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Abstract—Human intention has long been a primary 

emphasis in the field of electromyography (EMG) research. This 

being considered, the movement of the exoskeleton hand can be 

accurately predicted based on the user's preferences. The EMG 

is a nonlinear signal formed by muscle contractions as the 

human hand moves and easily captured noise signal from its 

surroundings. Due to this fact, this study aims to estimate wrist 

desired velocity based on EMG signals using ANN and FL 

mapping methods. The output was derived using EMG signals 

and wrist position were directly proportional to control wrist 

desired velocity. Ten male subjects, ranging in age from 21 to 

40, supplied EMG signal data set used for estimating the output 

in single and double muscles experiments. To validate the 

performance, a physical model of an exoskeleton hand was 

created using Sim-mechanics program tool. The ANN used 

Levenberg training method with 1 hidden layer and 10 neurons, 

while FL used a triangular membership function to represent 

muscles contraction signals amplitude at different MVC levels 

for each wrist position. As a result, PID was substituted to 

compensate fluctuation of mapping outputs, resulting in a 

smoother signal reading while improving the estimation of wrist 

desired velocity performance. As a conclusion, ANN 

compensates for complex nonlinear input to estimate output, but 

it works best with large data sets. FL allowed designers to design 

rules based on their knowledge, but the system will struggle due 

to the large number of inputs. Based on the results achieved, FL 

was able to show a distinct separation of wrist desired velocity 

hand movement when compared to ANN for similar testing 

datasets due to the decision making based on rules setting setup 

by the designer. 

Keywords—Artificial Neural Network (ANN); Fuzzy Logic 

(FL); Exoskeleton Wrist Control; PID; Mapping Methods. 

I. INTRODUCTION 

Understanding the human motion intention has become a 

new era challenge for intelligent human–computer 

interaction. This subject has been substantially studied in all 

research on how to assist a person whose loss of limbs hinders 

physical functionality and movement, which severely lowers 

the quality of life.  In the United States, 1.9 million persons 

lost a limb in 2012, with 41,000 of those cases affecting the 

upper limb [1]. Traumatic events, underlying medical 

diseases, comorbidities, or a genetic illness can all lead to 

upper limb insufficiency. Prosthetic fittings are available as 

the main form of functional support for the majority of 

acquired amputations and some congenital limb 

abnormalities. This device mostly required data captured 

from muscles contraction namely electromyography (EMG) 

signals which was used to analyze and capture the 

neuromuscular activation observed in the various muscles 

during different physical activities that contains the 

movement intention of the human body [2]. 

Surface EMG, also referred to as sEMG, is a common 

way to depict human intention. A bioelectric signal called 

surface electromyography (sEMG) is created when muscles 

are naturally activated by the nervous system [3]. The human 

body's intended movement is encoded in the sEMG through 

the mapping between muscle location and activation level. 

Controlling a myoelectric hand, an exoskeleton, and other 

devices are where it finds the most widespread application 

[4], [5]. The human hand, on the other hand, is a highly 

articulated joint with several degrees of mobility. 

Electromyography (EMG) recorded from extrinsic muscles 

in the forearm can be used as inputs to control a multi-degree 

of freedom (DoF) hand exoskeleton and prosthesis because 

the movement of the hand is directly supported by significant 

muscles contraction depending on the user's decision [6], [7], 

[8], [9]. 

Since the EMG signal was recorded while a person 

formed a hand movement, understanding that it naturally has 

a nonlinear structure is crucial. It is easily influenced by 

noises in its environment. The noises due to the type of 

electronic equipment, movement of electrodes and cables, 

movement of the subject during signal recording, artifacts, 

muscle fatigue, crosstalk  and other physiological factors  

which need proper detection and processing of EMG signals 

with effective and advance methodologies may be a 

fundamental requirement for its applications in different 

control fields [10], [11], [12].  

The primary objective of this paper was to propose 

mapping methods that enhanced the control of the wrist 

exoskeleton hand. For this purpose, the designer chose to 

analyze two approaches, namely Artificial Neural Network 

(ANN) and Fuzzy Logic (FL), utilizing EMG signals 

obtained from experimental results. FL was selected for its 

proficiency in handling nonlinear systems and adaptability to 

changes within a system, making it suitable for dynamic and 
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evolving situations. On the other hand, ANN was chosen for 

its capability to capture complex relationships between input 

and output data, allowing it to learn from examples and 

continuously adjust its internal parameters (weights) to 

improve performance over time. Considering these distinct 

advantages possessed by both mapping methods, the designer 

analyzed their potential in enhancing the control performance 

of the wrist desired velocity system. 

In this paper, the designer addresses the research gap 

concerning the comparison analysis performance of two 

mapping methods: ANN and FL. The objective was to guide 

researchers in selecting the most suitable method by utilizing 

similar datasets. Furthermore, the results obtained from these 

mapping methods can be leveraged to improve the 

performance of the PID controller to model and control wrist 

exoskeleton hand movements. 

This paper has been structured into four main sections: 

recent developments in EMG control methods, methodology, 

results, and conclusion. The "Recent Development of EMG 

Control Method" section explores various types of control 

strategies employed in the field. In the "Methodology" 

section, presented the testing methods used for system 

validation, including detailed procedures, processes, and 

settings for each approach. The "Results and Discussion" 

section analyzes the performance of the selected methods 

through single and double muscle experiments, with the 

inclusion of PID to complete the overall system testing. 

