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Abstract—Mobile robots are intended to operate in a variety 

of environments, and they need to be able to navigate and travel 

around obstacles, such as objects and barriers. In order to 

guarantee that the robot will not come into contact with any 

obstacles or other objects during its movement, algorithms for 

path planning have been demonstrated. The basic goal while 

constructing a route is to find the fastest and smoothest route 

between the starting point and the destination. This article 

describes route planning using the improvised genetic algorithm 

with the Bezier Curve (GA-BZ). This study carried out two main 

experiments, each using a 20x20 random grid map model with 

varying percentages of obstacles (5%, 15%, and 30% in the first 

experiment, and 25% and 50% in the second). In the initial 

experiments, the population (PN), generation (GN), and 

mutation rate (MR) of genetic algorithms (GA) will be altered 

to the following values: (PN = 100, 125, 150, or 200; GN = 100, 

125, 150; and MR = 0.1, 0.3, 0.5, 0.7) respectively. The goal is to 

evaluate the effectiveness of AMR in terms of travel distance 

(m), total time (s), and total cost (RM) in comparison to 

traditional GA and GA-BZ. The second experiment examined 

robot performance utilising GA, GA-BZ, Simulated Annealing 

(SA), A-Star (A*), and Dijkstra's Algorithms (DA) for path 

distance (m), time travel (s), and fare trip (RM). The simulation 

results are analysed, compared, and explained. In conclusion, 

the project is summarised. 

Keywords—Genetic Algorithm; Bezier Curve; Obstacles 

Avoidance; Robot Optimization; Path Planning. 

I. INTRODUCTION 

A wide range of autonomous tasks has been accomplished 

by mobile robots in a variety of industries and situations 

throughout the last several decades [1]–[3]. For robots to be 

able to travel and explore freely in complicated situations, 

collision-free route planning must be addressed [4]–[7]. The 

ability to navigate through a given environment is considered 

to be one of the most desirable characteristics of autonomous 

robots [5], [8]–[11]. Path planning is a method for an 

autonomous robot to get from the beginning point to the goal 

while traversing an environment that includes both static and 

dynamic obstacles [12], [13]. It is possible to divide path 

planning into global and local planning, depending on the 

scope of the map [8], [14]–[20]. Global path planning 

provides all the necessary data about the robot's known 

environment, while local path planning relies on partial or 

completely zero knowledge of the robot's environment to 

plan its course [14], [19], [21]–[24]. 

Nowadays, the genetic algorithm (GA) has been 

frequently used in mobile robot path planning problems due 

to its global optimisation and implicit parallel computing 

capabilities [25]. The GA simulates natural evolution using 

Darwin's genetic inheritance and variation models to find the 

best solution. To increase local optimisation and execution 

performance, the GA was given a generalised segmentation 

crossover operator [26]. An enhanced crossover operator 

prevented premature convergence from finding an optimal 

path in static situations.  

Genetic algorithms can be used to optimize or 

approximate Bezier curves by adjusting the control points to 

find the best-fitting curve based on a given fitness function 

[27]. This approach is often referred to as Genetic Algorithms 

for Bezier Curve. In a genetic algorithm for Bezier curves, 

the control points of the curve are encoded as individuals in 

a population [4]. The algorithm then evolves the population 

over several generations using genetic operators such as 

selection, crossover, and mutation [18], [28]. A Bezier curve 

is a type of curve that is defined by a set of control points. It 

is named after the French mathematician Pierre Bézier, who 

developed the mathematical equations that describe these 

curves [4], [9], [29], [30]. The Bezier curve has recently been 

used in smooth path planning [27]. A genetic approach was 

suggested for mobile robot path planning to find the control 

points of segmented Bezier curves. A Bezier-curve-based 

enhanced genetic algorithm was presented for path planning 

in dynamic fields. A Bezier-curve-based path planner was 

also developed for autonomous cars [4], [27], [31]–[33].  

This research uses state-of-the-art, global metaheuristic 

route planning techniques in which the location of all 

obstacles and other features of the environment are known in 

advance [29], [34]–[37]. It was decided to use an improvised 

genetic algorithm with a continuous Bezier curve (GA-BZ) 

to generate a path for a mobile robot that would allow it to 

reach its destination safely and smoothly [38]–[42] while 

avoiding any obstacles it might encounter [23], [43], [44]. 

The objective was to determine the optimal path length (m), 

travel time (s), and cost (RM). The environment was 

configured to have approximately 5%, 15%, 25%, 30%, and 

50% obstructions occupying the workspace. In this 

investigation, two separate core tests will be performed. The 

parameters of genetic algorithms (GA) will be adjusted in the 

first set of tests as follows: population, PN = 100, 125, 150, 

200; generations, GN = 100, 125, 150; and mutation rate, MR 
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= 0.1, 0.3, 0.5, 0.7. The effectiveness of AMR is compared to 

that of standard GA and GA-BZ with 5%, 15%, and 30% 

occupancy of the workspace, respectively. In the second 

experiment, the performance of the robot was evaluated using 

the GA, GA-BZ, Simulated Annealing (SA) [29], [45], A-

Star (A*) [46]–[48], and Dijkstra's Algorithms (DA) 

techniques [49]–[53]. There will be comparisons between the 

outcomes, which will be examined and explained in depth. A 

summary of the findings will conclude the report. 

II. PROPOSED GENETIC ALGORITHMS - BEZIER CURVE 

(GA-BZ) 

The genetic algorithm function implements the genetic 

algorithm for determining the optimal route from the starting 

point to the destination. Using the create_individual function, 

the genetic algorithm initializes a population of individuals 

(paths) with random movements. The magnitude of the 

population determines the number of individuals in each 

generation. The algorithm then initiates a loop that continues 

for a predetermined number of generations. Using the fitness 

function, the fitness scores of the population's individuals are 

calculated for each iteration [21], [26], [54]. The fitness score 

indicates how efficiently an individual reaches the finish line 

while avoiding obstacles. A record is kept of the individual 

with the greatest fitness score. Additionally, the highest and 

average fitness scores of each iteration are recorded [21], 

[29], [54], [55]. 

Next, tournament selection selects individuals for 

reproduction [56]. Selecting a subset of the population and 

choosing the parent with the best fitness score is done 

arbitrarily. The specified parents undergo crossover to 

generate offspring. The crossover function swaps genetic 

material at a random crossing site. This yields two children. 

Mutations can occur in offspring after crossing over [18], 

[25], [57]. The mutate function randomly selects movements 

from individuals and then replaces them. Parents and 

offspring produce a new population. This generation 

becomes the next. 

Selection, crossover, and mutation occur for the specified 

number of generations in each iteration. The algorithm 

converges towards better solutions as it progresses through 

the generations. At the conclusion of the algorithm, the 

optimal individual and its corresponding path are obtained 

[58], [59]. In addition, the algorithm can generate a Bezier 

curve (GA-BZ) path based on the optimal path of GA in order 

to improve the visualization of the path [4], [27], [31], [60]. 

