

the starting weights and bias of the deep NN model will be 

discovered utilizing the COVID-19 optimization in this work. 

The first step in COVID-19 optimization is the creation of the 

starting population. The starting population (zero patients) 

has just one distinct vector. Similar to the COVID-19 

epidemic scenario, it can locate the first affected individual.   

The higher and lower values of the deep NN model's 

initial weights and bias, as given in equation (12), are 

contained in the initial population. 

𝑋 =

[
 
 
 
 
𝑤00 . 𝑤0j 𝜃0

. . . .

. . . .

. . . .
𝑤𝑖0 . 𝑤𝑖𝑗 𝜃𝑛]

 
 
 
 

 (12) 

In the second stage, several situations may be taken into 

account, but only one vector (zero patients) is responsible for 

the disease's spread. Some of the ill patients first perish away. 

There is a probability of dying, based on COVID-19's 

mortality rate. Such individuals are no longer able to infect 

new individuals.  

In the second scenario, the COVID-19 survivors amplify 

the disease's transmission by infecting other people. Two 

ways of spreading diseases are consequently taken into 

account based on a given likelihood. Usual spreaders. 

According to the COVID-19 super spreading rate, infected 

persons will infect new people if the virus is widely diffused. 

According to the pace of infection propagation, sick persons 
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will infect new people. Super-spreaders and regular 

individuals can follow instructions and generate solutions in 

quite different ways. Since people are inclined to travel, the 

spread of the disease to environments that may be extremely 

different is made possible.  

The final phase entails modernizing the populace. Three 

populations are updated and maintained for each generation. 

a dead population. Any deaths are permanently removed from 

this population and added to it. Those who have recouped. 

Sick persons are sent to the population that has recovered 

after the coronavirus has been spread as per the previous stage 

after each iteration. It is good knowledge that a reinfection is 

possible.  

As a result, everyone in this group who fits the 

requirements for reinfection is susceptible to getting sick at 

any time. Another condition needs to be assessed since people 

might separate themselves while seeming to utilize social 

distance strategies. For the convenience of usage, it is 

assumed that an isolated individual is also sent to the 

recovered population when an isolation probability is 

fulfilled. Population recently impacted. The approach 

described in the prior steps is used to gather each ill person 

into this group. It is advisable to eliminate these people from 

the population before the next iteration starts since it is 

possible that fresh sick individuals form periodically after 

each iteration. The objective function that can treat the 

afflicted population is taken into consideration by the 

vaccines. 

The fourth stage is the Stop situation. One of the most 

important features of the offered technique is its ability to 

operate completely without the need for any parameter 

management. This condition develops as a result of the 

populations that have recovered and died continuously rising 

over time and the newly infected population being unable to 

spread illness. Estimates show that the number of infected 

persons increases after a certain number of rounds. The 

populations that have been recovered and killed are too big, 

and because the size of the infected population shrinks with 

time, starting with a certain iteration, the newly infected 

population will be smaller than the population that currently 

exists. 

The efficiency of each row will be evaluated using the 

target function in equation (6). The poor performance 

identifies the ill population, which runs the risk of dying. 

While the positive outcome indicates that Corona antivirus's 

population has been restored. 

The optimization will be stopped if (Xnew = Xold) where 

the newly infected populations cannot infect new individuals. 

If the number of iterations ended before this previous 

condition. The COVID-19 cannot give the optimal solution. 

Therefore, to obtain the optimal parameters of the NN model 

must be (Xnew = Xold) to guarantee the global solution.  

IV. DELTA ROBOT PERFORMANCE 

To demonstrate and validate the effectiveness of the 

suggested neural network in inverse dynamic modeling and 

trajectory tracking, two distinct pathways are developed. A 

spiral is defined for the first reference track using the equation 

(13). 

𝑥 = 0.1cos (𝛾) 

(13) 𝑦 = 0.1sin (𝛾) 

𝑧 = (−0.1𝛾)/(4𝜋 − 0.4) 

where 𝛾 fluctuates between 0 and 4𝜋. The initial position of 

the delta robot is random when it begins in a steady state. 

Fig. 9 demonstrates the following of a spiral path using 

the inverse dynamic NN control with and without the PD 

compensator in real time. It can be noted that the inverse 

dynamic deep NN control can track the reference trajectory 

with a satisfied root mean square error of 0.0289 m due to the 

system noise and uncertainty. When the PD compensator had 

been added to the inverse dynamic deep NN control the 

performance will improve significantly where the root mean 

square will be 0.00258 m.    

 

Fig. 9. Tracking of a spiral path using an inverse dynamic NN control with 

and without the PD compensator in real-time 

For the second trajectory, we evaluate a non-smooth 

trajectory tracking using a parabola with a sudden change in 

the direction of the end effector motion. The equation (14) 

describes the required trajectory. 

𝑥 = 0.1𝛾 

(14) 𝑦 = 0.2𝛾 

𝑧 = −0.5 + 0.1 𝑐𝑜𝑠(𝛾) 

where 𝛾 fluctuates between 0 and 4𝜋. 

Fig. 10 displays the tracing of a parabola path using an 

inverse dynamic NN control with and without the PD 

compensator in real time. 

It is obvious that the end effector for both the proposed 

controllers can track smoothly the change of the path 

direction. But in the case of the inverse dynamic deep NN 

control the root mean square error (0.0198 m) is high 

compared to the inverse dynamic deep NN control with PD 

compensator (0.00152 m) which is used to absorb the 

measurement noise and uncertainty of the system. 
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Fig. 10. Tracing of a parabola path using an inverse dynamic NN control 

with and without the PD compensator in real-time 
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