Finally, in the "Conclusion" section, summarize all the 

analyses and propose future research directions. 

II. RECENT DEVELOPMENT OF EMG CONTROL 

METHOD 

EMG-based human intention recognition has three main 

processing approaches. They are deep learning based method 

(DL), model based (MB) method and machine leaning (ML) 

based method, [13], [14] as shown in Table I. DL can be 

defined as finding a relationship between inputs and desired 

outputs using a neural network. With less requirement for 

feature engineering and kinematic modelling, this approach 

opens up more opportunities for fixing the initial problems 

with older approaches [15]. On the one hand, deep learning 

is data-driven, therefore performance increases with 

increased data [7]. Deep neural networks and augmented 

datasets can provide more stable, abstracted properties. 

However, this approach has a black box input-output 

relationship. 

Several artificial intelligence systems transform input sets 

to output sets without considering muscle working 

formulation. In essence, a system was given a wide variety of 

inputs and related outputs using this technique. After training, 

the system should predict the continuous motion parameter 

from a random EMG signal.  This approach is frequently used 

in continuous motion prediction using EMG. The neural 

network model, fuzzy approximation, Bayesian network, 

hidden Markov model, and Kalman filter may predict 

continuous human upper limb movements [16], [17], [18], 

[19]. 

Researchers frequently use the model-based approach to 

estimate joint angle, force, torque, and other continuous 

motion parameters. Because inputs and outputs are 

interrelated, model-based techniques construct a linear or 

nonlinear analytical relationship. The connection may 

additionally utilize unknown input features like wrist 

function, finger angle, and hand gesture to estimate the target 

output. These variables may initially be established through 

experimentation or by making some assumptions. The 

settings are then changed repeatedly until the desired version 

performance is attained. This approach can be expressed as a 

kinematic, dynamic, or musculoskeletal model depending on 

the intention identification purpose, which requires accurate 

representation of human limbs [14]. 

The method based on machine learning has been 

frequently used to identify the patterns present in EMG 

signals. Usually, researchers use this strategy to classify limb 

gestures.  Pre-processing, feature extraction and selection, 

and machine learning comprise the machine learning-based 

strategy, according to Simão et al.  [13]. It systematically 

mapped input to output, categorizing the output required 

accuracy and efficiency. Thus, such reconstruction methods 

may project EMG data into a discriminant space with 

exceptional movements. It is advantageous to learn about the 

new input data structure because it might enhance 

discrimination to enhance overall performance. Machine 

learning (ML) computing can extract the specified features 

from the targeted data and quantify them for model training 

using supervised learning including K-Nearest Neighbour 

(KNN) Linear Discriminant Analysis (LDA) Support Vector 

Machine (SVM) and Artificial Neural Networks (ANN) [20], 

[21], [22], [23], [24], [25], [26].  

Since the discovery of feature extraction methodology, 

the development of EMG processing methodology has 

consistently been emphasized aspect. Using data from Table 

I, three techniques were identified and tallied for use from 

2012 through 2023. Most researchers are now concentrating 

more on employing machine learning techniques as the 

earlier years of 2012 to 2019 get underway. The pattern 

recognition classifier, pre-processing, feature extraction, 

machine learning, and final output result are all covered by 

this method. Machine learning was successful in covering 

hand and wrist angle movement, which added a variety of 

novelties to the EMG area, on the upper limb body part. 

However, in this within range of years there has been 

exploration on the other two methods which are model based 

and deep learning done by Kawase et al. [27], Songyuan 

Zhang et al. [16] and Du Jiang [19]. All these researchers 

explore a novelty on hand and wrist movement activities. As 

additional research focused more on model-based and deep 

learning got involved, most researchers began to expand their 

control approach tactics starting in the year 2020 and above. 

Researchers are adapting more research on hand and wrist 

movement as they stress this strategy in their experimental 

designs. However, other researchers have continued to make 

advances in studying this machine learning technique up to 

this point. 

The classification of bio-signal using traditional machine 

learning models relies on handcrafted features that have been 

painstakingly picked and developed. EMG signal-based limb 

motion recognition, robot control, rehabilitation, and clinical 

research have used supervised ML algorithms [28]. 
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Numerous factors, including EMG recording techniques 

(such as different electrodes, electrode placement locations 

on the body surface, or recording devices), bio-variability 

(age and body mass index), environmental factor (room 

temperature), electrical power line noise, and motion artefact, 

affect the accuracy of feature extraction from the EMG 

signals. These effects decrease system robustness and 

recognition accuracy requiring complicated signal processing 

[29]. However, in order to optimize estimation performance, 

machine learning algorithms need a large amount of datasets 

[30]. 