Depending on the conditions of the experiment, the 

population (PN) is either PN=100, 125, 150, or 200, and the 

generation number (GN) is either 100, 125, or 150.  

III. WORKSPACE MODELLING OF GA-BZ 

The path planning of the mobile robot is evaluated in a 

total of 5 different grid contexts, as illustrated in Fig. 1, Fig. 

2, Fig. 3, Fig. 4, and Fig. 5. According to the illustration that 

can be found above, the workspace that is being displayed is 

split into two distinct sections. The first experiment that will 

be carried out will utilize barriers with percentages of 5%, 

15%, and 30%, while the other studies will use barriers with 

percentages of 25% and 50%. This is carried out to prove that 

the proposed method can be implemented and is effective. 

As can be seen in Fig. 1, Fig. 2, and Fig. 4, the 

components of the initial design that are shaded in grey 

denote the obstacles. The first significant experiment's 

objective was to evaluate how well an autonomous mobile 

robot would function in the environment described before 

using both the original version of GA and an enhanced 

version of GA. The outcomes of an AMR with varying 

parameters of genetic algorithms (population, generations 

and mutation rate) will be analyzed and evaluated in terms of 

journey distance, trip duration, and fare. The starting point 

and endpoints are fixed to (1,1) and (19,19), respectively. 

Each experiment includes different sets of parameters, either 

PN = 100, 125, 150, or 200; GN = 100, 125, 150; and MR = 

0.1, 0.3, 0.5, and 0.7. 

 

Fig. 1. Map of 5% Obstacles 

 

Fig. 2. Map of 15% Obstacles 

 

Fig. 3. Map of 25% Obstacles 
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Fig. 4. Map of 30% Obstacles 

 

Fig. 5. Map of 50% Obstacles 

Next, as can be seen in Fig. 3 and Fig. 5, the obstacles are 

the darkened parts of the original plan. The barriers are 

squares and rectangles, each with a different area. The 

objective of the final significant experiment was to determine 

how well an autonomous mobile robot would perform in an 

environment of 25% and 50% covered with barriers by 

multiple paths planning algorithms, including standard 

Genetic Algorithms (GA), improved Genetic Algorithms 

(GA-BZ), Simulated-Annealing (SA), A-Star Algorithms 

(A*), and classic Dijkstra’s Algorithms (DA).  In the map that 

is covered with 25% of the obstacles, the starting point is set 

to (1,19), and the final location is set to (18,1), whereas in the 

map that is covered with 50% of the obstacles, the starting 

point is set to (1,1) and the endpoint is set to (18,13). The GA-

BZ development is analyzed in these tests with the following 

genetic parameters: PN = 150, GN = 150, MR = 0.5 (25%), 

and MR = 0.7 (50%). The findings of an AMR will be 

analyzed and evaluated in terms of the total amount spent on 

travel expenses, the total amount of time spent travelling, and 

the total distance travelled. 

IV. RESULT AND DISCUSSION 

This section will conduct two primary experiments to 

determine the shortest distance, time, and cost that the robot 

can travel. The first experiment will test how well robot path 

planning with genetic algorithms works in terms of the 

shortest distance, and time to journey. Additionally, in terms 

of the trip options with the lowest cost. In the first set of tests, 

the population, the number of generations, and the rate of 

mutation will be altered. In this experiment, the result of 

using only the classic GA will be compared to the result of 

using an improved version of GA that uses a Bezier Curve 

(GA-BZ) to find a smoother and more optimal path. There 

will be three different environments, each with its own set of 

barriers: 5% as the initial stage, 15% as the second step, and 

30% as the third step. 

The second set of studies will compare the efficacy of 

several algorithms in two simulated environments with 

varying levels of obstruction (50% free space, and a 25% 

obstacles cover). In this subsection, the following algorithms 

will be discussed: traditional genetic algorithms (GA), 

enhanced GA with Bezier Curve (GA-BZ), standard 

Simulated Annealing (SA), basic A-Star algorithms (A*), and 

a classical Dijkstra's Algorithm (DA). The environment 

employs a genetic algorithm with parameters PN = 150, GN 

= 150, and MR = 0.5 for 25% of the obstacles, and PN = 150, 

GN = 150, and MR = 0.7 for the remaining 50% of obstacles 

to generate the control points for the GA-BZ curve. Travel 

distance, time, and cost for the robot employing these various 

algorithms will be compared based on experimental findings 

and analysis.  

A. Performance of AMR in terms of Distances, Time Travel 

and Fare: 5% Obstacle 

The simulations were run, and the results for the journey 

distance, time required, and fare that was achieved are shown 

in Table I. 

TABLE I.  PERFORMANCE OF AMR: 5% OBSTACLES 

 Classic Genetic Algorithms 

(GA) 

Genetic Algorithms Combined 

with Bezier Curve (GA-BZ) 

PN GN MR Distance 

Travel 

(m) 

Time 

Taken 

(s) 

Fare 

(RM) 

Distance 

Travel 

(m) 

Time 

Taken 

(s) 

Fare 

(RM) 

100 100 0.1 32.7279 65.4558 81.82 27.6141 55.2282 69.04 

125 100 0.1 32.1421 64.2843 80.36 27.5492 55.0984 68.87 

150 100 0.1 31.7279 64.2558 80.22 27.4821 54.9643 68.71 

100 125 0.1 31.5563 63.1127 78.89 27.5769 55.1538 68.94 

100 150 0.1 30.9706 61.9411 77.43 27.3164 54.6328 68.29 

100 100 0.3 33.3137 66.6274 83.28 27.7699 55.5399 69.42 

100 100 0.5 30.3848 60.7696 75.96 27.1666 54.3332 67.92 

100 100 0.7 31.5563 63.1127 78.89 27.4138 54.8275 68.53 

 

The standard GA's shortest path is 31.7279m (PN=150) 

with GN = 100 and MR = 0.1, followed by PN=125 (32.1421 

m) and PN=100 (32.7279m). A population of PN=150 travels 

from starting point to goals in 64.2558 s, 1.2s faster than a 

population of PN=100, which takes 65.4558 s. The data 

tabulation demonstrates that from PN = 100 to PN 150 (GN 

= 100 and MR = 0.1), the fare decreases from RM 81.82 to 

RM 80.22. Based on the first GA sub analysis, PN =150 

delivers the best distance, time, and fare from the initial point 

to the endpoint. By using the Bezier Curve, the optimal path 

was found, decreasing the total travel distance by 4.2458 

meters (from 31.7279 meters to 27.4821 meters), the total 

travel time by 9.2915 seconds (from 64.2558 seconds to 

54.9643 seconds), and the total cost by RM11.51 (from 

RM80.22 (GA) to RM68.71). 

