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Abstract—Parallel robotic systems have shown their 

advantages over the traditional serial robots such as high 

payload capacity, high speed, and high precision. Their 

applications are widespread from transportation to 

manufacturing fields. Therefore, most of the recent studies in 

parallel robots focus on finding the best method to improve the 

system accuracy. Enhancing this metric, however, is still the 

biggest challenge in controlling a parallel robot owing to the 

complex mathematical model of the system. In this paper, we 

present a novel solution to this problem with a Type 2 Fuzzy 

Coherent Controller Network (T2FHC), which is composed of a 

Type 2 Cerebellar Model Coupling Controller (CMAC) with its 

fast convergence ability and a Brain Emotional Learning 

Controller (BELC) using the Lyaponov-based weight updating 

rule. In addition, the T2FHC is combined with a surface 

generator to increase the system flexibility. To evaluate its 

applicability in real life, the proposed controller was tested on a 

Quanser 2-DOF robot system in three case studies: no load, 180 

g load and 360 g load, respectively. The results showed that the 

proposed structure achieved superior performance compared to 

those of available algorithms such as CMAC and Novel Self-

Organizing Fuzzy CMAC (NSOF CMAC). The Root Mean 

Square Error (RMSE) index of the system that was 2.20E-06 for 

angle A and 2.26E-06 for angle B and the tracking error that 

was -6.42E-04 for angle A and 2.27E-04 for angle B demonstrate 

the good stability and high accuracy of the proposed T2FHC. 

With this outstanding achievement, the proposed method is 

promising to be applied to many applications using nonlinear 

systems. 

Keywords—Self-Organizing Technique; Cerebellar Model 

Articulation Controller; Adaptive Control; Brain Emotional 

Learning Network. 

I. INTRODUCTION 

The parallel robot systems are widely used in daily life 

due to the brevity and simplicity of each kinematic chain. 

This gives the systems the ability to eliminate the influences 

from the external or internal environment. The ruggedness, 

durability, and small size of parallel robots have led to many 

applications in medical fields, manufacturing, 

transportation... [1–3]. However, understanding the 

mathematical model of a parallel robot is a complex 

challenge because the issues related to the weight and the 

moment of inertia at each joint are difficult to determine [4–

7]. 

Parallel robotic systems often experience non-linearity 

and require complex control algorithms to ensure accuracy 

and quality. Nonlinear factors include friction, limited 

working space and the effects of external forces. In the 

control of nonlinear systems, many methods have been 

developed and applied. These methods can be divided into 

two main groups as model-based and non-model-based 

controls. In the non-model control group, there are methods 

such as PID [8] and fuzzy learning [9-11] are typical 

methods. The common feature of these methods is that no 

detailed mathematical model of the system is required. 

Instead, they focus on adjusting control parameters based on 

feedback from the system to achieve the best performance. 

However, the limitation of this method is that it is difficult to 

optimize the control performance. 

On the other hand, in the model-based control group, it is 

necessary to ensure exactly the mathematical equations 

describing the system to design the control algorithm. 

Methods such as PD [12], Computational Torque Control 

(CTC) [13], nonlinear CTC [14], and adaptive control [15–

17]. Although these algorithms show high accuracy in theory, 

they often suffer from problems of instability and low 

performance when implemented in practice. 

An improved solution, the approximation method, 

combines the advantages of both previous methods. It uses an 

approximation model to generate an approximation function 

to control the system. Some traditional approximation control 

models are adaptive neural network control [18], adaptive 

control with mobile robot [19–20]. This approach provides a 

flexible solution for complex systems that does not require 

fully precise modeling as the model-driven control or relies 

on complex optimization processes. However, this method 

may not achieve as high accurate as the model-based control 

due to the use of the approximate model. At the same time, 

the approximation method can be sensitive to errors and 

fluctuations of the system. In addition, the method requires 

specialized knowledge and much experience to maintain the 

efficiency and stability of the system. 

Researchers [21-22] proposed a controller using a Radial 

Baseline Functional Neural Network (RBFNN). The main 

purpose of RBFNN is to approximate a non-linear function 

from the input to the corresponding output. RBFNN was 

chosen for its robust and flexible approximation for non-

linear systems. With the RBFNN structure, it is possible to 

use a non-linear basis function such as a Gaussian function to 

represent the non-linear features of the system. By adjusting 

the corresponding weights of the Gaussian function, RBFNN 

can approximate non-linear functions accurately and 

efficiently [23-24]. However, RBFNN also has limitations 

regarding its responsiveness to orbitals. Due to the non-linear 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 510 

 

Thanh Quyen Ngo, An Application of Modified T2FHC Algorithm in Two-Link Robot Controller 

nature of RBFNN, approximating trajectories with high 

complexity or high accuracy requirements can be difficult. In 

addition, adjusting the weights of the RBFNN to meet the 

specific requirements of the system can be a big challenge, 

especially for a very complex model. 

The use of neural networks in the dynamic control of 

robots poses two major challenges. First, the neural network 

in the robot controller must ensure sufficient nonlinear 

learning capability to effectively approximate the ideal 

controllers using online learning. The Cerebellar Model 

Coupling Controller (CMAC) is one effective model using 

neural networks. This method has been applied in many 

applications thanks to its fast-learning convergence and 

simple structure [25–27]. However, the model is limited in 

data processing and requires human intervention in 

determining the structure and parameters of the system. 

Second, neural network controllers must contain enough 

tunable parameters to eliminate the uncertainty components 

of nonlinear systems. To deal with the uncertain components, 

recent studies on intelligent control have proposed directly 

incorporating human expertise into neural networks [28–31]. 

Fuzzy inference systems have been used as adaptive 

controllers for robots [32–36], showing one of the most 

successful applications of fuzzy logic systems [37–40]. 

Naturally, neural networks have been developed in various 

ways to deal with the uncertainty components [41–46]. 

However, the limitation of the tuning parameters leads to a 

degradation of the controller performance [46]. Hence, it is 

necessary for a better solution to handle complex control 

tasks. 

In literature [47–50], the authors proposed a new type of 

neural network inheriting from CMAC and Brain Emotional 

Learning Controller (BELC) to solve the first problem. A 

typical BELC network consists of a sensory subsystem and a 

neural network judgment subsystem [47-48]. The network 

judgment subsystem indirectly affects the sensory 

subsystem's output based on input values [49-50]. The input 

of the BELC is the output of the CMAC network. The weights 

in the two subsystems are adjusted based on the errors of the 

input and output respectively. After calculating the system, 

BELC generates the final output. Based on the interaction of 

the two subsystems, the overall quality of the system is 

improved. 