TABLE I.  CHRONOLOGY DEVELOPMENT OF EMG PROCESSING METHOD 

No  Author     Year 
Control Method Body 

Part           ML MB      DL 

1 Pang et al. [37]            2012    Hand 

2 Loconsole et al. [38] 2013    Hand 

3 Ngeo et al. [39] 2013    Hand 

4 Kawase et al. [27] 2014    Wrist 

5 Li et al. [40] 2014    Wrist 

6 Kirchner et al. [41] 2014    Wrist 

7 Leonardis et al. [42] 2015    Hand 

8 Songyuan et al. [16] 2016    Wrist 

9 Accogli et al. [43] 2017    Wrist 

10 Lu et al. [44] 2017    Hand 

11 Yun et al. [45] 2017    Hand 

12 
Irastorza-Landa et al. 

[46] 
2017    Wrist 

13 E. Kilic et al [32] 2017    Wrist 

13 Zeng et al. [47] 2018    Hand 

14 Jana et al. [48] 2019    Hand 

15 Lei et al. [17] 2019    Wrist 

16 Lu et al. [49] 2019    Hand 

17 Secciani et al. [50] 2019    Hand 

18 Burns et al. [51] 2019    Hand 

19 Du Jiang [19] 2019    Hand 

20 
Chenyun Dai et al. 

[52] 
2020    Hand 

21 Qin Zhang et al. [53] 2020    Hand 

22 Yihui Zhao et al.[54] 2020    Wrist 

23 Itzel Jared et al. [55] 2020    Hand 

24 
Tamas Kapelner et al. 

[56] 
2020    Wrist 

25 
Davide Piovesan et al. 

[57] 
2020    Hand 

26 Tianao Cao et al. [58] 2020    Wrist 

27 Longbin et al. [59] 2020    Wrist 

28 Xiao et al.[60] 2021    Hand 

29 Xie et al. [61] 2021    Hand 

30 M. Mukhtar et al. [62] 2021    Hand 

31 Davis A. et al. [63]      2021    Wrist 

32 Nguiadem et al. [64]      2021    Wrist 

33 Nicole J. et al. [65]      2021    Wrist 

34 Cries Avian et al.[66]      2022    Hand 

35 Maurício et al [33]    2022    Hand 

36 Mahsa [34]    2022    Hand 

37 
Ravi Suppiah et al 

[35] 
   2022    Hand 

38 Yihui Zhao et al [12]    2023    Wrist 

39 Sibo Yang et al [67]    2023    Hand 

40 Yassine et al [68]    2023    Hand 

41 Jianan Li et al [69]    2023    
Hand/ 

wrist 

42 Markus et al [24]    2023    
    Hand/ 

wrist 

 

ANN mimic human behavior, allowing laptops to 

recognize patterns and tackle basic AI, deep learning, and 

machine learning challenges. B. Chen et al.  and L. Meng et 

al. found that ANN can extract features from data samples for 

machine learning computing [25], [26]. It simulates a human 

brain's neuron network so the computer can think and decide 

like a person.  ANNs may study from times, replicate 

arbitrary non-linear input functions, and have a substantially 

parallel and normal shape, making them ideal for pattern 

categorization [31]. An ANN is typically trained or fed 

enormous amounts of information, which includes training, 

providing input, and instructing the network as to what the 

output should be. However, ANN is a data-driven technique 

because the accuracy of the output increased as more data 

were fed into the training network [7]. 

The trends of introducing FL in a control method also 

increase as E. Kilic et. al, 2017 [32], Du Jiang et. al, 2019 

[19], Maurício Cagliari Tosin et. Al, 2022 [33], Mahsa Barfi 

et. Al, 2022 [34], and  Ravi Suppiah et. Al, 2022 [35] used 

FL in their decision making output process FL allows many 

inputs and interprets them based on human expertise. The 

recorded EMG signals from the forearm muscles in charge of 

hand and wrist movements are the inputs to the FL. The FL 

output might be the wrist's assistive torque or desired angular 

velocity because EMG signals directly connect to muscle 

activation as higher muscle activation levels produce more 

force. Since the admittance controller, one of the most widely 

used control theories for robotic rehabilitation systems, 

accepts force as an input and allows velocity as an output, 

joint angle and angular velocity were chosen as FL outputs in 

most studies [36]. 

III. METHODOLOGY 

A. Mechanical Hand Design  

The exoskeleton was designed to mimic the human hand. 

From ten male subjects ages from 21 to 40 years old, all the 

anthropometric hand measurement were taken.  

Fig. 1 shows completed exoskeleton hand designed 

model. For this paper, one degrees of freedom (DoF) of the 

wrist joint angle position has been highlighted in this 

exoskeleton hand designed covered three types of gestures: 

hand gripping at -45°, 0°, and 45° as shown in Fig. 2. Since 

the wrist exoskeleton hand can be moved to achieve wrist 

velocity, it is completely actuated. 

 

Fig. 1. Exoskeleton prototype design 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 575 

 

Mohd Safirin Karis, Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton 

   

(a) (b) (c) 

Fig. 2. Solidwork 3D Hand Design (a) Flexion Position, (b) Neutral Position, 

(c) Extension Position [70] 

B. EMG Data Collection 

Ten male subjects signed the researcher's consent form to 

undertake the hand grip pattern experiment at varying wrist 

joint angles. The experiment began after the subjects were 

fully briefed. Each experiment was repeated three times [71]. 

This experiment used a Hand Dynamometer, LabQuest Mini 

data acquisitions, Vernier EMG sensors, a personal computer 

with Logger Lite data-collection software, Stopwatch, 

Protector, and Kendall5400 diagnostic tab electrodes. All 

experiments were approved by the University Ethical 

Committee or Centre for Research and Innovation 

Management (CRIM) at University Technical Malaysia 

Melaka (UTeM) Malaysia. 

