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Abstract—The article presents the parameter tuning of the 

Power System Stabilizer (PSS) using the hybrid method. The 

hybrid methods proposed in this article are Praire Dog 

Optimization (PDO) and Marine Predator Algorithm (MPA). 

The proposed method can be called PDOMPA. In the PDOMPA 

method, the marine predator algorithm (MPA) is able to search 

around optimal individuals when updating population positions. 

MPA is used to make the exploration and exploitation stages of 

PDO more valid and accurate. PDO is an algorithm inspired by 

the life of prairie dogs. Prairie dogs are adapted to colonizing in 

burrows underground. Prairie dogs have daily habits of eating, 

observing for predators, establishing fresh burrows, or 

preserving existing ones. Meanwhile, MPA is a duplication of 

marine predator life which is modeled mathematically. In order 

to validate the performance of the PDOMPA method, this 

article presents a comparative simulation of the objective 

function and the transient response of PSS. This research uses 

validation by comparing with conventional methods, Whale 

Optimization Algorithm (WOA), Grasshopper Optimization 

Algorithm (GOA), Marine Predator Algorithm (MPA), and 

Praire Dog Optimization (PDO). Based on the simulation 

results, PDOMPA presents fast convergence in some cases and 

shows optimal results compared to competitive algorithms. 

From the simulation results using load variations, it was found 

that the proposed method has the ability to reduce the average 

undershoot and overshoot of speed by 42.2% and 85.37% 

compared to the PSS-Lead Lag method. Meanwhile the average 

settling time value of speed is 50.7%. 

Keywords—Prairie Dog Optimization; Power System 

Stabilizer; Marine Predator Algorithm; Metaheuristic; Single 

Machine. 

I.  INTRODUCTION  

The stability of the electricity network system is 

important. Technological developments increase the 

complexity of the electrical network which is increasingly 

playing an important role [1–4]. Demand for electrical energy 

from consumers has increased rapidly [5][6–9]. In addition, 

the remote location of the plant and away from the load 

increases the complexity of the power system [10–14]. The 

important keys in distributing electric power systems are 

stability and consistency [15–21]. The ability of a system to 

recover after experiencing a shock is an important focus [22–

28]. Changes in loads and additions to loads that are well 

planned or sudden are things that worry the electric power 

system [29]. This will cause a tremendous shock to the power 

plant, especially the generator. This causes the generator to 

experience a decrease or loss of synchronization which 

creates the need for a damping torque [30][31]. This can be 

fulfilled by the power system stabilizer.  

Power System Stabilizer (PSS) is an additional control on 

the generator. PSS is maintaining the frequency and terminal 

voltage locally or globally on each generator [32–38]. An 

unreliable response can cause frequency oscillations over 

long periods [39]. This can result in a reduction in power 

transfer strength.  Over the decades, the development of 

methods for maintaining stability has increased significantly 

[40–45]. This should be of particular concern in its 

application. Various methods and approaches to Power 

System Stabilizers have been presented in the popular 

literature as conventional PSS. It is known to have a simple 

structure. Besides that, it is easy to apply [46]. The 

development of power systems that have different 

characteristics and are always changing. This demands an 

adaptive and established control. The existing control is a 

linear-based control so that it experiences problems when 

dealing with nonlinear systems that are often found in the 

industry [47][48]. 

Previously, PSS control with conventional methods has 

been widely presented [49–56]. In recent years, the PSS 

control method has been integrated with several optimization 

methods. Several optimization methods that are better known 

as metaheuristics have been widely presented, such as the 

Tunicate Swarm Algorithm (TSA) [57][58], Gorilla Troops 

Optimizer (GTO) [59], Atom Search Optimization (ASO) 

[60], Salp Swarm Algorithm (SSA) [61][62], Particle Swarm 

Optimization (PSO) [63–65], and Antlion Algorithm [66]. 

Although several studies have presented optimization 

approaches for power system stabilizers. Research on 

optimizing the power system stabilizer still has a lot of room 

to explore and is still popular. In this article, a hybrid method 

is presented, namely the Prairie Dog Optimization algorithm 

and the Marine Predator Algorithm to obtain the power 

system stabilizer parameter. MPA has the advantage of 

looking into exploitation and exploration, besides that it is 

also easier to go beyond the local optimum and find a global 
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optimal solution by considering environmental impacts. The 

application of MPA to PDO will sharpen the accuracy of the 

convergence curve.  Research contributions are: 

1. A hybrid method of the Prairie Dog Optimization 

Algorithm and the Marine Predator Algorithm called 

PDOMPA is presented. 