Next, with the population fixed at PN = 100 and the 

mutation rate at MR = 0.1, a second sub-experiment is 

conducted with three distinct generation values: GN = 100, 

125, and 150. As the number of GN increases, the distance 

traveled by both GA and GA-BZ decreases from 32.7279 m 
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(GN=100) to 30.9706m (GN=150) and GA-BZ from 27.6141 

m (GN=100) to 27.3164 m (GN=150), respectively. The GA-

BZ exhibits a more optimal and cautious path not only in 

terms of path length but also in terms of real-time and cost. 

The GA-BZ completes the simulation and reaches the 

objective in 54.6328 s (GN=150), while the GA requires 

61.9411 s (GN=150) to accomplish the same. Last but not 

least, the cost of the proposed algorithms is RM 68.29, which 

is RM 9.14 less than the cost of the baseline GA (RM 77.43). 

In addition, the third subtest is conducted using mutation 

rates of 0.1, 0.3, 0.5, and 0.7 with the same number of 

generations and populations (100). Based on the obtained 

results, the GA-BZ demonstrates superior AMR performance 

in terms of distance, time, and cost compared to the 

conventional GA. Standard GA travels distances of 32.7279 

m, 33.3137 m, 30.3848 m, and 31.5563 m, while enhanced 

GA (GA-BZ) travels distances of 27.6141 m, 27.7699 m, 

27.1666 m, and 27.4138 m, respectively. The result obtained 

in terms of time taken and fare for the AMR to reach the 

destination point is random even when the mutation rate is 

increased. This is because the mutation operator introduces 

random changes in the genetic material of individuals in the 

population. While mutation can sometimes lead to 

improvements in the solutions, it is also a stochastic process 

that can introduce random perturbations. The MR=0.5 

obtained the shortest distance of 30.3848 m (GA) and 

27.1666 m (GA-BZ) in the third subsections of 5 per cent 

obstacles occupying workspace and throughout the 

experiment with the least time taken of 54.3332 s (GA-BZ) 

and RM 67.92 (GA-BZ) for the robot path planning.  

4.1. Optimal Path Obtained by AMR (5%): Population (PN) 

is altered 

The produced path achieved by both GA and GA-BZ is 

depicted in Fig. 6, Fig. 7, and Fig. 8 when the population is 

changed from PN=100 to 125 to 150, respectively. For the 

purpose of this experiment, the generation is equal to GN = 

100, and the mutation rate is equal to MR = 0.1. 

The experiment is carried out by shifting the population 

from PN = 100 to PN = 150 based on Fig. 6, Fig. 7, and Fig. 

8. Standard genetic algorithms have a generation number 

(GN) of 100 and a mutation rate (MR) of 0.1. The path 

created in black is the path produced by conventional GA. 

The AMR travels from the (0,0) beginning position 

highlighted in blue to the (19,19) end target marked in green. 

The Bezier route is generated using the control points 

produced by the basic GA path. The path shown in red is the 

path produced by the proposed GA-BZ algorithm, which 

combines standard GA with a Bezier curve. As a result, a 

smoother and ideal path is produced. 

As seen in Fig. 6, the path produced by GA, which is 

32.7279m runs into the edge of the barrier. A more effective 

and efficient trajectory can be developed and optimised with 

greater obstacle avoidance using the GA-BZ path that is 

generated. The distance travelled by GA-BZ is 27.6141 m. 

Standard GA at PN = 125, GN = 100, and MR = 0.1 has a 

distance of 32.1421 m, as shown in Fig. 7, while the GA path 

distance is 31.7279 m, as shown in Fig. 8. The GA-BZ 

produces significantly shorter results than standard GA in 

both tests (27.5492m and 27.4821m, respectively). 

 

Fig. 6. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.1) 

 

Fig. 7. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

125, GN = 100, and MR = 0.1) 

 

Fig. 8. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.1) 

4.2. Optimal Path Obtained by AMR (5%): Generation (GN) 

is altered 

Fig. 9 and Fig. 10 demonstrate the GA and GA-BZ paths 

when the generation is altered from GN=125 to GN=150. For 

this experiment, the population is 100 and the mutation rate 

is 0.1. 

 

Fig. 9. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 125, and MR = 0.1) 

In Fig. 9, the distance for standard GA is shown to be 

31.5563 m when PN = 100, GN = 125, and MR = 0.1. In Fig. 

10, the distance for the GA path is only 30.9706 m when PN 

= 100, GN = 150, and MR = 0.1. As shown in Fig. 9, there is 
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a collision on the GA route. However, by utilizing the 

waypoints along this route, the combined algorithms (GA-

BZ) are able to successfully sidestep the problems. In both 

tests, the distance travelled by the GA-BZ (GN=125 and 

GN=150) is much shorter than the distance travelled by the 

normal GA, which is 27.5769m (55.1538 s) and 27.3164m 

(54.6328 s), respectively. Also, the path of GA-BZ is 

smoother. 

 

Fig. 10. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 150, and MR = 0.1) 

4.3. Optimal Path Obtained by AMR (5%): Mutation Rate 

(MR) is altered 

When the mutation rate is varied from MR=0.1, 0.3, 0.5, 

and 0.7 accordingly, Fig. 11, Fig. 12, and Fig. 13 demonstrate 

the generated path obtained by both GA and GA-BZ. The 

population is going to be equal to 100 throughout the duration 

of this experiment, and the generation rate is also going to be 

equal to 100. 

To conduct the experiment depicted in Fig. 6, Fig. 11, Fig. 

12, and Fig. 13, the mutation rate (MR) is varied from 0.1 to 

0.3 to 0.5 to 0.7. Both the PN and GN are set to 100. The 

black line represents the conventional GA path. The AMR's 

route is shown in blue, beginning at coordinates (0, 0), with 

the destination shown in green at coordinates (19, 19). The 

Bezier path is made by extrapolating the control points from 

the original GA path. The proposed GA-BZ method 

combines regular GA with a Bezier curve, producing the red 

path shown. GA travels 32.7279m, 33.3137m, 30.3848m, and 

31.5563m when MR = 0.1, 0.3, 0.5, and 0.7, respectively, 

while GA-BZ obtains a path length of 27.6141m, 27.7699m, 

27.1666m, and 27.4138m. The GA-BZ results in a route that 

is both smoother and more efficient. The shortest distance 

travelled by GA-BZ in this experiment was 27.1666m (within 

54.3332s) with the MR =0.5. 