The Flexor Carpi Radialis (FCR) and Extensor Carpi 

Radialis Longus (ECRL) EMG signal values have been 

employed in this research to represent each wrist joint angle 

movement [72], [32], [73]. The electrode was placed right on 

top of muscle belly to ensure the signals response will 

represent the actual readings of muscle contraction. All of the 

subjects were in good health with non-neurological diseases 

and used their dominant hand for data collection. From one 

task to another, the subjects will take 10s rests to ensure the 

effects of muscle fatigue can be reduced. The medial 

epicondyle has been used to locate the muscles and the 

palpate Scaphoid technique has been employed to determine 

the wrist movement [74], [75]. Table II shows the testing 

procedure on specifying the muscle location done in the 

experimental procedure. 

TABLE II.  MUSCLE IDENTIFICATION TEST AND ITS LOCATION FOR 

ELECTRODE PLACEMENT 

No Muscle Test Location 

1 

 

Flexor Carpi 

Radialis 
(FCR) 

The wrist is 

flexed against 
resistance. 

Three or four 

fingerbreadths away from 
the midpoint of a line 

connecting the medial 

epicondyle and biceps 
tendon. 

2 

 

Extensor 

Carpi 
Radialis 

Longus 

(ECRL) 

The wrist is 

extended and 
abducted with 

the forearm 

pronated. 

Two fingerbreadths away 

from lateral epicondyle. 

 

Fig. 3 illustrates how experimental procedures conducted. 

The maximal force (MVC) of the hand grasp is a 

measurement of the subject's strongest voluntary contraction 

Electrode patches are put to the top of the abdominal muscles 

of FCR and ECRL. For five seconds, the samples were 

instructed to hold the hand dynamometer while using 

different hand grip strengths (20, 40, 60, 80, and 100% MVC) 

[71]. Each grip includes a two-second rest interval. The 

retrieved raw EMG signals were recorded using the Logger 

Lite programme. 

 

Fig. 3. Experimental set-up [70] 

C. EMG Signal Processing  

This paper adapted time-domain-based features using 

Waveform Length (WL) approach [76], [77]. The sampling 

frequency was chosen at 1 kHz to suit the EMG signals range 

(2Hz – 2kHz). The segmentation of input data was reduced at 

50% analysis window increment. A second-order band-pass 

Butterworth filter was used for this experimental procedure 

[78]. The maximum voluntary contraction (MVC), which 

was uniquely recorded from each subject, has been used to 

standardise EMG measurement values. This method scales 

the measurement between 0 to 1 and most used normalization 

techniques in MVC-normalization [79], [80] 

D. Mapping Process  

Modelling establishes a link between all usage 

parameters. It establishes a link between inputs and outputs 

in sequence. This modelling constructs a correct transfer 

function to describe system performance and measured 

efficacy of selected modelling approach. Modelling, 

sometimes called mapping, is a data groping representation 

of numerous types of group design. Since this paper 

recommended employing two mapping methods, ANN and 

FL were tested using the same data set to ensure a comparable 

output result. 

ANN and FL are among the preferable methods used by 

other researchers to generate an output result if the non-linear 

input was given. Using the advantages of both methods 

presents, they have been chosen to be a part of mapping 

method of EMG input and wrist position to predict the 

estimated wrist desired velocity output. While ANN excels in 

handling nonlinear inputs, its performance may suffer when 

dealing with small input datasets that cannot effectively 

create a network. Similarly, FL can handle nonlinear inputs 

and produce estimated results, but it requires clearly defined 

ranges of input data to avoid incorrect estimations and 

prevent significant errors. 
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1) Method 1: Dynamic Modelling of Wrist Movement Using 

Artificial Neural Network (ANN) 

Traditional feedforward neural networks are one-way 

mappings from input to output and do not use input signal 

dependency over time series. Depending on application 

complexity, neural networks can approximate nonlinear 

functions using adaptive weights on different layers [81]. 

Numerous related research papers have shown how good 

neural networks are in recognizing EMG patterns [82]. 

Francisco et al., 2020, used a regression algorithm with neural 

networks to create a multiclass categorization model to 

control a robotic system with three degrees of freedom of the 

anthropomorphic type that can accurately remote the robot 

arm to predetermined positions in a state machine [83]. 

ANN show promise performance for identifying motion-

based bio signal patterns and can capture system nonlinearity 

and have a low computational burden  [15], [84]. ANN 

approach requires training a network using input data to 

represent the system. Three sets of data were collected from 

one sample. Two data sets were used for training and one for 

testing to complete the process. The WL feature extraction 

algorithm has been used to extract the features produced by 

extensor and flexor muscles of the EMG signal. EMG_F 

(EMG value when the wrist was in flexion position), EMG_E 

(EMG value while the wrist was in extension position), and 

wrist joint angle position are the three types of inputs for 

single muscle response have been used to estimate the desired 

wrist velocity output. The design architecture for single 

muscle is shown in Fig. 4(a) below. Fig. 4(b) shows an ANN 

designed architecture inputs for double muscles experimental 

procedure consists of FCR and ECRL muscles to estimate the 

output for wrist desired velocity. 

 
 

(a) (b) 

Fig. 4. (a) Design ANN architecture for single muscle experimental 
procedure. (b) Design ANN architecture for double muscle experimental 

procedure. 

Single muscle approach shown in Fig. 5(a) and (b) 

compares signals at 20% MVC, 60% MVC, and 100% MVC 

Level between EMG_F and EMG_E. MVC at the same level 

should result in no wrist movement.  The MVC's other value 

levels should adhere to the one that is higher than the others. 