2. Application of PDOMPA to PSS. 

3. Investigating the ability of PDOMPA-based controllers 

to improve PSS performance. 

4. Comparing PDOMPA applied to PSS with conventional 

methods, Whale Optimization Algorithm (WOA), 

Grasshopper Optimization Algorithm (GOA), Marine 

Predator Algorithm (MPA), and Praire Dog 

Optimization (PDO). 

The article consists of methods and mathematical 

formulations in section 2. Section 3 is a presentation of the 

proposed method approach along with its pseudocode. 

Section 4 is a simulation and discussion. The last section 

contains the conclusions of the research. 

II. METHODS 

A. Prairie Dog Optimization Algorithm (PDO) 

Prairie Dog Optimization Algorithm adopts the behavior 

of prairie dogs in nature. The prairie dog (genus Cynomys) is 

a herbivorous rodent found mainly in the Great Plains and 

desert prairies of the southwestern US, Canada, and Mexico 

[67]. In PDO, the optimization phase that characterizes the 

optimization method is exploration and exploitation using 

four activities of prairie dogs. Prairie dogs in small groups in 

one unit are called coterie. In one coterie, there are several 

numbers of prairie dogs. The cotere concept can be modeled 

mathematically in equation (1) to (6). 

𝐶 =

[
 
 
 
𝐶1,1 𝐶1,2
𝐶2,1 𝐶2,2

   
⋯ 𝐶1,𝑑
⋯ 𝐶2,𝑑

⋮ ⋮
𝐶𝑚,1 𝐶𝑚,2

   
⋮ ⋮
… 𝐶𝑚,𝑑]

 
 
 
 (1) 

𝑋 = [

𝑋1,1 𝑋1,2
𝑋2,1 𝑋2,2

   
⋯ 𝑋1,𝑑
⋯ 𝑋2,𝑑

⋮ ⋮
𝑋𝑘,1 𝑋𝑘,2

   
⋮ ⋮
… 𝑋𝑘,𝑑

] (2) 

𝐶1,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗 (3) 

𝑋1,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑙𝑏𝑗 (4) 

𝑢𝑏𝑗 =
𝑈𝐵𝑗

𝑚
 (5) 

𝑙𝑏𝑗 =
𝐿𝐵𝑗

𝑚
 (6) 

Where 𝐶 is the j-th dimension of the i-th neighborhood in a 

herd. The location of the prairie dogs in the coterie is modeled 

in equation (2). 𝑋 is the 𝑗th dimension of the 𝑖th prairie dog 

in a coterie. Equations (3) and (4) are uniform distributions 

of the locations of the conteries and prairie dogs. The upper 

and lower bounds of the j-th matrix of the optimization 

problem are denoted by UB and LB. 𝑟𝑎𝑛𝑑 is a random value 

[0,1]. The value of the fitness function of each prairie dog is 

a representation of the quality of food, new burrows and the 

accuracy of response to predators. this is evaluated by 

plugging into the fitness function in equation (7). 

 

𝑓(𝑋) =

[
 
 
 
𝑓1[𝑋1,1 𝑋1,2
𝑓2[𝑋2,1 𝑋2,2

   
⋯ 𝑋1,𝑑]

⋯ 𝑋2,𝑑]

⋮ ⋮
𝑓𝑛[𝑋𝑘,1 𝑋𝑘,2

   
⋮ ⋮
… 𝑋𝑘,𝑑]]

 
 
 

 (7) 

1) Exploration Phase 

In the exploration phase, prairie dogs are foraging for 

food and digging nearby burrows. The optimization problem 

space is explored from foraging activities and building 

tunnels in the ground. These animals build tunnels in the 

ground around which there is a food source. The concept of 

these passages is that they will connect because these prairie 

dogs build tunnels in the ground at each new food source. On 

the other hand, this underground tunnel is used as a refuge 

from predators. New burrows will be dug depending on the 

quality of the food source. The position update for foraging 

in the exploration phase of our algorithm is given in equation 

(8) and the position update for the underground passage 

building is given in equation (9). 