For the second problem, a Type 2 Fuzzy Inference System 

(T2FIS) was introduced into the neural network. The Type 2 

fuzzy structure provides greater flexibility because it contains 

more tunable parameters to handle uncertain components 

[51–52]. Notably, the Type 2 fuzzy sets can reduce the 

number of samples to be computed in T2FIS [53–55]. 

Therefore, T2FIS has been adopted in many applications in 

robot control [56–59].  

A new neural network that integrates T2FIS and 

components from CMAC and BELC was presented in [60] to 

solve both the two above problems. This network was named 

Type 2 Fuzzy Hybrid Control (T2FHC). However, the given 

trajectory of the system was quite simple. The parameters of 

the Gauss function were fixed and the uncertainty 

components were given. Meanwhile, the theory of the 

T2FHC was tested using simulation only, which limited the 

verification of the theory.   

In this paper, a modified T2FHC neural network is 

proposed for solving nonlinear control systems. Different 

from the original T2FHC, the CMAC employs a self- 

Organizing structure to automatically change the parameters 

without human intervention, which solves the limitations of 

CMAC. In addition, the system integrates the BELC network 

into the network topology of the CMAC to improve the 

system predictability. To verify its feasibility, the modified 

T2FHC algorithm was applied to control a Quanser 2-DOF 

robot with a complex trajectory. Three case studies of the 

experiments were conducted, including no load, 180 g load, 

and 360 g load.  

The research contributions of this study include: 

• An improved T2FHC model by adding a self-organizing 

structure so that the Gaussian function parameters can 

update themselves. 

• Practical experiments to confirm the theory of T2FHC 

with three case studies. 

• The comparison results of the proposed model, the 

CMAC, and the NSOF CMAC to show the superior 

performance of the modified T2FHC neural network. 

The paper is organized as follows. Section 2 describes the 

kinematic equation of a two-order parallel robot. Section 3 

introduces the theory of the T2FHC model and the 

improvements in this study. Section 4 presents the 

experimental set up. Section 5 shows the experimental results 

of the improved T2FHC algorithm, the CMAC, and the 

NSOF CMAC. Finally, conclusions and discussions are given 

in Section 6. 

II. DYNAMIC EQUATION DESCRIPTION 

In this paper, a robotic Quanser 2-DOF controller would 

be used to test the proposed algorithm. Fig. 1 shows the 

diagram of a 2-DOF robot. The equation of motion of the 

robot is expressed in Lagrange in the equation (1). 

𝑀(𝑞′)𝑞̈′ + 𝐶(𝑞′, 𝑞̇′)𝑞̇′ + 𝑔(𝑞′) = 𝐾𝜏𝐼𝑚 (1) 

Where 𝑞′, 𝑞̇′, 𝑞̈′ ∈ 𝑅𝑛 are the vectors of position, speed, and 

acceleration of the joint, respectively; 𝑀(𝑞′) ∈ 𝑅𝑛𝑥𝑛 is 

matrix of inertia moment; 𝐶(𝑞′, 𝑞̇′)  ∈ 𝑅𝑛𝑥𝑛 expresses the 

matrix of centripetal and Coriolis forces; 𝑔(𝑞′) ∈ 𝑅𝑛𝑥1 is the 

gravitation vector; 𝐼𝑚𝑖(𝑖 = 1, 2) is the ith amarture current of 

the two servos; 𝐾𝜏 = 𝑑𝑖𝑎𝑔(𝐾𝜏1, 𝐾𝜏2) is the constant 

representing the mechanical and electrical transient between  

the current and the torque. 

In this paper, a robotic Quanser 2 DOF controller as 

shown in Fig. 1 is used to verify the dynamic properties given 

in section IV. Rewrite (1) the kinematics equation of the robot 

manipulator obtained as equation (2). 

𝑞̈′ = −𝑀−1(𝑞′)[𝐶(𝑞′, 𝑞̇′)𝑞̇′ + 𝑔(𝑞′)] + 𝑀−1(𝑞′)𝐾𝜏𝐼𝑚 

= 𝐹 (𝑥(𝑡)) + 𝐺 (𝑥(𝑡))𝐾𝜏𝐼𝑚 
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𝐹 (𝑥(𝑡)) =

[
 
 
 
 
 𝐹1 (𝑥(𝑡))

𝐹2 (𝑥(𝑡))

⋮

𝐹𝑁 (𝑥(𝑡))]
 
 
 
 
 

= −𝑀−1(𝑞′)[𝐶(𝑞′, 𝑞̇′)𝑞̇′ + 𝑔(𝑞′)] 

𝐺 (𝑥(𝑡)) = [

𝐺11 (𝑥(𝑡)) ⋯ 𝐺1𝑛 (𝑥(𝑡))

⋮ ⋱ ⋮

𝐺𝑛1 (𝑥(𝑡)) … 𝐺𝑛𝑛 (𝑥(𝑡))

] = 𝑀−1(𝑞′) 

 (2) 

Where, 𝐹 (𝑥(𝑡)), 𝐺 (𝑥(𝑡)) are nonlinear dynamic functions 

which are difficult to determine exactly or can not even 

obtain. So, we can not establish a model-based control 

system. In order to with this problem, here we assume that 

actual value 𝑓(𝑥) and 𝑔(𝑥) can be separated as nominal part 

denoted by 𝐹 (𝑥(𝑡)), 𝐺 (𝑥(𝑡)). 𝑙(𝑥(𝑡))is represented as the 

unknown lumped uncertainly and 𝑥(𝑡) =

[𝑥𝑇(𝑡)  𝑥̇𝑇(𝑡)  …   𝑥(𝑛−1)𝑇(𝑡)] is a vector that represents the 

joint position and velocity. Finally, the system (2) can be 

rewritten as equation (3). 

 

Fig. 1. A 2-DOF robot diagram 

𝑞̈′(𝑡) = 𝑓(𝑥(𝑡)) + 𝐺(𝑥(𝑡))𝐾𝜏𝐼𝑚 + 𝑙(𝑥(𝑡)) (3) 

Where 𝑞̈′(𝑡) ∈ 𝑅𝑘 is the output of the system. 

The control problem is to force 𝑞′(𝑡) of the system to 

track the derised reference trajectory  𝑞𝑑
′ (𝑡) ∈ 𝑅𝑘. The 

tracking error is identified as 𝑒(𝑡) = 𝑞𝑑
′ (𝑡) − 𝑞′(𝑡), 𝑒(𝑡) ∈

𝑅𝑘. The system error is defined as equation (4). 