By realizing through this signal comparison experiment, 

the wrist desired velocity movement of can be estimated. 

However, signals from both graphs fluctuate, which may 

create wrist result velocity inaccuracy. 

For double muscle approach, 2 input signals have been 

sampled simultaneously from FCR and ECRL muscle 

responses shown in Fig. 5 (c) and 5 (d). The desired wrist 

velocity was the anticipated output from the ANN trained 

model. The wrist desired velocity output testing was 

estimated at 20% MVC and at 60% MVC level. At 20% MVC 

output, the signal generated showed a clear fluctuation at 75s 

and below where the state was at neutral wrist position. The 

signal stabilises about 75s–150s. However, at 150s and 

above, the signal response fluctuated in extension wrist 

position. In the 60% MVC level, the signal produced a more 

stable output result as it fluctuates only on each stage. 

  

(a) (b) 

  

(c) (d) 

Fig. 5. (a) single muscle response for FCR, (b) single muscle response for 

ECRL, (c) double muscles response at 20% MVC level, (d) double muscles 

response at 60% MVC level 

2) Method 2: Dynamic Modelling of Wrist Movement Using 

Fuzzy Logic (FL) 

Fuzzification, rules (knowledge), an inference system, 

and defuzzification are the four fundamental components of 

FL. Fuzzification is used to transform actual data into a 

membership function. To make decisions, rules are formed 

based on knowledge. The inference system is a decision-

making system that employs knowledge-based rules. 

Defuzzification converts an inference system's conclusion to 

actual data or real-world data so that it can interact with the 

actual system. Fig. 6 depicts a FL configuration concept. 

 

Fig. 6. Basic configuration of FLC concept [85] 

FL studies human thought processes. It offers a 

straightforward way of drawing a firm conclusion from 

ambiguous and unpredictable data. FL has many advantages 

because of its inherent efficacy. It doesn't need inputs that are 

precise and noise-free. Even with a broken feedback sensor, 

it works securely. Any sensor data that gives a vague sense 

of how well a system is doing is sufficient. The rule-based 

procedure allows for the consideration of any multiple inputs 

and the handling of any number of outputs [86]. According to 

Momen Kamal Tageldeen et al. 2017, FL can include expert 

knowledge into controller design, reducing uncertainty [87]. 

Fig. 7 shows a FL architecture for single muscle and 

double muscle approaches. As for Fig. 6 (a), single muscles 

architecture of EMG signals from the forearm muscles and 

wrist joint angle position were recorded by the FL's three 

inputs while Fig. 7 (b) designed architecture specified for 
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double muscles as two inputs have recorded EMG signals 

from two forearm muscles. As one of the most popular 

control theories for exoskeleton hand systems, the desired 

velocity of the hand wrist has been selected as the FL's output 

[59]. The activation rate for extensor and flexor muscles of 

the EMG signal has been continuously assessed using WL 

feature extraction algorithms. To match up similar data sets 

utilized for both mapping methods, the data set used for 

testing in the ANN method will be used to complete the FL 

procedure. 

  

(a) (b) 

Fig. 7. (a) FL design for single muscle, (b) FL design for double muscles 

[70] 

 Fig. 8 (a), (b), (c), (d) and (e) shows that FL fuzzyifies 

input variables for both approaches before generating the rule 

table using membership functions. For single muscle 

approach, shown in Fig. 8 (a), (b), and (c) inputs indicated 

three triangular-shaped membership functions used to fuzzify 

EMG signals and two trapezoidal-shaped membership 

functions used to fuzzify wrist joint angle position at 20%, 

60%, and 100% MVC level. EMG_F and EMG_E were used 

to analyze FCR and ECRL muscles input. EMG signals have 

been classified as SMALL (S), MEDIUM (M), and HIGH 

(H). As for double muscle approach shown in Fig. 8 (d) and 

(e), FCR and ECRL muscles have been using similar 

concepts of triangular membership functions to classify its 

signals. FL outputs wrist desired velocity used five triangle 

membership functions was categorized as FH (flexion high: 

100°/s), FM (flexion medium: 50°/s), Z (zero velocity: 0°/s), 

EM (extension medium: 50°/s), and EH (extension high: 

100°/s) in the output Fig. 8 (f). Input triangular membership 

functions are defined based on the testing data after passing 

through the feature extraction process. For input, the highest 

and lowest data numbers were taken from their own group 

dataset to form this triangular membership function. 

Table III above displayed 15 IF-THEN rule statements. 

EMG_F and EMG_E are signals generated during wrist joint 

angle for flexion and extension. According to the first three 

fundamental criteria listed in Table III, both flexion and 

extension actions should result in zero wrist desired velocity 

when both signals have been in similar level. The following 

six rules investigated how various EMG signal excitations 

affected predictions of the wrist-desired velocity. To 

complete the fifteen criteria, guidelines limited the device's 

wrist joint angle (Ɵ) and added wrist velocity (Ɵ/s) safety 

measures. The 15 linguistic statements in the rule table are all 

combined to form a Mamdani-style fuzzy inference method 

that maps the inputs to the output.  