𝑋𝑖+1,𝑗+1 = 𝐺𝑏𝑖,𝑗 − 𝑒𝐶𝑏𝑖,𝑗 × 𝜌 − 𝐶𝑋𝑖,𝑗 × 𝐿𝑒𝑣𝑦(𝑛), 𝑖𝑓 𝑖𝑡𝑒𝑟 <
𝑀𝑖𝑡𝑒𝑟

4
 

 (8) 

𝑋𝑖+1,𝑗+1 = 𝐺𝑏𝑖,𝑗 × 𝑟𝑎𝑛𝑑𝑋 × 𝐶𝐷𝑆 × 𝐿𝑒𝑣𝑦(𝑛), 𝑖𝑓 
𝑀𝑖𝑡𝑒𝑟

4
< 𝑖𝑡𝑒𝑟 <

𝑀𝑖𝑡𝑒𝑟

2
 

 (9) 

𝑒𝐶𝑏𝑖,𝑗 = 𝐺𝑏𝑖,𝑗 × ∆ ×
𝑋𝑖,𝑗 ×𝑚𝑒𝑛𝑎(𝑋𝑛,𝑚)

𝐺𝑏𝑖,𝑗 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + ∆
 (10) 

𝐶𝑋𝑖,𝑗 =
𝐺𝑏𝑖,𝑗 − 𝑟𝑎𝑛𝑑𝑋

𝐺𝑏𝑖,𝑗 + ∆
 (11) 

𝐶𝐷𝑆 = 1.5 × 𝑠𝑝 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑖𝑡𝑒𝑟
)
(2
𝑖𝑡𝑒𝑟
𝑀𝑖𝑡𝑒𝑟

)

 (12) 

Where 𝐺𝑏𝑖,𝑗 is the optimal solution achieved. 𝑒𝐶𝑏𝑖,𝑗 

represents the effect of the optimal solution. Signal indicating 

the source of food is symbolized by 𝜌. The random combined 

effect on the herd of prairie dogs is symbolized by 𝐶𝑋𝑖,𝑗. 

𝐿𝑒𝑣𝑦(𝑛)  is the levy distribution. The ability to dig a herd is 

represented by 𝐶𝐷𝑆. To ensure the exploration process used 

stochastic items symbolized by 𝑠𝑝 with a value of -1 or 1. The 

difference between prairie dogs is represented by∆. 

2) Exploitation Phase 

This section describes the steppe dog exploitation phase. 

Prairie dogs have the ability to communicate among 

themselves by different signals or sounds when looking for 

food and avoiding predators. This is modeled in equations 

(13) and (14). The exploitation process aims to find 

promising spots as shown in (15). 

𝑋𝑖+1,𝑗+1 = 𝐺𝑏𝑖,𝑗 − 𝑒𝐶𝑏𝑖,𝑗 × 𝜀 − 𝐶𝑋𝑖,𝑗 × 𝑟𝑎𝑛𝑑  , 𝑖𝑓 
𝑀𝑖𝑡𝑒𝑟

2
< 𝑖𝑡𝑒𝑟 < 3

𝑀𝑖𝑡𝑒𝑟

4
 

 (13) 

𝑋𝑖+1,𝑗+1 = 𝐺𝑏𝑖,𝑗 × 𝑒𝑃 × 𝑟𝑎𝑛𝑑 , 𝑖𝑓 3
𝑀𝑖𝑡𝑒𝑟

4
< 𝑖𝑡𝑒𝑟 < 𝑀𝑖𝑡𝑒𝑟 (14) 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 688 

 

 

Widi Aribowo, A Novel Hybrid Prairie Dog Optimization Algorithm - Marine Predator Algorithm for Tuning Parameters 

Power System Stabilizer 

 

𝑒𝑃 = 1.5 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑖𝑡𝑒𝑟
)
(2
𝑖𝑡𝑒𝑟
𝑀𝑖𝑡𝑒𝑟

)

 (15) 

Where 𝑒𝑃 is a symbol of predatory effect. 𝑖𝑡𝑒𝑟  is the current 
iteration and 𝑀𝑖𝑡𝑒𝑟  is the maximum number of iterations. 

Paper titles should be written in uppercase and lowercase 

letters, not all uppercase. Avoid writing long formulas with 

subscripts in the title; short formulas that identify the 

elements are fine (e.g., "Nd–Fe–B"). Do not write “(Invited)” 

in the title. 