𝒆(𝑡) = [𝑒𝑇  𝑒̇𝑇 , … , 𝑒(𝑛−1)𝑇]
𝑇

 (4) 

The sliding surface is defined as equation (5). 

𝒔 (𝒆(𝑡)) = 𝒆(𝑛−1)(𝑡) + 𝜻1𝒆
(𝑛−2)(𝑡) + ⋯+ 𝜻𝑛−1𝒆(𝑡) + 𝜻𝑛∫ 𝒆(𝑡)𝑑t

𝑡

0

 

 (5) 

Where 𝑠 = [𝑠1 𝑠2… 𝑠𝑘]
𝑇, 𝜁𝑖 = 𝑑𝑖𝑎𝑔(𝜁𝑖1 , 𝜁𝑖2 , … , 𝜁𝑖𝑘) with 

𝑖 = 1, 2, 3, … , 𝑛. 𝜁𝑖  is found to satistfy the Hurwitz 

polynomial. Differentiating 𝑠 (𝑒(𝑡)) with respect to time 

leads to equation (6). 

𝒔̇ (𝒆(𝑡)) = 𝒆(𝑛)(𝑡) + 𝜻1𝒆
(𝑛−1)(𝑡) + ⋯+ 𝜻𝑛𝒆(𝑡) = 𝑪

𝑇𝒆̇(𝑡) + 𝑲𝑇𝒆(𝑡) 

 (6) 

Where 𝐶 = [0 0…  𝐼]𝑇 and 𝐾 = [𝜁𝑛 𝜁𝑛−1… 𝜁1]
𝑇  denotes the 

feedback gain matrix.  

If the nominal parts 𝐹 (𝑥(𝑡)), 𝐺 (𝑥(𝑡))and the 

uncertainly 𝑙(𝑥(𝑡)) are exactly known, then an ideal 

controller can be designed as equation (7). 

𝑢𝐼𝑆𝑀 = 𝐺𝑛
−1 [𝑥𝑑

(𝑛)
− 𝑓𝑛(𝑥) − 𝑙(𝑥, 𝑡) + 𝐾

𝑇𝑒 + 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))]] 

 (7) 

where 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))] is the learning law of the sliding 

surface generator and 𝜚 > 0. The error 𝑒 is handled by the 

sliding surface 𝑠 as equation (8). 

𝑠̇ (𝑒(𝑡)) = 𝐺𝑛[𝑢𝐼𝑆𝑀 − 𝑢] −  𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))] 

 (8) 

III. MODIFIED T2FHC CONTROLLERS  

Fig. 2 illustrates the structure of the proposed controller. 

The controller consists of three components: 1) a sliding 

surface generator, 2) a modified Type-2 Fuzzy Hybrid 

Controller (m-T2FHC), and 3) a robust controller (RC). The 

input is pre-processed by the sliding surface generator before 

being fed to both the m-T2FHC and the RC. The outputs of 

these controllers are then combined to create the final 

actuating signal to control the system. 
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Fig. 2. Modified T2FHC control for uncertain nonlinear robotic systems 

A. The T2FHC Structure: 

Fig. 3 presents the structure of the T2FHC. It is composed 

of the main components of the Type-2 CMAC network and 

the BELC network. In particular, the input layer 𝑋, the 

fuzzification layer 𝐹, and the receptive layer 𝑇 are those from 

the Type-2 CMAC neural network [46], while the remaining 

layers follows the BELC. The two weight vectors in the 

weight memory 𝑇 are summed in the summarization layer 𝑆 

before being fed into the output layer 𝑌 for the final outputs. 
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Fig. 3. The structure of the T2FHC 

1) Input layer X:  

The input of the network is the continuous signals from 

the sliding surface generator, that is 𝑋 =  [𝑠1, 𝑠2]
𝑇. 

2) Fuzzification Layer F:  

The underlying Type-1 Gaussian membership function 

within each block can be represented as equation (9). 

𝜇𝐹̃𝑖𝑗𝑘(𝑥𝑖) = 𝑇(𝑥𝑖 , 𝑐𝑖𝑗𝑘 , 𝜎𝑖𝑗𝑘) = exp (−
(𝑥𝑖 − 𝑐𝑖𝑗𝑘)

2

2 ∙ 𝜎𝑖𝑗𝑘
2 ) 

 (9) 

Where 𝑥𝑖 represents the ith input of the network; 𝑐𝑖𝑗𝑘  is the 

mean and 𝜎𝑖𝑗𝑘 is the variance for the kth layer corressonding 

to the ith input at the current state; 𝑐𝑖𝑗𝑘  is the upper bound and 

𝑐𝑖𝑗𝑘  is the lower bound of 𝜇𝐹̃𝑖𝑗𝑘(𝑥𝑖) (𝑐𝑖𝑗𝑘  ϵ [𝑐𝑖𝑗𝑘 , 𝑐𝑖𝑗𝑘]). 

The upper and lower bounds 𝜇𝐹̃𝑖𝑗𝑘
 and 𝜇𝐹̃𝑖𝑗𝑘 of 𝜇𝐹̃𝑖𝑗𝑘 are 

defined as in equation (10). 

𝜇𝐹̃𝑖𝑗𝑘(𝑥𝑖) =

{
 

 𝑇(𝑥𝑖 , 𝑐𝑖𝑗𝑘 , 𝜎𝑖𝑗𝑘), 𝑥𝑖 < 
𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑗𝑘

2

𝑇(𝑥𝑖 , 𝑐𝑖𝑗𝑘 , 𝜎𝑖𝑗𝑘), 𝑥𝑖 > 
𝑐𝑖𝑗𝑘 + 𝑐𝑖𝑗𝑘

2

 

 (10) 

𝜇𝐹̃𝑖𝑗𝑘
(𝑥𝑖) =  {

𝑇(𝑥𝑖 , 𝑐𝑖𝑗𝑘 , 𝜎𝑖𝑗𝑘), 𝑥𝑖  <  𝑐𝑖𝑗𝑘  

1,                𝑐𝑖𝑗𝑘 < 𝑥𝑖 < 𝑐𝑖𝑗𝑘

𝑇(𝑥𝑖 , 𝑐𝑖𝑗𝑘 , 𝜎𝑖𝑗𝑘), 𝑥𝑖  >  𝑐𝑖𝑗𝑘

 

 (11) 

Each block has three adjustable parameters: 1) the upper 

bound of the mean value; 2) the lower bound of the mean; 

and 3) the variance 𝜎 of the Type-1 Gaussion function. 