Table IV above shows 9 IF-THEN rule statements. FCR 

muscle signal level was highest during wrist flexion, hence 

the parameter data was captured, while ECRL muscle signal 

level was highest during wrist extension. The wrist velocity 

has been suspected to produce zero state if the EMG signals 

generated by flexion and extension actions of wrist 

movement have similar value. FM is made if FCR is more 

than ECRL, and EM if ECRL is greater. FH was made when 

FCR was much greater than ECRL, and EH was produced 

when ECRL was much more than FCR. Comparing the EMG 

signal strength allowed researchers to predict the movement 

of wrist position. 

  
(a) (b) 

 

 

(c) (d) 

  
(e) (f) 

Fig. 8. (a) Function of triangular-shaped membership used for EMG signal 

(EMG_F), (b) Function of triangular-shaped membership used for EMG 
signal (EMG_E), (c) Function of trapezoidal-shaped membership used for 

wrist joint angle (POSITION), (d) Function of triangular-shaped 

membership used for FCR Muscle, (e) Function of triangular-shaped 
membership used for ECRL Muscle, (f) Function for triangular membership 

used for the desired wrist velocity [70]. 

TABLE III.  IF-THEN RULE STATEMENTS [32] 

No  EMG_F  EMG_E  (Ɵ)  (Ɵ/s) 

1 if S  S   = Z 

2 if M  M   = Z 

3 if H  H   = Z 

4 if M & S & not Flim = FM 

5 if H & M & not Flim = FM 

6 if H & S & not Flim = FH 

7 if S & M & not Elim = EM 

8 if M & H & not Elim = EM 

9 if S & H & not Elim = EH 

10 if M & S & Flim = Z 

11 if H & M & Flim = Z 

12 if H & S & Flim = Z 

13 if S & M & Elim = Z 

14 if M & H & Elim = Z 

15 if S & H & Elim = Z 

TABLE IV.  IF-THEN RULE STATEMENTS [70]  

No  FCR Muscle  ECRL Muscle  (Ɵ/s) 
1 if S & S then Z 
2 if M & M then Z 
3 if H & H then Z 
4 if M & S then FM 
5 if H & M then FM 
6 if H & S then FH 
7 if S & M then EM 
8 if M & H then EM 
9 if S & H then EH 
 

Fig. 9 (a) and (b) shows the FL signal output of desired 

wrist velocity for single muscle approach. Based on these 
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output result, identical levels of MVC values should generate 

a velocity value of zero. As the input signal from EMG_F 

became greater than EMG_E, the velocity of the hand shifted 

from extension to flexion and vice versa. The wrist's desired 

velocity amplitude changes when tested data is compared to 

larger or smaller values. When the wrist is in flexion, the FCR 

muscle is stimulated more aggressively, while in extension, 

the ECRL responds more aggressively. Even when in the 

opposite posture, both muscles produced EMG output signal 

voltages, but the reading was lower. In contrast, both EMG 

signal muscles should result in equally stimulated voltages of 

signal strength from both muscles when the wrist is in a 

neutral position. 

In Fig 9 (c) and (d) shows wrist desired velocity fuzzy 

output results for double muscle approach. At signal level 

20% MVC, the estimated data division readings for each 

wrist joint angle position overlap, resulting in an unstable 

desired wrist velocity output. At signal level of 60% MVC, 

figure shows a considerable desired wrist velocity fuzzy 

output result, as each component of wrist position can be 

easily recognized. This contributes during feature extraction, 

the EMG signal value excitation begins to show its great 

group uniqueness, thus making the wrist desired velocity 

output data easier to understand. 

  
(a) (b) 

  

(c) (d) 

Fig. 9. (a) single muscle response for FCR, (b) single muscle response for 

ECRL, (c) double muscles response at 20% MVC level, (d) double muscles 

response at 60% MVC level. 

E. PID Control 

Proportional integral derivative (PID) controllers use a 

control loop feedback technique to manage process variables 

The steady state error for monitoring a step input signal is one 

of the integral terms that is eliminated or reduced. In actual 

implementation, the integral term is usually limited by some 

hounds. PID's primary purpose is to balance out the 

fluctuating output mapping signal, which results in more 

stable continuous output control for the exoskeleton hand. In 

this paper, metaheuristic algorithm has been applied to obtain 

the value for KP, KI and KD [88].  

Tuning the parameters (KP, KI, and KD) of a PID 

controller using metaheuristic methods involves using trial 

and error method to find the optimal values that result in the 

best control performance for a given system. Metaheuristic 

methods are global optimization algorithms that explore the 

parameter space efficiently, even for non-linear and complex 

systems. The main objective using PID in this system was to 

ensure the movement of the hand fluently move from one 

state to the other. The challenge faced in this nonlinear given 

input coming from mapping method decision making are 

fluctuated occurred in each stage. The best parameter for PID 

chosen must be able to smoothen the ripple produce thus help 

to compensate the modelling of wrist movement. The value 

for KP = 3.97 x 10−9, KI = 0.11 x 100 and KD = 1.44 x 

10−6[70]. 

IV. RESULTS AND DISCUSSIONS 

The following step involves importing the SolidWorks 

file into MATLAB environment. At this point, a controller 

for the desired wrist velocity can be built using any Simulink 

feature, such as ANN and PID or FL and PID [87]. PID has 

been utilized to control the output from ANN and FL to 

estimate the desired wrist velocity. The PID output was 

preferable to produce a slower response that does not 

immediately follow the changes made-up by decision making 

process in each stage within specific wrist position. Similar 

plants have been used for both method approaches. The 

finished SimMechanics testing system for physically 

modelled exoskeleton hands is shown in Fig. 10 and 11. 