B. Marine Predator Algorithm (MPA) 

Marine Predator Algorithm (MPA) is an optimization 

method based on the behavior of marine predators in nature 

[68]. This algorithm has three important steps in solving 

optimization problems, namely: 

1) Step 1: High Speed  

In this stage (𝑡 <  
1

3
 × max _𝑖𝑡𝑒𝑟), the prey is finding for 

feed and the predator is observing the mobility of the prey. 

The stage can be formulated in equations (16) and (17). 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝑏⃗⃗ ⃗⃗  ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑖 − 𝑅𝑏⃗⃗ ⃗⃗  ⊗ 𝑃𝑟𝑒𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖) 𝑖 = 1,2… . 𝑛 (16) 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝑅⃗ ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗  (17) 

The ⊗ is operation of element-wise multiplication. 𝑅𝑏⃗⃗ ⃗⃗   is a 

random value. It is based on brownian motion with normal 

distribution. 𝑅⃗ ∈ [0, 1].   𝑃 is uniform random value equal to 

0.5. 

2) Stage 2: Equal Speed 

In this stage (
1

3
 × max _𝑖𝑡𝑒𝑟 <  𝑖𝑡𝑒𝑟 <

2

3
 × max _𝑖𝑡𝑒𝑟), 

the exploration is turned into exploitation. Predators and prey 

have the same speed. 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑖 − 𝑅𝐿⃗⃗ ⃗⃗ ⊗ 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖)   𝑖 = 1,2… . 𝑛/2 (18) 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝑅⃗ ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗  (19) 

In the first population, 𝑅𝐿⃗⃗ ⃗⃗  denotes random numbers based on 

the distribution. Prey movement is simulated by 𝑅𝐿⃗⃗ ⃗⃗  
Multiplication. While the second half of the population, the 

mathematical equation is as (20) to (22). 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝑏⃗⃗ ⃗⃗  ⊗ (𝑅𝑏 ⃗⃗ ⃗⃗  ⃗ ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑖 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖) 𝑖 = 𝑛/2,… . 𝑛 (20) 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝐶𝐹 ⊗ 𝑆𝑠𝑖⃗⃗⃗⃗  ⃗ (21) 

𝐶𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑖𝑡𝑒𝑟
)
(2
𝐼𝑡𝑒𝑟
𝑀𝑖𝑡𝑒𝑟

)
 (22) 

Predatory movements are controlled by adaptive 

parameters, namely 𝐶𝐹. 

3) Stage 3: Low-Speed 

In this last stage, the prey has a speed below the predator. 

When 𝑖𝑡𝑒𝑟 >  
2

3
 × max _𝑖𝑡𝑒𝑟, the mathematical equation is 

as (23) and (24). 

𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗ = 𝑅𝐿⃗⃗ ⃗⃗ ⊗ (𝑅𝐿⃗⃗ ⃗⃗  ⊗ 𝐸𝑙𝑖𝑡𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑖 − ⊗ 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖)   𝑖 = 1… . 𝑛 (23) 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = 𝑃𝑟𝑒𝑦⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝑃 × 𝐶𝐹 ⊗ 𝑆ℎ𝑖⃗⃗⃗⃗⃗⃗  (24) 

One of the environmental issues that influence the attitude 

of marine ecosystems is Fish Aggregating Devices (FADs). 

The FADs modeling is as (25). 

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  
𝑖 =

{
 
 

 
 𝑃𝑟𝑒𝑦
⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

𝑖 + 𝐶𝐹 × [𝑍0 = 𝑍𝑚𝑖𝑛 + 𝑅⃗ ⊗ (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)] ⊗ 𝐴

𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  
𝑖 + [𝐹𝐴𝐷𝑠 (1 − 𝑟) + 𝑟](𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

𝑟1 − 𝑃𝑟𝑒𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  
𝑟2)

𝑖𝑓 𝑟 > 𝐹𝐴𝐷𝑠

 

 (25) 

Where 𝑟 is a uniform random variable. xmax is the upper limit 
and xmin is the lower limit. the optimization process is 
affected when the 𝐹𝐴𝐷𝑠 is 0.2. 𝐴 is a binary vector. 