3) Receptive layer T:  

The receptive layer is defined as equation (12). 

𝔽𝜆 = [𝔽𝜆  𝔽𝜆] = [∏𝜇𝐹̃𝑖𝑗𝑘

𝑛𝑖

𝑖=1

  ∏𝜇
𝐹̃𝑖𝑗𝑘

𝑛𝑖

𝑖=1

]

𝑇

 (12) 

Where 𝐹𝜆 representing the 𝜆 th receptive field, 𝜆 ∈
 {1, 2, . . . , 𝑛_𝑇}. This layer means that the output space is 

limited by the upper bound (𝐹𝜆) and the lower bound (𝐹𝜆). 

4) Weight layer W: 

In this layer, each receptive field of the previous layer is 

calculated by the corresponding weights vλq  and wλq . The 

weights all have a left bound and a right bound, which are 

correlated with vλq  and wλq  as equation (13) to (16). 

𝑣𝜆𝑞 = [𝑣𝜆𝑞
𝑙    𝑣𝜆𝑞

𝑟 ] (13) 

𝑤𝜆𝑞 = [𝑤𝜆𝑞
𝑙   𝑤𝜆𝑞

𝑟 ] (14) 

Where 𝑙 and 𝑟 are the left and right bounds of the fields 

relative to 𝑣𝜆𝑞 or 𝑤𝜆𝑞. 

𝑣̇𝜆𝑞 = 𝛼[𝔽𝜆 ∙ (𝑚𝑎𝑥[0, 𝑑𝑞 − 𝑎𝑞])] (15) 

𝑤̇𝜆𝑞  = 𝛽 [𝔽𝜆 ∙ (𝑢𝑇2𝐹𝐻𝐶𝑞 − 𝑑𝑞)] (16) 

Where 𝛼 and 𝛽 is the learning rate of the update rules, 𝑎𝑞  and 

𝑢𝑇2𝐹𝐻𝐶𝑞 is the output of 𝑣𝜆𝑞 and 𝑤𝜆𝑞; 𝑑𝑝 is a parameter 

defined by equation (17). 

𝑑𝑝 = 𝑏𝑖 ∙ 𝑥𝑖 + 𝑐𝑞 ∙ 𝑢𝑇2𝐹𝐻𝐶𝑞 (17) 

Where 𝑏𝑖 and 𝑐𝑞 are the gain parameters. When 𝑣𝜆𝑞 and 𝑤𝜆𝑞 

share the same implementation structure that can be 

expressed as equation (18). 

𝑊 =

[
 
 
 
 
𝑤11 … 𝑤1𝑜 … 𝑤1𝑝
⋮ ⋱ ⋮ ⋱ ⋮
𝑤𝑘1 ⋯ 𝑤𝑘𝑜 ⋯ 𝑤𝑘𝑝
⋮ ⋱ ⋮ ⋱ ⋮

𝑤𝑛𝑇1 … 𝑤𝑛𝑇𝑜 … 𝑤𝑛𝑇𝑝]
 
 
 
 

 (18) 

Where 𝑝 is the dimensionality of the network’s output. 

5) Summarization Layer S:  

𝑎𝑞 = ∑ 𝑓𝜆𝑞𝑣𝜆𝑞
𝑛𝜆
𝜆=1  and 𝑜𝑞 = ∑ 𝑓𝜆𝑞𝑤𝜆𝑞

𝑛𝜆
𝜆=1  [61]. 

The output of the summarization layer therefore can be seen 

in equation (19). 

𝑆𝑛𝑒𝑡 = 𝑎𝑞 − 𝑜𝑞 =∑𝔽𝜆𝑞 (𝑣𝜆𝑞 − 𝑤𝜆𝑞)

𝑛𝜆

𝜆=1

 (19) 

Where 𝑍𝜆𝑞 is the summarized weight, which is defined by 

equation (20). 

𝑍𝜆𝑞 = [𝑍
𝑙
𝜆𝑞 𝑍

𝑟
𝜆𝑞]

𝑇

= [(𝑣𝑙𝜆𝑞 −𝑤
𝑙
𝜆𝑞)   (𝑣

𝑟
𝜆𝑞 − 𝑤

𝑟
𝜆𝑞)]

𝑇

 

 (20) 

The type-reduction method as reported in and is applied as in 

equation (21) and (22). 

𝑦𝑞
𝑙 =

∑ 𝔽𝜆𝑍
𝑙
𝜆𝑞 + ∑ 𝔽𝜆𝑍

𝑙
𝜆𝑞

𝑛𝜆
𝜆=ℒ+1

ℒ
𝜆=1

∑ 𝔽𝜆 + ∑ 𝔽𝜆
𝑛𝜆
𝜆=ℒ+1

ℒ
𝜆=1

 (21) 

𝑦𝑞
𝑟 =

∑ 𝔽𝜆𝑍
𝑙
𝜆𝑞 + ∑ 𝔽𝜆𝑍

𝑙
𝜆𝑞

𝑛𝜆
𝜆=ℛ+1

ℛ
𝜆=1

∑ 𝔽𝜆 + ∑ 𝔽𝜆
𝑛𝜆
𝜆=ℛ+1

ℛ
𝜆=1

 (22) 

Where, 
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𝑍𝜆𝑞 = [𝑍
𝑙
𝜆𝑞  𝑍

𝑟
𝜆𝑞]

𝑇
=  [𝑍𝑙1𝑞 , 𝑍

𝑙
2𝑞 , … , 𝑍

𝑙
𝑛𝜆𝑞
   𝑍𝑟1𝑞 , 𝑍

𝑟
2𝑞]

𝑇
 

Output Layer Y: The qth output is simply computed by 

equation (23). 

𝑌𝑞 =
𝑦𝑞
𝑙 + 𝑦𝑞

𝑟

2
 (23) 

B. The Online Learning Rules 

Fig. 4 shows the schematic of a two-dimensional T2FHC. 

Applying the gradient descent method, the 𝑣𝜆𝑞
𝑙 , 𝑣𝜆𝑞

𝑟 , 𝑤𝜆𝑞
𝑙 , 𝑤𝜆𝑞

𝑟  

parameter of the updating rules are defined as equations (24) 

to (27). 