 

Fig. 11. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.3) 

 

Fig. 12. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.5) 

 

Fig. 13. Robot Performance in 5% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.7) 

4.4. Summarization of The First Sub-Experiment 1 

A five per cent map shows that the best GA-BZ road 

distance is 27.4821m, which takes 54.9643s and costs 

RM68.71. The genetic factors for this robot's are PN=150, 

GN=100, and MR=0.1. The best distance for the normal GA 

is 31.7279m, which is 4.2458m longer than the best distance 

for the improved GA, GA-BZ. Using GA, it takes the AMR 

64.2558s to get to its goals, and the total cost of the trip is 

RM80.22. Next, we changed the number of generations of the 

genetic algorithms. With PN=100, GN=150, and MR=0.1, 

the best paths for GA and GA-BZ were 30.9706m and 

27.3164m, respectively. The GA-BZ takes a shorter amount 

of time (54.6328s) than the GA (61.9411s), and it costs less 

to travel (RM68.29) than the GA (RM77.43). Based on how 

well the robot did, we can say that path optimisation gets 

better in this setting as the number of genetic populations and 

generations grows. When adjusting the mutation rate with 5% 

obstacles occupying workspace, MR=0.5 performs best with 

the standard GA distance of 30.3848m, accomplishing the 

targets in 60.7696s and travel charge of RM 75.96. Compared 

to the GA-BZ, the proposed algorithms travel 27.1666m in 

54.3332s with a cost of RM67.92 in a smoother and shorter 

way.  

Based on the initial subenvironment with 5% barriers, GA 

and GA-BZ produce smoother and better routes as population 

and generation increase. Even with a higher mutation rate, 

AMR travel time and cost are unpredictable. The mutation 

operator makes random genetic changes to population 

members. Mutation is a chance process that can cause random 

changes and, sometimes, lead to better solutions. Using the 

GA-BZ path that is generated, a more effective and efficient 

trajectory can be designed and optimised with greater 

obstacle avoidance. The best results from sub-experiment 1 

were obtained when the robot's MR was set to 0.5, the PN 

was set to 100, and the GN was set to 100, with the obstacles 

occupying 5% of the available workspace, as GA-BZ travels 
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the shortest distance (27.1666m) and spends the least amount 

of time (54.3332s) and money travelling (RM67.92). 

B. Performance of AMR in terms of Distances, Time Travel 

and Fare: 15% Obstacles 

After running the simulations, the data obtained regarding 

the travelled distance, the required amount of time, and the 

fare obtained are presented in Table II. These findings were 

gathered in a setting containing approximately fifteen per 

cent of the whole environment.  

TABLE II.  PERFORMANCE OF AMR: 15% OBSTACLES 

 Classic Genetic Algorithms (GA) Genetic Algorithms Combined 

with Bezier Curve (GA-BZ) 

PN GN MR Distance 

Travel (m) 

Time 

Taken 

(s) 

Fare 

(RM) 

Distance 

Travel 

(m) 

Time 

Taken 

(s) 

Fare 

(RM) 

100 100 0.1 30.9705 61.9411 77.42 27.5655 55.1312 68.91 

125 100 0.1 34.4852 68.9705 86.21 28.0694 56.1388 70.17 

150 100 0.1 33.8994 67.7989 84.74 27.7781 55.5563 69.44 

100 125 0.1 32.1421 64.2842 80.35 27.6419 55.2839 69.10 

100 150 0.1 33.3137 66.6274 83.28 28.0543 56.1086 70.13 

150 100 0.3 32.7279 65.4558 81.81 27.7749 55.5498 69.43 

150 100 0.5 31.5563 63.1126 78.89 27.5945 55.1890 68.98 

150 100 0.7 32.1421 64.2842 80.35 27.6984 55.3969 69.24 

 

According to the data in Table II, the shortest path for the 

standard GA when altering the population is 30.9705m (PN 

= 100) with GN = 100 and MR = 0.1, subsequently followed 

by PN = 150 (33.8994 m) and PN = 125 (34.4852 m). The 

travel time from the starting point to the final destination for 

a PN = 100 is 61.9411 s, less than the times needed for PN = 

125 (68.9705 s) and PN = 150 (67.7989 s). The data shows 

the cheapest possible journey is RM 77.42, with a PN = 100. 

The research indicates that PN = 100 provides the most 

optimal travel duration, cost, and path distance compared to 

PN 125 and PN = 150 with MR=0.1 and GN = 100. The 

Bezier Curve with obstacle avoidance was implemented to 

the best standard GA, and the optimal path length found in 

this subpart is 27.5655 m with the shortest travel time of 

55.1312 s and a journey cost of RM 68.91 (PN = 100, GN = 

100, MR = 0.1). 

Next, a second sub-experiment is conducted with three 

distinct generation values: 100, 125, and 150, with the 

population fixed at PN=100 and the mutation rate at MR = 

0.1. The longest distance travelled by standard GA is 33.3137 

m (GN = 150), while the shortest distance travelled is 30.9705 

m (GN = 100). The Genetic-Bezier path that uses the control 

points of standard GA shows that the distance travelled by 

GN = 100 has the shortest path length of 27.5655 m, and the 

GN = 150 have the longest path distance of 28.0543 m. Not 

only in terms of path length but also in terms of real-time and 

cost, the GA-BZ exhibits a more prudent and optimal path. 

The best GA-BZ completes the simulation and reaches the 

goal in 55.1312 s, with the cheapest fee of RM 68.91. 

With the same PN =150 and GN =100, the next subsection 

of the test is run with 0.3, 0.5, and 0.7 mutation rates. 

According to the findings, the GA-BZ outperforms the 

traditional GA in terms of distance, time, and cost when it 

comes to AMR. The lengths covered by a standard GA are 

32.7279 m, 31.5563 m, and 32.1421 m, while those covered 

by an enhanced GA (GA-BZ) are 27.7749 m, 27.5945 m, and 

27.6984 m, respectively. The result obtained utilizing 

standard GA has the lowest fee travel of RM 78.89 (MR = 

0.5), and the highest travel fee is RM 81.81 (MR = 0.3). The 

distance and time travel of MR = 0.7 lies in between them. 

Moreover, the performance of AMR using GA-BZ with MR 

= 0.3, 0.5 and 0.7 gained the duration and cost of 55.5498s 

(RM 69.43), 55.1890s (RM 68.98), and 55.3969s (RM69.24) 

respectively. Even with a large enough mutation rate, the 

AMR's arrival time and cost are still completely 

unpredictable. This is due to the fact that the mutation 

operator causes unpredictable shifts in the genetic makeup of 

the population as a whole. However, the proposed algorithms 

(GA-BZ) always provide a better outcome in terms of 

distance travel, time taken and cost travel compared to 

standard GA. 

4.5. Optimal Path Obtained by AMR (15%): Population (PN) 

is altered 

Fig. 14, Fig. 15, and Fig. 16 show the path produced by 

both GA and GA-BZ when the population is adjusted from 

PN=100 to 125 to 150, respectively. For the purposes of this 

experiment, the generation is set to GN = 100, and the 

mutation rate is set to MR = 0.1. 