 

Fig. 10. Full system of exoskeleton hand for wrist movement with ANN and 

PID controller 

 

Fig. 11. Full system of exoskeleton hand for wrist movement with FL and 

PID controller [70]. 

A. Analysis of Designed Performance using PID 

ANN and PID controller have been applied for the 

exoskeleton hand system to predict the wrist desired velocity. 

Fig. 12 (a) and (b) shows wrist desires velocity at various 

MVC levels for single muscle response. The red line graph in 

both figures represents the ANN decision making based on 

the testing data given to the training block, while the blue line 

graph represents the exoskeleton desired wrist velocity result 

after passing through the PID controller block. FCR muscle 

response result in Fig. 12 (a) showed overshoot from 600s to 

800s and undershoot at 1400s. ECRL muscle response figure 

shows overshoot cases at 600s to 800s and undershoot cases 

at 1400s to 1600s illustrated in Fig. 12 (b). PID is one 

controller mechanism used to compensate for ANN decision 

making output fluctuation. As seen in both blue graphs in 

both ANN Fig. 12 (a) and (b), PID smoothed the instability 

output for the desired wrist velocity and wrist movement. 

Fig. 12 (c) and (d) demonstrates the FL and PID controller 

and FL output result based on the performance of a single 

muscle affected on desired wrist required velocity of the 

exoskeleton hand system. The dynamic model of the system 

has been initially implemented using FL. However, when the 

exoskeleton hand model was fed the output from the FL 

mapping method, the wrist velocity output result was 
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unstable. Both graphs' red lines were created by FL's 

decision-making process.  As seen in Fig. 12 (c) for FCR 

muscle response, overshoot occurred between 200s and 400s 

and undershoot from 1400s to 1600s. ECRL muscle response 

in Fig. 12 (d) showed overshoot at 700s to 900s and 

undershoot at 900s to 1100s. PID controllers have been used 

to stabilise anticipated output values due to FL instability. 

The blue line graph in each figure showed the exoskeleton 

hand output after the PID controller was built. The results 

smoothed the exoskeleton hand's wrist velocity by adjusting 

for FL mapping process irregularities. 

  

(a) (b) 

  

(c) (d) 

Fig. 12. (a) ANN and PID single muscle response for FCR, (b) ANN and 

PID single muscle response for ECRL, (c) Fuzzy and PID single muscle 

response for FCR, (d) Fuzzy and PID single muscle response for ECRL [70] 

Fig. 13 (a) and (b) shows double muscle response at 20% 

and 60% MVC using ANN and PID approach to determine 

exoskeleton hand system wrist desired velocity output graph. 

This exoskeleton hand technology uses ANN as its mapping 

method to generate the estimated output result. The red line 

graph generated by the ANN mapping procedure was 

displayed in both figures show a small fluctuation in their 

plotting. The ANN output exhibited almost imperceptible 

differences in pattern from the preceding state at 20% MVC 

shown level in Fig. 13 (a). However, after 150s, the state 

begins to differentiate.  The red line graph revealed a notable 

pattern in each stage's desired wrist velocity condition at 60% 

MVC level shown in Fig. 13 (b). Every red line graph in both 

figures showed exoskeleton wrist velocity variability that 

needed adjustment. To improve exoskeleton hand system 

performance, PID controllers have been adopted.  By using 

PID, the blue graph appeared in both figures. The purpose of 

PID was to eliminate ripple from the ANN decision-making 

process and increase the stability of the output reading. The 

pattern graph in the earlier stage, however, still introduces a 

fluctuation at a 20% MVC figure and generates nearly 

identical pattern graphs at various stage levels.  The pattern 

was more noticeable at 150s and above. For 60% MVC level, 

the blue line graph pattern from each stage was tuned and 

clearly recognised. 

Fig. 13 (c) and (d) demonstrates the intended wrist 

velocity output of the FL and PID controller and FL based on 

two muscles for exoskeleton hand system. FL has been 

chosen as the mapping technique for the exoskeleton hand 

system. The selected method compared measurement data 

from each muscle's excitation group to predict desired wrist 

velocity. As shown in Fig. 13 (c) and (d), a red line graph 

illustrating a fluctuation of fuzzily produced outcomes. The 

pattern in each wrist's desired velocity was related to the 

creation of EMG signals for both graphs. At 20% MVC level 

shown in Fig. 13 (c), the pattern generations were not evident 

since the signals value provided closer range separation, but 

in Fig. 13 (d) at 60% MVC level graph, the signals value 

produced bigger range separation. PID has been used as the 

controller to account for the fluctuations caused by the output 

of FL. The blue line graph in both pictures was created using 

a PID controller to smooth out the volatility caused by the FL 

decision-making process. This led to the production of 

separate wrist desired velocity output outcomes at different 

wrist joint angle positions for the exoskeleton hand system. 