2 3 4 8 9

Layer 1

Layer 2

Layer nk

761

2

3

4

5

8
9

7
6

1

5

+1-1

+1

State

2S

1S

*

 

Fig. 4. Schematic of 2-D T2FHC network 

𝑣𝜆𝑞
𝑙 (𝑘 + 1) = 𝑣𝜆𝑞

𝑙 (𝑘) + 𝑣̇𝜆𝑞
𝑙  (24) 

𝑣𝜆𝑞
𝑟 (𝑘 + 1) = 𝑣𝜆𝑞

𝑟 (𝑘) + 𝑣̇𝜆𝑞
𝑟  (25) 

𝑤𝜆𝑞
𝑙 (𝑘 + 1) = 𝑤𝜆𝑞

𝑙 (𝑘) + 𝑤̇𝜆𝑞
𝑙  (26) 

𝑤𝜆𝑞
𝑟 (𝑘 + 1) = 𝑤𝜆𝑞

𝑟 (𝑘) + 𝑤̇𝜆𝑞
𝑟  (27) 

Where, 𝜎̇̂𝑖𝜆
𝑙  and 𝜎̇̂𝑖𝜆

𝑟  denote the adjustments of 𝜎𝑖𝜆; (𝑣̇𝜆𝑞
𝑙 , 𝑣̇𝜆𝑞

𝑟 ) 

and (𝑤̇𝜆𝑞
𝑙 , 𝑤̇𝜆𝑞

𝑟 ) indicate the left and right bound weight of 𝑣𝜆𝑞 

and 𝑤𝜆𝑞. 

C. Algorithm of the m-T2FHC Network 

a) Normalize each dimension 𝑥𝑖 of 𝑋 form 0 to 𝑛𝑅; 

b) Compute 𝐹𝜆 using equation (10) to (12). 

c) Calculate 𝑍𝜆𝑞 in equation (20), and then 𝑦𝑞
𝑙  and 𝑦𝑞

𝑟  in 

equation (21) and (22). 

d) Derive the output 𝑌𝑞  of the network by equation (23). 

e) Expand the Taylor series to calculate 𝑐𝑖𝜆,  𝑐𝑖𝜆, 𝜎𝑖𝜆 . 

f) Update 𝑣𝜆𝑞
𝑙 , 𝑣𝜆𝑞

𝑟 , 𝑤𝜆𝑞
𝑙 , 𝑤𝜆𝑞

𝑟 . 

The parallel robot is a complex nonlinear system, so 

multiple layers must be selected. This helps to increase the 

responsiveness of the network structure for the system. In this 

study, we chose 𝑛𝜆 = 11 that is the last case in [60].  The 

remaining parameters are given as in equations (28) to (33). 

𝔽𝜆
𝑙 =

𝔽𝜆

∑ 𝔽𝜆 + ∑ 𝔽𝜆
𝑛ℒ
𝜆=ℒ+1

ℒ
𝜆=1

 (28) 

𝔽𝜆
𝑟 =

𝔽𝜆

∑ 𝔽𝜆 + ∑ 𝔽𝜆
𝑛ℛ
𝜆=ℛ+1

ℛ
𝜆=1

 (29) 

𝑣 𝑙̇𝜆𝑞 = 𝛼[𝔽𝜆
𝑙 ∙ (𝑚𝑎𝑥[0, 𝑑𝑞 − 𝑎𝑞])] (30) 

𝑤𝑙̇
𝜆𝑞 = 𝛽 [𝔽𝜆

𝑙 ∙ (𝑢𝑇2𝐹𝐻𝐶𝑞 − 𝑑𝑞)] (31) 

𝑣𝑟̇𝜆𝑞 = 𝛼[𝔽𝜆
𝑟 ∙ (𝑚𝑎𝑥[0, 𝑑𝑞 − 𝑎𝑞])] (32) 

𝑤𝑟̇
𝜆𝑞 = 𝛽 [𝔽𝜆

𝑟 ∙ (𝑢𝑇2𝐹𝐻𝐶𝑞 − 𝑑𝑞)] (33) 

The above algorithm has described in detail the working 

process of the proposed T2FHC network. The complexity of 

the network depends on the number of inputs (𝑛𝑖), number of 

block types (𝑛𝑇) and the number of outputs (𝑛𝑜). The values 

of 𝑛𝑖 and 𝑛𝑜 are determined once the controlled system is 

specified. 

Denoting 𝑢𝑇2𝐹𝐻𝐶
∗  as the ideal output of the T2FHC 

network, the output 𝑢𝐼𝑆𝑀 of the sliding control can be found 

in equation (34). 

𝑢𝐼𝑆𝑀 = 𝑍
∗𝑇𝔽∗ + 𝜀 = 𝑢𝑇2𝐹𝐻𝐶

∗ (𝑋, 𝑍∗, 𝑐∗, 𝜎∗) + 𝜀 

 (34) 

with 𝑍∗, 𝑐∗, 𝜎∗, 𝔽∗the ideal parameters and 𝜀 a vector of 

minimum errors. 

These ideal values are impractical, though. Thus, the 

output of the T2FHC network is approximated with the 

equation (35). 

𝑢 = 𝑢̂𝑇2𝐹𝐻𝐶(𝑋, 𝑍̂, 𝑐̂, 𝜎̂) + 𝑢𝑅𝐶 = 𝑍̂
𝑇𝔽̂ + 𝑢𝑅𝐶 (35) 

Replacing the equations (34), (35) into (8), the output of 

T2FHC is expressed as equation (36). 

𝑠̇ (𝑒(𝑡)) = 𝐺𝑛[𝑍
𝑇𝔽∗ + 𝑍̂𝑇𝐹̃ + 𝜀 − 𝑢𝑅𝐶] − 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))] 

 (36) 

Setting 𝑍 = 𝑍∗ − 𝑍̂, the practical output of the network 

𝑢̃𝑇2𝐹𝐻𝐶 is correlated with 𝑍 in the equation (37). 

𝑢̃𝑇2𝐹𝐻𝐶 = 𝑢𝑇2𝐹𝐻𝐶
∗ − 𝑢̂𝑇2𝐹𝐻𝐶 = 𝑍∗𝑇𝔽∗ − 𝑍̂𝑇𝔽̂ (37) 

Where, 𝑍∗and 𝑍̂ are the corresponding outputs of the 

nwtworks. They are calculated to minimize the system error 

𝑠 (𝑒(𝑡)) and then we get the equation (38). 

𝑙𝑖𝑚 |𝑢̃𝑇2𝐹𝐻𝐶𝑞| = 𝑙𝑖𝑚|(𝑍𝑞
∗𝑇 − 𝑍̂𝑞

𝑇)𝔽∗| = |𝛾𝑞| (38) 

The Taylor series is extended to convert a nonlinear 

function to a linear function in equation (39). 