Based on Fig. 14, Fig. 15, and Fig. 16, the experiment is 

conducted by increasing the population size from 100 to 150. 

Standard genetic algorithms have 100 generations and a 

mutation rate of 0.1 per generation. The path generated in 

black is the result of conventional GA. The AMR travels from 

the blue-highlighted starting position (0,0) to the green-

highlighted destination (19,19). The Bezier route is generated 

using the control points produced by the fundamental GA 

path. The red path is the result of the proposed GA-BZ 

algorithm, which combines standard GA with a Bezier curve. 

As a consequence, an optimal and smoother path is created. 

 

Fig. 14. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.1) 

 

Fig. 15. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

125, GN = 100, and MR = 0.1) 
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Fig. 16. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.1) 

As seen in Fig. 14, the path generated by GA has the 

shortest path distance of 30.9705m (61.9411 s) compared to 

the path generated in Fig. 15 and Fig. 16 which are 34.4852m 

and 33.8994m. However, the path generated with Fig. 15, PN 

= 125, GN = 100, and MR = 0.1, collides with barriers. A 

more effective and efficient trajectory can be designed and 

optimized with greater obstacle avoidance using the derived 

GA-BZ path. The best distance that GA-BZ has covered is 

27.5655 m (PN = 100, GN = 100, and MR = 0.1). The GA-

BZ takes 55.1312 s and costs RM 68.91 to reach its location. 

4.6. Optimal Path Obtained by AMR (15%): Generation 

(GN) is altered 

The GA and GA-BZ pathways are shown in Fig. 17 and 

Fig. 18 when the generation is changed from GN=125 to 

GN=150. The population size is set at 100, and the mutation 

rate is set at 0.1 in this study. 

 

Fig. 17. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

100, GN = 125, and MR = 0.1) 

 

Fig. 18. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

100, GN = 150, and MR = 0.1) 

In Fig. 17, when PN = 100, GN = 125, and MR = 0.1, the 

standard GA distance is 32.1421m. In Fig. 18, the GA path 

distance is 33.3137 m when PN = 100, GN = 150, and MR = 

0.1.  In both tests, the GA-BZ goes 27.6419m (55.2839 s) and 

28.0543m (56.1086 s) less than the GA path. GA-BZ has a 

better route. 

4.7. Optimal Path Obtained by AMR (15%): Mutation Rate 

(MR) is altered 

When the mutation rate is varied from MR=0.1, 0.3, 0.5, 

and 0.7 accordingly, Fig. 19, Fig. 20, and Fig. 21 demonstrate 

the generated path that is obtained by both GA and GA-BZ. 

The population is going to be equal to 150 throughout the 

duration of this experiment, and the generation rate is also 

going to be equal to 100. 

 

Fig. 19. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.3) 

 

Fig. 20. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.5) 

 

Fig. 21. Robot Performance in 15% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.7) 

To conduct the experiment depicted in Fig. 19, Fig. 20, 

Fig. 21, the mutation rate (MR) is varied from 0.3 to 0.5 to 

0.7. Both the PN and GN are set to 150 and 100, respectively. 

The black line represents the conventional GA path. The 

AMR's route is shown in blue, beginning at coordinates (0, 

0), with the destination shown in green at coordinates (19, 

19). The Bezier path is made by extrapolating the control 

points from the original GA path. The proposed GA-BZ 

method combines regular GA with a Bezier curve, producing 

the red path shown. GA travels 32.7279m, 31.5563m, and 

32.1421m when MR = 0.3, 0.5, and 0.7, respectively, while 

GA-BZ obtains a path length of 27.7749m, 27.5945m, and 
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27.6984m. The GA-BZ results in a route that is both smoother 

and more efficient. The shortest distance travelled by GA-BZ 

in this experiment was 27.5945m (within 55.1890s and cost 

RM 68.98). 

4.8. Summarization of The Second Sub Experiment 1 

The best GA-BZ road distance is 27.5655m, which takes 

55.1312s and costs RM68.91 according to this 15% scale map 

occupied with barriers. This robot has a PN=100, GN=100, 

and MR=0.1 genetic makeup. The conventional GA's best 

distance is 30.9705m, 3.405m longer than the GA-BZ path. 

The AMR spends a total of RM77.42 and takes 61.9411s to 

reach its destinations through GA. We then experimented 

with various generation sizes for the genetic algorithms. The 

best pathways for GA were 30.9705m and for GA-BZ they 

were 27.5655m when PN=100, GN=100, and MR=0.1 were 

used. The GA-BZ takes less time (55.1312s) and costs less 

(RM68.91) than the GA (61.9411s and RM77.42), 

respectively. From the robot's performance, we may infer that 

decreasing the number of genetic populations and generations 

improves path optimisation in this context. When MR=0.5 

(PN=150, GN=100) is employed to manage the mutation rate 

in an environment with 15% obstacles, reaching the targets 

takes 63.1126s and costs RM 78.89 with the typical GA best 

distance of 31.5563m. The proposed algorithms (GA-BZ) are 

more efficient and cost less money than the GA, covering a 

distance of 27.5945 m in 55.1890 s. The most effective 

outcomes were achieved with the robot's MR set to 0.1, the 

PN set to 100, and the GN set to 100, since this combination 

allows the shortest distance and time consumption, as well as 

the lowest cost, when the obstacles consumed 15% of the 

available workspace throughout the second sub-experiment 

1. 

In the context of the second sub experiment with barriers 

occupying approximately 15 percent of the workspace, it can 

be concluded that, as the number of populations and 

generations decreases,  the better the performance of the robot 

using both GA and GA-BZ. Even with a higher mutation rate, 

AMR travel time and cost are unpredictable. The mutation 

operator makes random genetic changes to population 

members. Mutation is a chance process that can cause random 

changes and, sometimes, lead to better solutions. Last but not 

least, using the GA-BZ path that is generated, a more 

effective and efficient trajectory can be designed and 

optimised with greater obstacle avoidance compared to GA. 

C. Performance of AMR in terms of Distances, Time Travel 

and Fare: 30% Obstacles 

After running the models, the information about the 

distance traveled, the amount of time needed, and the fare is 

shown in Table III. These findings were acquired in an 

environment that featured around thirty per cent of the 

challenges. 

Based on the data in the Table III, the optimal parameters 

for the third sub-analysis with a 30% obstacle are PN = 100, 

GN = 100, and MR = 0.1, resulting in a minimum trip 

distance of 30.9705 m. In comparison to this standard GA, 

the Genetic-Bezier method, GA-BZ, decreases the distance 

travelled to 27.2178 m and the time and cost from 61.9411 s 

to 54.4356 s and RM 77.42 to RM 68.04, respectively. The 

performance of robot with PN = 100 is considered the best 

compared to PN = 125 and PN = 150. Thus, in this scope, 

increasing the PN with fixed GN and MR will not guarantee 

the best distance travelled, time required, or fare of a robot; 

however, incorporating Bezier will enhance the outcome. 