Algorithm 1 Marine Predator Algorithm (MPA) 

Input: Fitness function, Population size  

Output: The Best Solution, Objective Function 

1: procedure MPA 

2: Initialize the parameters 

3: While termination criteria are not meet  

4:      Calculate of the fitness and construct The Elite 

5:          If (𝒊𝒕𝒆𝒓 <  
max _𝑖𝑡𝑒𝑟

𝟑
) then 

6:                 Update 𝑋   

7:          Else If (
max _𝑖𝑡𝑒𝑟

𝟑
< 𝒊𝒕𝒆𝒓 < 𝟐 ∗

max _𝑖𝑡𝑒𝑟

𝟑
)  

8:           For the the first half (i=1,…n/2)  

9:                Update 𝑋  → Equation (19) 

10:           For the the othet half (i=1/2,…n)  

11:                Update 𝑋  → Equation (21) 

12:         Else If (𝒊𝒕𝒆𝒓 <  𝟐 ∗ 
max _𝑖𝑡𝑒𝑟

𝟑
) then 

13:                 Update 𝑋  → Equation (24) 

14:          End If 

15:  End While 

16: return Best  Soluton 

17: End procedure 

C. Power System Stabilizer (PSS)  

The addition of PSS will dampen generator rotor 

oscillations in the excitation system by supplying an 

additional feedback stabilization signal  [69]. The modeling 

scheme of PSS can be seen in Fig. 1. 

 

Fig. 1. PSS mathematical modeling [32]  

III. PROPOSED HYBRID PDO-MPA 

In improving the method, we propose a hybrid algorithm 

called Prairie Dog Optimization based on marine predator 

algorithm (PDOMPA. In the proposed PDOMPA, the marine 

predator algorithm (MPA) is applied to the PDO to sharpen 

the exploration and exploitation stages so that they are more 

valid and accurate as well as avoiding local optimal traps and 

preventing premature convergence. In this article, the PDO 

and MPA methods are integrated by replacing equation (11) 

with equation (16). The advantage of the PDOMPA hybrid 

algorithm is that the individuals in the top layer are not only 

affected by each individual in the PDO, but also have an 

effect on the global optimal solution. 
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IV. SIMULATION RESULTS AND DISCUSSION 

The Matlab/Simulink application is used to write the 

PDOMPA method code with a laptop with RAM 

specifications: 8 GB, CPU Intel I5-5200: 2.19GHZ 64 bit. 

The PDOMPA is applied to obtain the optimal power system 

stabilizer parameters. To determine the performance of the 

PDOMPA, a test of twenty-three benchmark functions was 

carried out. Benchmark function has three categories: 

unimodal (Fig. 2 (a)-(g)), multimodal (Fig, 2 (h)-(m)) and 

multimodal with fixed dimensions (Fig. 2 (m)-(w)). The three 

categories have their own characteristics. The unimodal 

function has one global ideal and no local optimal, making it 

a good candidate for benchmarking algorithm exploitation. 

The multi-modal function is particularly useful for assessing 

exploration and deducting the algorithm's local optima 

position since it has a large number of local optimum points. 

Multi-modal test functions that have been rotated, shifted, 

and biassed make up the composite function. PDOMPA was 

compared with the PDO, MPA, GWO, and WOA. 

Algorithm 1 Prairie Dog Optimization- Marine 

Predator Algorithm (PDOMPA) 

Input: Fitness function, Population size, Digging 

strength, Predator effect, Levy random number 

vectorMaximum number of iteration,  

Output: The Best Solution, Objective Function 

1: procedure PDOMPA 

2: Initialize the parameters 

3:      Set 𝑛,𝑚, 𝜌 𝑎𝑛𝑑 𝜀 
4:      Set 𝐺𝑏 , 𝑒𝐶𝑏, and 𝑀𝑖𝑡𝑒𝑟  

5:      Set 𝐶 and 𝑋  

6:      while (𝑖𝑡𝑒𝑟 <  𝑀𝑖𝑡𝑒𝑟) do  

7:      For (i=1 to m) do  

8:         For (j=1 to n) do 

9:            Calculate of the fitness 𝑋    
10:          Find the Best Solution so far  

11:          Update 𝐺𝑏  

12:          Update 𝐷𝑆 and 𝑃𝐸 → Equation (12) and (15)  

13:          Update 𝐶𝑃𝐷 →  Equation (16)   

14:          If (𝒊𝒕𝒆𝒓 <  
𝑴𝒊𝒕𝒆𝒓

𝟒
) then 

15:                 Update 𝑋  → Equation (8) 