𝔽̃ =

[
 
 
 
 
𝔽̃1
⋮
𝔽̃𝜆
⋮
𝔽̃𝑛𝜆]

 
 
 
 

=

[
 
 
 
 
 
 
 
 (
𝜕𝔽1
𝜕𝑐
)
𝑇

⋮

(
𝜕𝔽𝜆
𝜕𝑐
)
𝑇

⋮

(
𝜕𝔽𝑛𝜆
𝜕𝑐

)

𝑇

]
 
 
 
 
 
 
 
 

|

|

|

𝑚=𝑚̂

(𝑐∗ − 𝑐̂) +

[
 
 
 
 
 
 
 (
𝜕𝔽1
𝜕𝜎

)

⋮

(
𝜕𝔽𝜆
𝜕𝜎

)

⋮

(
𝜕𝔽𝑛𝜆
𝜕𝜎

)
]
 
 
 
 
 
 
 

|

|

|

𝜎=𝜎̂
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(𝜎∗ − 𝜎̂) + 𝛽 ≡ 𝑓𝑚𝑚̃ + 𝑓𝜎𝜎̃ + 𝛽 (39) 

With 𝛽 is a vector of higher-order terms, [(
𝜕𝔽𝜆

𝜕𝑐
)] and [(

𝜕𝔽𝜆

𝜕𝜎
)] 

are defined as equation (42) and (43). 

[
𝜕𝔽𝜆
𝜕𝑐
] = [0, … , 0,

𝜕𝔽𝜆
𝜕𝑐1𝜆

, … ,
𝜕𝔽𝜆
𝜕𝑐𝑛𝑖𝜆

, 0, … , 0] (42) 

[
𝜕𝔽𝜆
𝜕𝜎

] = [0, … , 0,
𝜕𝔽𝜆
𝜕𝜎1𝜆

, … ,
𝜕𝔽𝜆
𝜕𝜎𝑛𝑖𝜆

, 0, … , 0] (43) 

 Putting (38) and (39) into (36), the T2FHC output 

becomes obtained in equation (44). 

𝑠̇ (𝑒(𝑡)) = 𝐺𝑛[𝑍̂
𝑇(𝑓𝑚𝑚̃ + 𝑓𝜎𝜎̃) + 𝜔 − 𝑢𝑅𝐶] − 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))] 

 (44) 

Where, 𝜔 is the approximated error that is formatted by 𝜔 =
𝑍̂𝑇𝛽 + 𝜀 +  𝛾. The robust controller is then designed as in 

equation (45). 

𝑢𝑅𝐶 = (2𝑅
2)−1(𝑅2 + 𝐼)𝑠 (𝑒(𝑡)) (45) 

Where, 𝑅 is a positive diagonal matrix, 𝑅 = 0.75 ∗
𝑑𝑖𝑎𝑔(𝜑1, 𝜑2, … , 𝜑𝑖). Thus, the output of the whole system is 

the summary of 𝑢𝑇2𝐹𝐻𝐶 and 𝑢𝑅𝐶 , becomes obtained in 

equation (46). 

𝑢 = 𝑢𝑇2𝐹𝐻𝐶 + 𝑢𝑅𝐶  (46) 

D. Self-Organizing for Gauss Functions 

Different from [60], this article uses the Self-Organizing 

structure of [29]. Accordingly, expand the Taylor series to get 

the convergence error and the best approximation for the 

value 𝑚. 

𝐷𝑀𝑘 = ‖[
𝜕𝔽𝝀
𝜕𝒄
] − 𝑐𝑘‖

2
 

Where 𝑐𝑘 = [ 𝑐1𝑘, . . . , 𝑐𝑖𝑘, . . . , 𝑐𝑛𝑖 𝑘  ] 
𝑇. Defined method to 

add a new layer can be calculated by a formula (47). 

𝑘̂ = 𝑎𝑟𝑔 min
1≤𝑘≤𝑛𝑘

𝐷𝑀𝑘 (47) 

If max
𝑖
 𝐷𝑀𝑘̂ > 𝐾𝑔 then a new class is created with 𝐾𝑔 is 

a given limit value. If the new input value is greater than the 

current value, a new layer will be created with the equation 

(48). 

𝑛𝑘(𝑡 + 1) = 𝑛𝑘(𝑡) + 1 (48) 

Where 𝑛𝑘(𝑡) is the current number of classes at time t. 

Random values will be generated in the new weight class 

including the original mean and variance as shown in the 

equation (49) and (50). 

𝑐𝑖𝑛𝑘 = 𝐼𝑖  (49) 

𝜎𝑖𝑛𝑘 = 𝜎𝑖𝑘̂  (50) 

Where, 𝐼𝑖  is the new input, 𝓏𝑖𝑘̂ is a predefined constant. 

In order to maintain the structure of the network, the self- 

Organizing structure will have to consider reducing the 

number of layers. To reduce the number of kth component 

layers of the jth output is defined as in equation (51). 

𝑀𝑀𝑗𝑘 =
𝑣𝑗𝑘

𝑜𝑗
 (51) 

Find the maximum value of the 𝑛𝑡ℎ output corresponding to 

the smallest component using the equation (52). 

𝑘̃ = 𝑎𝑟𝑔 min
1≤𝑘≤𝑛𝑘

max
1≤𝑗≤𝑚

𝑀𝑀𝑗𝑘 (52) 

If 𝑀𝑀𝑗𝑘 ≤ 𝐾𝑐, then the kth layer must be deleted with 𝐾𝑐 being 

the given limit value. 

IV. APPLICATION IN QUANSER 2 DOF ROBOT 

The T2FHC network parameters shown in Fig. 5 are listed 

in Table I. Where 𝑛𝐼, 𝑛𝑅, 𝑛𝑇, 𝑛𝜆 are the inputs of the network, 

the regions in the input layer, the block number, and the 

number of reception fields. 𝑚𝑖𝜆 and 𝑜𝑖𝜆  denote the Gaussian 

function parameters, 𝑛𝑚, 𝑛𝑜 are the brain emotional learning 

rates, b and c are the gain parameters of the brain emotional 

learning. After many tests, the following parameters were 

selected to optimize the system and improve control quality. 