TABLE III.  PERFORMANCE OF AMR: 30% OBSTACLES 

 Classic Genetic Algorithms (GA) Genetic Algorithms Combined 

with Bezier Curve (GA-BZ) 

PN GN MR Distance 

Travel (m) 

Time 

Taken 

(s) 

Fare 

(RM) 

Distance 

Travel 

(m) 

Time 

Taken 

(s) 

Fare 

(RM) 

100 100 0.1 30.9705 61.9411 77.42 27.2178 54.4356 68.04 

125 100 0.1 33.8994 67.7989 84.74 27.6902 55.3804 69.22 

150 100 0.1 32.1421 64.2842 80.35 27.5701 55.1403 68.92 

150 125 0.1 33.3137 66.6274 83.28 27.6213 55.2427 69.05 

150 150 0.1 32.7279 65.4558 81.82 27.4138 54.8275 68.53 

200 150 0.3 33.3137 66.6274 83.28 28.1896 56.3792 70.47 

200 150 0.5 32.1421 64.2842 80.35 27.6182 55.2364 69.04 

200 150 0.7 31.5563 63.1126 78.89 27.3564 54.7129 68.39 

 

The investigation was resumed with PN = 150 and MR = 

0.1 held constant, and the GN was altered. According to the 

research, the GA with GN = 125 takes 66.6274 s to reach the 

destination with a path distance of 33.3137 m and a fare of 

RM 83.28, whereas GN = 150 results in the fewest meters 

travelled (32.7279 m), the least amount of time spent 

(65.4558 s), and the lowest cost (RM 81.82). By 

incorporating Bezier into the research and selecting only the 

best standard GA result from the stated parameters, the 

distance travelled will be reduced from 32.7279m to 

27.4138m, the time required will be reduced from 65.4558 s 

to 54.8275s, and the cost will be reduced from RM81.82 to 

RM68.53 (GN = 150). 

The investigation is continued by increasing the mutation 

rates (MR) from 0.3 to 0.7 while holding PN and GN constant 

at 200 and 150, respectively. According to the data tabulation, 

increasing the mutation rate to MR = 0.7 for the standard GA 

will produce the best results, with the shortest distance 

travelled (31.5563 m), the fastest time (63.1126 s), and the 

cheapest cost (RM 78.89) compared to MR = 0.3 and MR = 

0.5. The primary effect of optimizing the standard GA with 

Bezier is that the Bezier curve will generate a significantly 

more optimized and smoother route. Using GA-BZ with 

MR=0.7 reduces the distance the robot must travel to reach 

the finish line by 4.1999m, from 31.5563m (GA) to 27.3564 

m (GA-BZ). The time required for the robot to reach its 

destination will decrease from 63.1126 s to 54.7129 s, and the 

cost will decrease from RM78.89 to RM68.39. 

4.9. Optimal Path Obtained by AMR (30%): Population (PN) 

is altered 

Fig. 22, Fig. 23, and Fig. 24 exhibit the paths traveled by 

AMR using GA and GA-BZ when the population is changed 

from PN=100 to PN=125 to PN=150, respectively. For this 

experiment, the number of generations is GN = 100, and the 

rate of mutation is MR = 0.1. Fig. 22, Fig. 23, and Fig. 24 

show the progression of the experiment as the population size 

is increased from 100 to 150. The typical mutation rate in 

genetic algorithms is 0.1 for each generation, with 100 

generations in total. The black route is the product of 

traditional GA. The AMR goes from the blue-highlighted 

starting point (0,0) to the green-highlighted final destination 

(19,19). The Bezier path is created from the core GA path's 

generated control points. The proposed GA-BZ method 
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combines traditional GA with a Bezier curve, producing the 

red line. This results in a more direct and efficient route. 

Fig. 22 shows that the GA-generated path is the shortest, 

with a distance of 30.9705m (61.9411 s), compared to the 

paths shown in Fig. 23 and Fig. 24, respectively, which have 

respective distances of 33.8994m and 32.1421m. The 

resulting GA-BZ path can be used to create an optimized path 

with better performance and obstacle avoidance. With 

optimal settings (PN = 100, GN = 100, and MR = 0.1), GA-

BZ has the best distance travelled of 27.2178 m with travel 

time of 54.4356 s and an associated cost of RM 68.04. For 

PN = 125, the GA-BZ path is 27.6902 m and for PN = 150, 

GA-BZ distance is 27.5701 m. 

 

Fig. 22. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

100, GN = 100, and MR = 0.1) 

 

Fig. 23. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

125, GN = 100, and MR = 0.1) 

 

Fig. 24. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

150, GN = 100, and MR = 0.1) 

4.10. Optimal Path Obtained by AMR (30%) : Generation 

(GN) is altered 

The GA and GA-BZ pathways change from GN=125 to 

GN=150 in Fig. 25 and Fig. 26. For this experiment, the 

population is PN=150, and the mutation rate is MR=0.1. 

When PN is set to 150, GN is set to 125, and MR is set to 0.1, 

the standard GA distance in Fig. 25 is 33.3137 m. For the 

parameters shown in Fig. 26, the GA path distance is 32.7279 

m for PN = 150, GN = 150, and MR = 0.1.  The GA-BZ 

outperforms the GA path distances in both tests by an amount 

of 27.6213 m (55.2427 s) when GN = 125 and by 27.4138 m 

(54.8275 s) when GN = 150. The GA-BZ route dominates. 

 

Fig. 25. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

150, GN = 125, and MR = 0.1) 

 

Fig. 26. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

150, GN = 150, and MR = 0.1) 

4.11. Optimal Path Obtained by AMR (30%): Mutation Rate 

(MR) is altered 

Fig. 27, Fig. 28 and Fig. 29 show the produced path 

acquired by both GA and GA-BZ when the mutation rate is 

adjusted from MR=0.1, 0.3, 0.5, and 0.7, respectively. 

Throughout the course of the experiment, the population will 

remain constant at 200, and the generation rate will remain 

constant at 150. 

 

Fig. 27. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

200, GN = 150, and MR = 0.3) 

The mutation rate (MR) is changed from 0.3 to 0.5 to 0.7 

for the experiment shown in Fig. 27, Fig. 28 and Fig. 29. The 

PN and the GN are both set to 200 and 150, respectively. The 

black line shows the normal GA path. The AMR's path starts 

at (0, 0) and ends at (19, 19), which are shown in blue and 

green, respectively. The control points from the first GA path 

are used to make the Bezier path. The red path is what the 

suggested GA-BZ method makes by combining regular GA 
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with a Bezier curve. When MR = 0.3, 0.5, and 0.7, 

respectively, GA moves 33.3137m, 32.1421m, and 31.5563m 

while GA-BZ moves 28.1896m, 27.6182m, and 27.3564m. 