16:          Else If (
𝑴𝒊𝒕𝒆𝒓

𝟒
< 𝒊𝒕𝒆𝒓 <

𝑴𝒊𝒕𝒆𝒓

𝟐
) then 

17:                Update 𝑋  → Equation (9) 

18:         Else If ( 
𝑴𝒊𝒕𝒆𝒓

𝟐
< 𝒊𝒕𝒆𝒓 < 𝟑

𝑴𝒊𝒕𝒆𝒓

𝟒
) then 

19:                 Update 𝑋  → Equation (13) 

20:        Else 

21:                 Update 𝑋  → Equation (14) 

22:          End If 

23:      End For 

24:   End For 

25:   𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

26:  End While 

27: return Best  Soluton 

28: End procedure 

Here, Fig. 2 displays a number of convergence graphs 

taken from each benchmark, demonstrating how all of the 

algorithms' convergence curves differ significantly from one 

another and can be quickly identified for purposes of analysis 

and interpretation. In comparison to other methods, the 

convergence speed of PDOMPA was examined. The 

algorithm has the highest rate of convergence, as seen by the 

curve's fastest decline towards the global minimum. 

PDOMPA has a satisfactory convergence rate, as seen in Fig. 

2. On several benchmark functions, PDOMPA's convergence 

speed is a little bit slower than WOA's, but it is clear that 

PDOMPA can reach a more minimum global best objective 

fitness. 

The proportional distribution to exploration and 

exploitation is primarily determined by the linear reduction 

of the weight vector's fluctuation range. Overall, PDOMPA's 

convergence speed is competitive, occasionally even 

outpacing that of all other comparable methods. These 

reasons lead to the conclusion that PDOMPA is a well-

behaved algorithm in terms of convergence rate. 

Furthermore, the PDO-MPA performance was measured 

by applying to tune the PSS parameter. PDOMPA is used to 

obtain parameters that match the optimal output criteria. This 

article tests a single machine system owned by Heffron-

Philips by conducting several case studies. The case study is 

to change the load on the system by 25%, 50% and 95%. The 

first step is to optimize the PSS parameter by using the 

integral of time multiplied absolute error (ITAE). ITAE is 

adopted as the objective function for the design problem. This 

can be seen in equation (26). 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. |∆𝜔(𝑡)|. 𝑑𝑡

𝑇𝑠

0

 (26) 

1) Case 1: 25% Of Load 

The first test by giving a light load of 25% on the system. 

The output of system gives a different transient response for 

each algorithm. The output graph of the speed and rotor angle 

can be seen in Fig. 3 and Fig. 4. The transient response of the 

worst undershoot speed is owned by MPA. MPA was only 

able to reduce undershoot speed from PSS-lead lag by 

13.11%. Meanwhile, the worst overshoot of speed was owned 

by WOA which was only able to reduce pss-lead lag by 

68.82%. The application of PDOMPA is able to reduce the 

undershoot and overshoot values of the PSS-lead lag speed 

by 42.14% and 85.37%. In the transient response of the angel 

rotor, the undershoot value of PDOMPA is better than the 

PSS-Lead Lag of 78.26%. The details of case study 1 can be 

seen in Table I. 

2) Case 2: 50% Of Load 

The second case study by increasing the loading by 25%. 

The total load is 50%. The graphs of the second case study 

can be seen in Fig. 5 and Fig. 6. Details of case study 2 can 

be seen in Table 3. In the second case study, pdompa applied 

to pss was able to reduce the undershoot and overshoot speed 

of pss-lead lag by 42.21% and 85% .42 %. Meanwhile, the 

undershoot value of the rotor angle PDOMPA is better than 

PSS-Lead lag by 78.25 %. Table II is detail of case study 2. 

3) Case 3: 95% Of Load 

The third case study is by 95% of load. With maximal 

load, PDOMPA-optimized PSS gives good transient 
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response. The graphs of the second case study can be seen in 

Fig. 7 and Fig. 8. The undershoot and overshoot values of 

speed with the pdompa method are better by 42.26% and 

85.53% than the PSS-Lead Lag method. speed in 95 % load 

in Fig. 9, speed in 50 % load in Fig. 10, rotor angle in 95 % 

load in Fig. 11. Meanwhile, the settling time value is better 

than the PSS-Lead Lag of 48%. The details of case study 3 

can be seen in Table III. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 

Fig. 2. Convergence Curve (a)F1, (b) F2, (c) F3, (d) F4, (e)F5, (f)F6, (g) F7, (h) F8, (i) F9, (j) F10, (k) F11, (l) F12, (m) F13, (n) F14, (o) F15 
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(p) (q) (r) 