+
-

uUncertance Nonlinear 

Systems

NI Terminal 

Board
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Adaptive 
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Organizing
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+
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e(t)

Adaptive Law

RCu

e
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c, v,w

'

dq
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Fig. 5. Overall structure diagram of the system 

TABLE I.  INITIALIZED PARAMETER VALUES OF THE PROPOSED NEURAL 

NETWORK 

𝑛𝐼 2 

𝑛𝑅 5 

𝑛𝑇 4 

𝑛𝐵 2 

𝑛𝜆 11 

𝑚𝑖𝜆 [-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1] 

𝑜𝑖𝜆 1.2 

𝑛𝑚, 𝑛𝑜 0.001 

𝛼, 𝛽 0.5 

b, c 8,2 
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To validate the effectiveness of the proposed method, we 

apply the T2FHC model on 1 Quanser 2 DOF Robot. Three 

case studies were experimented including with load, 180g 

load, 360g load.  

Quanser's 2-step parallel robot experimental model is 

depicted in Fig. 6. The model consists of 4 link rods, two 

motors with a maximum speed of 6000v/min, two encoders 

with a resolution of 4096 pulses/revolutions, a power 

amplifier and a ni_pcie_6351-0 card that collects data 

connecting the robot to a computer. 

 

Fig. 6. Realistic model of experimental system 

V. EXPERIMENTAL RESULTS 

To see the superiority of T2FHC, during the system 

operation, we assume that there is noise due to loading into 

the system. We set the weight at 15cm×7cm×1.2cm and the 

weight at 60g.  

During the time t=0 to t=3 the robot is idling, from t=3 to 

t=7 we put a 180g weight into the system. To increase the 

testability of T2FHC, from t=7 onwards we add, and total 

weight is 360g. 

Looking at Fig. 7 it can be seen that when adding each 

mass to the system in turn for the first time, the robot works 

normally. This shows that T2FHC has the ability to handle 

and adjust automatically to maintain stable operation of the 

robot. At the second time, when the second mass is added 

(t=7), a deviation occurs in the trajectory of the robot shown 

in Fig. 7(a). However, the T2FHC system immediately 

learns and returns the robot to the given orbit. This 

demonstrates the T2FHC's ability to learn and respond in real 

time, helping to maintain the robot's stability and accuracy 

in noisy environments. 

Looking at Fig. 8, we can see that, from the time before 

t = 6, the systematic error does not change much. At time t=7 

onwards, the system starts to oscillate, and the error 

generated is large (above 0.05) in Fig. 8(a). However, the 

improved T2FHC system responded and returned the system 

to its given trajectory. 

Fig. 9 is the actual trajectory corresponding to the entire 

operation of the system. Although during operation, errors 

(greater than 0.05) are generated as shown in Fig. 8(a). But 

the system works fine with some trajectory difference when 

the load is applied. 

 

 
(a) 

 
(b) 

Fig. 7. Positions of: (a) motor A; (b) motor B 

 
(a) 

 
(b) 

Fig. 8. Tracking errors of the proposed modified T2FHC control system at 

joints (a) motor A; (b) motor B 

 

Fig. 9. The actual trajectory of the controller 
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A. Compare with Other Controllers 

The CMAC method [25] and the NSOFC method [29] 

are said to have the ability and speed to obtain high accuracy 

for nonlinear systems. We will compare based on two real 

cases, one is the system idling and the other is the system 

running at different loads. Then compare the results to see if 

T2FHC is better than the current 2 methods, CMAC and 

NSOFC 

1. Case 1: No load. 

As can be seen from Fig. 10, the improved T2FHC shows 

less oscillation error (-6.42e-04 in Fig. 10(a) motor A and 

2.27e-04 in Fig. 10(b) motor B) compared with other 

controllers. This shows that the proposed method has better 

stability and ability to pursue generated funds than NSOFC 

and CMAC. However, it is still not possible to conclude that 

the current method is more optimal than the remaining 

methods. Therefore, several more tests should be performed 

for a more detailed evaluation of T2FHC.  

 
(a) 

 
(b) 

Fig. 10. Tracking errors of the proposed modified T2FHC control system 

and CMAC, NSOFC at joints (a) motor A; (b) motor B 

Fig. 11 shows the actual trajectories of the controllers. 

The modify T2FHC is the most prominent controller as it 

adheres to the given trajectory through the magnified image 

in the lower right corner. In general, the CMAC or NSOFC 

controllers are still capable of responding to the system but 

are still not effective at orbital angles. 

In conclusion, though modify T2FHC has shown 

outstanding performance and good stability under the 

present test conditions. But more tests need to be continued 

to evaluate in more detail the control quality and its 

advantages over other methods. 

 

 

 

Fig. 11. Realistic trajectories of the controllers 

2. Case 2: Put a total of 180g upload to the robot. 

As can be seen from Fig. 12, the improved T2FHC shows 

less oscillation error (-1.07e-03 in Fig. 12(a) motor A and 

4.24e-04 in Fig. 12(b) motor B) compared with other 

controllers. However, at time t=2s and t=8s in Fig. 12(a), 

CMAC and NSOFC have a mutation in error. In Fig. 12(b), 

the CMAC has a very large error of 5.67e-04 compared to 

the other two controllers. 

 
(a) 

 
(b) 

Fig. 12. Tracking errors of the proposed modified T2FHC control system 

and CMAC, NSOFC at joints (a) motor A; (b) motor B 

Fig. 13 shows the actual trajectories of the controllers. 

The modify T2FHC is the most prominent controller as it 

adheres to the given trajectory through the magnified image 

in the lower right corner. CMAC has better response at 

orbital angles compared to Fig. 11. In contrast, NSOFC has 

chattering phenomenon, which reduces controller quality. 

However, the controllers still adapt to situations where 

the actual trajectory is not the same as given. By updating 

the new parameters, the controller will try to bring the 

system to a stable state and follow the trajectory more 

accurately. This process may take a short time to achieve and 

depends on the complexity of the system and controller. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 517 

 

Thanh Quyen Ngo, An Application of Modified T2FHC Algorithm in Two-Link Robot Controller 

 

Fig. 13. Realistic trajectories of the controllers 

3. Case 3: Put a total of 360g upload to the robot. 

As can be seen from Fig. 14, the improved T2FHC shows 

less oscillation error (-1.69e-04 in Fig. 14(a) motor A and 

1.22e-04 in Fig. 14(b) motor B) compared with other 

controllers. Like case 2, at time t=2s and t=8s in Fig. 14(a), 

CMAC and NSOFC have a mutation in error. In Fig. 14(b), 

the CMAC has a very large error of 5.67e-04 compared to 

the other two controllers. However, this time the improved 

T2FHC had a large error difference at t=4.5s in Fig. 14(a). 