Because of the GA-BZ, the road is both smoother and faster. 

In this experiment, the shortest distance travelled by GA-BZ 

is 27.3564m (MR = 0.7), which took 54.7129s and cost RM 

68.39 as illustrated in Fig. 29. 

 

Fig. 28. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

200, GN = 150, and MR = 0.5) 

 

Fig. 29. Robot Performance in 30% Obstacles Occupying Workspace (PN = 

200, GN = 150, and MR = 0.7) 

4.12. Summarization of The Third Sub Experiment 1 

According to this 30% scale barrier-filled map, the 

optimal GA-BZ road distance is 27.2178m, which takes 

54.4356s and costs RM68.04. This robot has a genetic 

constitution of PN=100, GN=100, and MR=0.1. The most 

notable GA distance is 30.9705m, which is 3.7527m longer 

than the GA-BZ path. GA costs the AMR a total of RM77.42 

and 61.9411 s to reach its destinations. Then, we conducted 

experiments with different generation sizes for genetic 

algorithms. When PN=150, GN=150, and MR=0.1 were 

used, the best paths for GA were 32.7279m and for GA-BZ 

they were 27.4138m. GA-BZ is faster (54.8275s) and less 

expensive (RM68.53) than GA (65.4558s) and RM81.82, 

respectively. When mutation rate is varied, MR=0.7 

(PN=200, GN=150) achieves the best GA robot performance 

with a time of 63.1126s and a cost of RM 78.89. The average 

GA best distance is 31.5563m. The proposed algorithms are 

more economical and effective than the GA, covering the 

distance (27.3564 m) in 54.7129s and at a lower cost, RM 

68.39. Based on the performance of the robot, we can 

conclude that increasing the mutation rate enhances path 

optimisation in this context. 

GA-BZ improve routes as mutation rate increase in the 

third subenvironment with 30% obstacles. AMR travel 

duration and cost remain variable despite a higher mutation 

rate. Mutation operator alters population genetics randomly. 

Mutation can provide random changes and improved 

solutions. The produced GA-BZ path can be used to construct 

a more efficient and effective trajectory with better obstacle 

avoidance. The best results from this sub-experiment 1 were 

obtained when the robot's MR was set to 0.1, the PN was 100, 

and the GN was 100, with the obstacles occupying 30% of 

the workspace. GA-BZ travelled the shortest distance 

(27.2178m) and spent the least time (54.4356s) and money 

(RM68.04). 

D. Second Experiment: Analyzing the Effectiveness of 

Various AMR Algorithms 

The percentages of the difficulties in this study that were 

overcome are 25% and 50%, respectively. The 25% interval 

begins at (1,19) and terminates at (18,1). Each algorithm's 

output path is shown in black, and the barriers are represented 

by darkened square boxes.  

The beginning points for the approximately half of the 

course that is free of obstacles is at (1,1), while the ending 

point is at (18,13). Both maps feature barriers, but their 

placement and layout are different. This is done to prove that 

the proposed method can be implemented successfully. 

This study analyses the GA-BZ development with the 

following genetic parameters: PN = 150, GN = 150, MR = 

0.5 (25%), and MR = 0.7 (50%). 

4.13. Twenty-Five Obstacles Occupying Workspace 

The performance of AMR in 25% obstacles filling 

workspace employing GA, GA-BZ, SA, A*, and DA is 

shown in Fig. 30, Fig. 31, Fig. 32, Fig. 33, Fig. 34 and Table 

IV. 

 

Fig. 30. Path Planning of Genetic Algorithms (25%) 

 

Fig. 31. Path Planning of Genetic-Bezier Algorithm (25%) 
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Fig. 32. Path Planning of Simulated Annealing Algorithms (25%) 

 

Fig. 33. Path Planning of A-Star Algorithms (25%) 

 

Fig. 34. Path Planning of Dijkstra’s Algorithms (25%) 

Fig. 30 to Fig. 34 and Table IV reveal the path length via 

25% of the map's barriers. As shown in Fig. 30 to Fig. 34; 

GA, SA, A*, and DA each have the potential to produce a 

path with a length of either 32.8636 m, 33.4580 m, 25.6274 

m, or 36.2251 m, respectively. Due to redundant nodes and 

infection spots, the GA, SA, and DA planning pathways are 

longer than the GA-BZ (25.6642m). GA-BZ's path planning 

performance is better than A*'s, and the robot's mobility 

security is guaranteed even though the path is somewhat 

longer. Fig. 30 and Fig. 31 show that the GA and GA-BZ 

paths have improved; the GA nodes reflect the control points 

of the curve, and the red line is the ideal smooth path. The 

GA-BZ yields better planned path lengths than other 

approaches. The updated method minimizes superfluous 

inflection points and nodes in path planning, making it 

smoother and shorter. 

TABLE IV.  PERFORMANCE OF AMR USING MULTIPLE ALGORITHMS 

(25%) 

 
Distance 

Travel (m) 

Time Taken 

(s) 

Fare 

(RM) 

25% 

Genetic 

Algorithms 
32.8636 65.7273 82.15 

GA-BZ 25.6642 51.3285 64.16 

Simulated 
Annealing 

33.4580 66.9160 83.64 

A-Star 25.6274 51.2548 64.06 

Dijkstra’s 

Algorithms 
36.2251 72.4502 90.56 

 

Table IV shows that A-Star's simulation runtime is the 

quickest of all the algorithms evaluated at 51.2548 s. The path 

created by A-Star does not successfully avoid obstructions; 

hence, the results achieved are unsatisfactory. With a 

smoother and safer path for the AMR to attain the targets, the 

proposed GA-BZ approaches come in second place in terms 

of time with 51.3285 s, which has shorter time consumption 

compared to SA (66.9160 s), GA (65.7273 s), and DA 

(72.4502 s). This is due to the optimal selection, crossover, 

and mutation operators of the GA being incorporated into the 

GA-BZ’s path planning mechanism. 

In terms of fare, the base GA costs RM 82.15, whereas 

the GA-BZ costs only RM 64.16. By only incorporating the 

Bezier curve with obstacle avoidance tools in the standard 

GA, RM 17.99 can be saved. Other alternative algorithms 

demand a greater travel fee than GA-BZ. Therefore, the 

suggested method outperforms state-of-the-art algorithms in 

terms of path length, fare, and smoothness in low real-time 

contexts. 

E. Fifty Percent Obstacles Occupying Workspace 

The performance of AMR with GA, GA-BZ, SA, A*, and 

DA in a 50% obstacle-filled workspace is depicted in Fig. 35, 

Fig. 36, Fig. 37, Fig. 38, Fig. 39, and Table V. 