  

(a) (b) 

  

(c) (d) 

Fig. 13. (a) ANN and PID double muscles response for FCR and ECRL at 

20% MVC, (b) ANN and PID double muscles response for FCR and ECRL 
at 60% MVC, (c) Fuzzy and PID double muscles response for FCR and 

ECRL at 20% MVC, (d) Fuzzy and PID double muscles response for FCR 

and ECRL at 60% MVC [70] 

The accuracy results of both ANN and FL were directly 

compared, revealing that FL produced estimated outputs 

closer to the actual values. During the double muscle analysis 

comparison at 20% MVC and 60% MVC for ANN mapping 

output (Fig. 13 (a)), the actual output at 20% MVC was 

expected to be 0° (neutral), -30° (flexion), and 30° 

(extension). However, the estimated result showed oscillation 

at neutral, -30° at flexion, and 30° fluctuation at extension, 

indicating erroneous estimations that led to incorrect 

redirection of wrist movement. In contrast, the estimation 

results obtained by Fuzzy Logic clearly fluctuated around the 

real output for both 20% MVC and 60% MVC (Fig. 13(c) and 

Fig. 13 (d)). Although some minor variations occurred at the 

earlier stage of fuzzy output at the neutral position due to FL's 

decision-making process, it effectively distinguished each 

wrist position at every level. Regarding stability, in the same 

Fig. 13 (a), ANN produced unstable output results, 

particularly evident at the 20% MVC neutral state. Heavy 

fluctuations persisted even after PID attempted to stabilize 

the mapping process. The same situation occurred when 

examining ANN output at the 20% MVC extension state. In 

direct comparison to FL output at the 20% MVC neutral and 

extension states, the fluctuation range was significantly 

smaller than that produced by ANN results, demonstrating 

that FL and PID output yielded more stable results compared 

to ANN and PID. 

During the experiment, one of the difficulties encountered 

was the movement of electrodes and cables. For the 

experiment, three electrodes were required to represent one 

muscle signal. Two electrodes were positioned side by side 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 580 

 

Mohd Safirin Karis, Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton 

to measure the voltage of the EMG signals, representing the 

positive and negative channels, while one electrode was 

placed on the bony region as the ground reference. However, 

as the wrist moved from one position to another, the 

electrodes tended to pull away from their original positions. 

To address this issue, wireless data transfer was considered 

the best solution. By employing wireless data transfer, the 

need for wires around the entire hand during the experiment 

was eliminated, allowing users to reduce noise interference 

caused by the wires. 

In the discussion, it was highlighted that future research 

could be enhanced by choosing an appropriate mapping 

approach. Furthermore, each mapping method's estimation 

may incorporate different types of controllers to replace PID 

and reduce output fluctuations resulting from decision-

making procedures. The implications of this study extend to 

prosthetic hand control, benefiting both stroke patients and 

amputees who have lost a hand. Additionally, beyond using 

EMG signals and joint angle to predict wrist desired velocity, 

the relationship between EMG signals and wrist joint angle 

could also be leveraged to predict force, such as hand grasp 

force and finger pinches.  

V. CONCLUSIONS 

Wrist hand position movement has become an integral 

component of human intentions in daily activities. Realizing 

the significance of this component, it is essential to 

emphasize the use of this wrist desired velocity estimation 

that follows the user's motion intention as employed in this 

paper, where it is also utilized for exoskeleton hand and other 

rehabilitation applications. The assessment of wrist desired 

velocity for the exoskeleton hand system can also be 

predicted using the relationship between wrist joint angle and 

EMG signals excitation. WL was chosen for feature 

extraction because it has a lower standard deviation compared 

to RMS, MAV, IEMG, and ZC [89]. Analyzing these 

standard deviation values has improved the tabulation of 

nearby data to determine the appropriate wrist velocity before 

mapping [90].  

ANN can interpret unstructured data, but fuzzy systems 

are better at representing it [19]. For the whole exoskeleton 

hand system, ANN needs a training and testing data set. On 

the other hand, FL offered the freedom to create the 

exoskeleton hand system based on their own logic control. 

However, analyzing the performance of ANN and FL as 

dynamic models of the system allowed the researcher to build 

and choose the best approach for exoskeleton hand system 

applications. FL outperformed ANN in getting wrist desired 

velocity output for both approaches. Even though the wrist 

desired velocity fluctuated at each stage, the tabulated output 

data can easily distinguish belongings to each group. PID has 

been selected as the controller strategy to be applied in this 

paper. It can be applied to control the fluctuation caused by 

the mapping process chosen due to its simplicity and 

dependability in industrial applications. 

Throughout the study, addressing the challenge of output 

fluctuation during the mapping process was a prominent 

concern. Estimating the output by mapping a nonlinear input 

signal required a thorough analysis of the produced errors. 

The research gap aimed to obtain estimation results of wrist 

desired velocity, which could assist in making informed 

decisions about selecting the optimal mapping method 

between ANN and FL, particularly when dealing with similar 

datasets. The careful choice of mapping method held critical 

importance in ensuring accurate modeling of wrist 

exoskeleton movement. Furthermore, the potential 

applications of this research extended to prosthetic hands and 

other rehabilitation devices, depending on the system's 

adaptability, thus contributing to enhancing the quality of life 

for users. 

In addition, careful consideration was given to selecting 

appropriate PID parameters to effectively compensate for the 

fluctuations introduced by both mapping methods employed 

in this study. To achieve better outcomes, a potential 

improvement involves testing other mapping methods with 

higher accuracy than the ones used in this research. 

Additionally, applying an optimization approach to 

determine the best values for smoothing out any introduced 

ripples could lead to further enhancements.  
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