 
(a) 

 
(b) 

Fig. 14. Tracking errors of the proposed modified T2FHC control system 

and CMAC, NSOFC at joints (a) motor A; (b) motor B 

 

Fig. 15. Realistic trajectories of the controllers 

Based on the experiment, it can be seen how the 

controllers work at different noise levels. All controllers 

respond to orbital tracking, but both NSOFC and CMAC 

appear to have performed poorly. As for the T2FHC, it once 

again confirms its confidence in keeping the error as low as 

possible in Fig. 14 and maintaining stability in any situation. 

At this point, it can be tentatively concluded that the 

improved T2FHC is a remarkable controller as its 

responsiveness has been demonstrated through the above 

experiments. The detailed system parameters are shown in 

Table II.  

In summary, T2FHC is a remarkable and responsive 

controller in controlling non-linear systems. It has shown its 

reliability in the above experiments by its ability to maintain 

stability and keep errors as low as possible. This is a 

remarkable result and shows the potential of modify T2FHC 

in driving non-linear systems. 

TABLE II.  PARAMETERS OF CMAC, NSOFC AND MODIFY T2FHC 

CONTROLLERS IN CASES 

m(g) Joint  NSOFC CMAC T2FHC 

0 

A 
RMSE 1.35e-05 1.50e-04 2.20e-06 

Error -6.45e-04 -2.58e-03 -6.42e-04 

B 
RMSE 3.34e-05 1.35e-04 2.26e-06 

Error 4.47e-04 1.56e-03 2.27e-04 

180 

A 
RMSE 1.41e-05 1.57e-04 4.82e-06 

Error 2.27e-04 2.72e-04 -1.07e-03 

B 
RMSE 6.55e-05 3.24e-05 5.96e-06 

Error 1.90e-04 5.67e-04 4.24e-04 

360 

A 
RMSE 1.06e-05 4.08e-04 4.66e-06 

Error -1.04e-04 -1.78e-04 -1.69e-04 

B 
RMSE 8.07e-05 1.94e-04 7.38e-06 

Error 9.45e-05 8.07e-04 1.22e-04 

 

Table II shows the results of three different sets (NSOFC, 

CMAC and T2FHC) when applied to the Quanser 2 DOF 

robot. This is a regression problem; the goal is to find a 

function that can represent the relationship between input 

variables (position of robot arm) and output variable (joint 

angle of robot arm. Algorithms can learn this function from 

training data and then use it to predict match angle for new 

positions. 

One way to evaluate the performance of a controller is to 

use mean squared error (RMSE) and error. Both metrics can 

be negative or positive, depending on whether the model 

predicts higher or lower than the actual value. The lower the 

RMSE and the error, the more accurate the model. 

According to the results in the table, it can be concluded: 

• The modify T2FHC algorithm is the most efficient in the 

controllers because of the RMSE and the lowest error for 

all cases. This shows that modify T2FHC can 

approximate the function representing the joint angle of 

the robot arm most accurately. At the same time, it is 

possible to handle various uncertain components in the 

system. 

• The NSOFC algorithm is the least efficient of the three 

models. Although it has a lower RMSE and error than 
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CMAC, the functional approximation of robot arm joints 

is better than CMAC. But it has chattering phenomenon 

that causes the quality of the system to go down. 

• The CMAC algorithm is the model with the average 

performance of the three controllers because the RMSE 

and error are average for the joints and orbital positions. 

This shows that CMAC can approximate the function 

representing the joint angle of the robot arm quite well, 

but not the best. In addition, CMAC can also encounter 

some problems when predicting the match angle for 

locations far from the training data. For example, joint A 

is at 360 degrees, where it has the largest error of the 

three controllers. 

VI. CONCLUSION AND DISCUSSION 

This paper proposes an integrated learning network from 

two main components, Type-2 fuzzy CMAC and BELC. 

Along with that, the sliding surface generation method is used 

to control the nonlinear system. One of the remarkable points 

of the proposed method is the robustness of the control 

system to uncertain components. This is especially important 

in practical applications where uncertainty and volatility are 

frequent. Fuzzy Type 2 CMAC and BELC integrated control 

systems can respond to variations. Thus, T2FHC achieves 

stable and accurate performance in monitoring and control.  

Comparisons with existing control methods are an 

important part of the evaluation of the proposed method. 

Comparative studies focus on CMAC and NSOFC 

algorithms. By comparing with other methods, the strengths 

and weaknesses of the proposed method can be identified. 

This helps to improve and optimize more in the future. 

Indeed, tests were conducted to check the efficiency of the 

system. The results show that using T2FHC (Type-2 fuzzy 

CMAC and BELC) provides more accurate and stable 

position tracking than using CMAC and NSOFC. This again 

confirms the reliability of the theory when applied in practice, 

especially in nonlinear systems. However, this paper could be 

improved in several points.  

One point that needs improvement is the flexibility of the 

parameters in the network. In this paper, the parameters are 

selected based on many experiments and practical 

experience. Research on improving the method of choosing 

parameters will have important implications in applying this 

method in practice.  

In addition, continuing to research and test the system on 

many different models and conditions will also be a potential 

development direction. This will help to evaluate and 

determine the applicability of the method in real-life 

situations. In the process of implementing control systems in 

real applications, there will be limitations and challenges. 

One of the challenges is hardware constraints, including 

computational resource requirements and the ability to 

integrate with existing systems. Considering these limitations 

will help to come up with the right solution to deploy the 

control system effectively.  

In addition, the operating environment is also an 

important factor to consider. The control system is subject to 

noise, variability, and heterogeneous environmental 

conditions. This poses a challenge in ensuring the stability 

and performance of the control system under extreme 

conditions.  

Further experiments or simulations are required to 

confirm and evaluate the performance of the control system 

in more complex situations. This includes testing the system 

on more complex models, as well as evaluating the system's 

ability to manipulate different reference trajectories. 

Conducting these experiments and simulations will give a 

clearer view of the capabilities and limitations of the control 

system. 

Finally, extend the actual research using the proposed 

method. Considering the applicability for robotic systems 

with a higher number of linked commands compared to a 

completely different system is a potential development 

direction. This will contribute to expanding the applicability 

of the method in areas such as robotics, automation systems 

and industrial applications.  

In summary, the paper introduces the integrated learning 

network from Type-2 fuzzy CMAC and BELC and uses the 

strong control method sliding surface generator to control the 

uncertain nonlinear system. The experimental results show 

the efficiency of the proposed network and confirm the 

reliability of the theory. For improvement, flexibility of 

parameters and further study of different conditions are 

potential directions for this paper. 
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