  
  

(s) (t) (u) 

  
(v) (w) 

Fig. 3. Convergence Curve (p) F16, (q) F17, (r) F18, (s) F19, (t)F20, (u)F21 (v)F22, (w)F23 (continue) 

 

Fig. 4. Speed in 25 % Load 

 

Fig. 5. Rotor Angle in 25 % Load 

 

Fig. 6. Speed in 25 % Load 

 

Fig. 7. Rotor Angle in 50 % Load 
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Fig. 8. Rotor Angle in 25 % Load 

 

Fig. 9. Speed in 95 % Load 

 

Fig. 10. Speed in 50 % Load 

 

Fig. 11. Rotor Angle in 95 % Load

TABLE I. CASE 1: 25 % OF LOAD 

Method  

Speed Response Rotor Angle Response 

Undershoot Overshoot Settling Time (s) Undershoot Overshoot Settling Time (s) 

PSS-Lead Lag -0.0412 0.02057 601 -0.2811 0.02217 593 

PSS-WOA -0.0339 0.006414 544 -0.1849 0.002783 607 

PSS-GOA -0.03217 0.003525 680 -0.1375 0.007685 979 

 PSS-MPA -0.0466 0.004712 506 -0.1619 0.002922 576 

PSS-PDO -0.02604 0.00314 556 -0.0976 No Overshoot 1439 

PSS-PDOMPA -0.02384 0.00301 310 -0.0611 No Overshoot 2017 

TABLE II. CASE 2: 50 % OF LOAD 

Method  
Speed Response Rotor Angle Response 

Undershoot Overshoot Settling Time (s) Undershoot Overshoot Settling Time (s) 

PSS-Lead Lag -0.08237 0.0408 702 -0.5622 0.0154 893 

PSS-WOA -0.0679 0.01284 545 -0.3697 No Overshoot 807 

PSS-GOA -0.06436 0.00703 681 -0.2749 No Overshoot 980 

PSS-MPA -0.0933 0.009425 506 -0.3238 No Overshoot 576 

PSS-PDO -0.052 0.00606 556 -0.1947 No Overshoot 1440 

PSS-PDOMPA -0.0476 0.00595 311 -0.1223 No Overshoot 2100 

TABLE III. CASE 3: 95 % OF LOAD 

Method  
Speed Response Rotor Angle Response 

Undershoot Overshoot Settling Time (s) Undershoot Overshoot Settling Time (s) 

PSS-Lead Lag -0.1564 0.07814 602 -1.068 0.0842 593 

PSS-WOA -0.1291 0.0244 545 -0.7025 No Overshoot 607 

PSS-GOA -0.1221 0.01339 681 -0.5223 No Overshoot 980 

PSS-MPA -0.1773 0.01791 506 -0.6153 No Overshoot 577 

PSS-PDO -0.0991 0.01192 556 -0.37 No Overshoot 1401 

PSS-PDOMPA -0.0903 0.01131 313 -0.2325 No Overshoot 2013 

 

V. CONCLUSION 

PDOMPA is a method that combines the PDO and MPA 

methods. PDO is an algorithm inspired by the life of prairie 

dogs in nature. Meanwhile, MPA is inspired by the life of 

marine predators. MPA is used to accelerate convergence and 

improve PDO performance. In this article PDOMPA is 

applied to get the best PSS parameters. The PSS transient 

response using the PDOMPA method was measured and 

compared using the PSS-Lead Lag, PSS-WOA, PSS-GOA, 

PSS-MPA and PSS-PDO methods. Testing uses 3 loading 

case studies. The test results show that PDOMPA applied to 
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PSS has the ability to reduce undershoot, overshoot and speed 

timing. From the simulation results using load variations, it is 

known that the proposed method has the ability to reduce the 

average undershoot and overshoot speeds by 42.2% and 

85.37% compared to the PSS-Lead Lag method. Meanwhile, 

the average value of speed settling time is 50.7%. On the rotor 

angle side, PDOMPA has a longer settling time than other 

methods but has the best undershoot. 

The PDOMPA method is a combination of the PDO and 

MPA methods. The application for binary and complex 

systems needs to be studied again to obtain more optimal 

exploration and exploitation performance. 
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