Combining Fig. 35 to Fig. 39 and Table V yields the 

following data regarding the length of the path through fifty 

per cent of the obstacles on the map. As depicted in Fig. 35, 

Fig. 37, Fig. 38 and Fig. 39; GA, SA, A*, and DA can 

generate trajectories with respective lengths of 23.0897m, 

29.0999m, 21.9750m, and 29.8753m. Normal GA, SA, and 

DA planning pathways are substantially longer than the GA-

BZ (19.0072m) as a result of the additional nodes and 

infection spots. The revised path design algorithm reduces 

superfluous inflection points and nodes, resulting in a 

smoother, shorter path. 

TABLE V.  PERFORMANCE OF AMR USING MULTIPLE ALGORITHMS (50%) 

 
Distance 

Travel (m) 

Time Taken 

(s) 

Fare 

(RM) 

50% 

Genetic 
Algorithms 

23.0897 46.1794 50% 

GA-BZ 19.0072 38.0144 64.16 

Simulated 

Annealing 
29.0999 58.1998 83.64 

A-Star 21.9750 43.9500 64.06 

Dijkstra’s 

Algorithms 
29.8753 59.7506 90.56 
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The GA-BZ technique has the shortest simulation 

runtime, at 38.0144 s, as shown in Table V. The AMR was 

able to achieve its objectives in a less risky and better-

coordinated fashion because of the GA-BZ approaches. The 

normal GA costs RM 57.72 (46.1794s), while GA-BZ costs 

RM 47.51 (38.0144s). Using the A-Star algorithm, the time 

and money spent on trip is calculated to be 43.9500 s and 

RM54.93, respectively. The time required for SA is 

calculated at 58.1998 s (RM72.74), while DA measures in at 

59.7506 s (RM74.68). GA-BZ requires a shorter minimum 

travel distance than competing algorithms. Thus, GA-BZ 

provides more precise estimates of target path lengths, 

throughput, cost, and smoothness than alternative methods. 

 

Fig. 35. Path Planning of Genetic Algorithms (50%) 

 

Fig. 36. Path Planning of Genetic-Bezier Algorithms (50%) 

 

Fig. 37. Path Planning of Simulated Annealing Algorithms (50%) 

 

Fig. 38. Path Planning of A-Star Algorithms (50%) 

 

Fig. 39. Path Planning of Dijkstra’s Algorithms (50%) 

V. CONCLUSION 

The goal of this research was to determine if and how a 

genetic algorithm with some modifications (GA-BZ) could 

be utilised to enhance the process of route planning for a 

mobile robot. Applying GA-BZ to the problem of route 

planning in a world full of obstacles always leads to the 

optimal answer. As was shown previously in this study, the 

GA-BZ has impressive potential to enhance the route 

planning algorithm and produce an ideal path in terms of path 

length. By incorporating specialised selection and crossover 

operations into the GA-BZ computation, we were able to 

speed up the process and reduce associated costs, ultimately 

producing a more effective strategy for travel planning. The 

performance of the robot's journey route is enhanced by the 

incorporation of a continuous Bezier Curve into the Genetic 

Algorithms.  

Based on the configuration of the first sub environment 

with 15 percent obstacles, it can be concluded that as 

population and generation increase, both GA and GA-BZ 

generate smoother and superior routes. Even when the 

mutation rate is increased, the resulting duration and cost for 

an AMR to reach its destination are random. This is due to 

the fact that the mutation operator introduces random changes 

to the genetic material of population members. Mutation is a 

stochastic process that can introduce random perturbations 

while occasionally leading to solution enhancements. Using 

the GA-BZ path that is generated, a more effective and 

efficient trajectory can be designed and optimised with 
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greater obstacle avoidance. The best results from sub-

experiment 1 were obtained when the robot's MR was set to 

0.5, the PN was set to 100, and the GN was set to 100, with 

the obstacles occupying 5% of the available workspace, as 

GA-BZ travels the shortest distance (27.1666m) and spends 

the least amount of time (54.3332s) and money travelling 

(RM67.92). 

In the context of the second sub-experiment with barriers 

comprising approximately 15 percent of the workspace, it can 

be concluded that the performance of the robot using both GA 

and GA-BZ improves as the number of populations and 

generations decreases. Even with a higher mutation rate, the 

cost and duration of AMR travel are unpredictable. The 

mutation operator makes arbitrary genetic modifications to 

members of the population. Mutation is a random process that 

can result in arbitrary changes and occasionally produce 

superior solutions. The most effective outcomes were 

achieved with the robot's MR set to 0.1, the PN set to 100, 

and the GN set to 100 since this combination allows the 

shortest distance (27.5655 m) and time consumption 

(55.1312 s), as well as the lowest cost (RM68.91), when the 

obstacles consumed 15% of the available workspace 

throughout the second sub-experiment 1 using GA-BZ. 

GA-BZ improves routes as the mutation rate increases in 

the third subenvironment with 30% obstacles. Despite a 

higher mutation rate, AMR travel time and expense remain 

variable. Randomly altering population genetics, a mutation 

operator. Mutation can result in arbitrary modifications and 

enhanced solutions. The generated GA-BZ path can be 

utilised to create a more efficient and effective trajectory with 

enhanced obstacle avoidance. This sub-experiment 1 yielded 

the greatest results when the robot's MR was set to 0.1, the 

PN was 100, and the GN was 100, and when obstacles 

occupied 30% of the workspace. GA-BZ travelled the 

minimum distance (27.2178 m) and spent the least amount of 

time (54.4356 s) and money (RM68.04). 

Five distinct algorithms, GA, GA-BZ, SA, A*, and DA, 

are utilised to compare the performance of the AMR robot in 

the second primary test. In an environment where obstacles 

occupy 25% of the space, the shortest distance that effectively 

avoids obstacles is 25.6642m in 51.3285 s at a cost of RM 

64.16. This robot performance was achieved with the help of 

the proposed algorithm, an enhanced Genetic Algorithm with 

Bezier Curve (GA-BZ). In addition, the shortest path, 

including time and cost, through a 50% obstacle coverage 

area is 19.0072m in 38.0144s at a fee of RM 47.51. The 

proposed algorithms, which combine an enhanced Genetic 

Algorithm and a Bezier curve, were used in the robot's 

performance. 

The goals of this study have been met since an enhanced 

Genetic algorithm (GA-BZ) with variable population, 

generation, and mutation rates of GA was used to create an 

ideal path for an autonomous mobile robot (AMR). This 

study also verified the superiority of GA-BZ over traditional 

GA in terms of path planning performance, measuring the 

two types of algorithms across a range of metrics, including 

travel time, cost, and total distance travelled. Finally, the 

output from a comparison of GA, Simulated Annealing (SA), 

A-Star (A*), and Dijkstra's Algorithms (DA) with respect to 

path length (m), time (s), and cost (RM) demonstrates that the 

proposed GA-BZ is superior, as well as smoother and 

optimum. 
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