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Abstract—Interconnected multi-area microgrids are vital for the
future of sustainable and reliable power systems. Effective load
frequency control (LFC) is indispensable for ensuring their stable
operation. This paper introduces a PID-based LFC system tailored
for a stochastic microgrid with diverse power sources, including
solar, wind, diesel engine generators, and electrical batteries. The
gain parameters of the proposed microgrid PID LFC controller
are optimized using genetic algorithms (GA), teaching learning-
based optimization (TLBO), and cohort intelligence algorithms.
Integral time-multiplied absolute error (ITAE) and integral time-
squared error (ITSE) serve as the cost functions for all optimiza-
tion algorithms. The study evaluated the performance of these
optimized microgrid PID LFC configurations under random step
load disruptions. Our primary findings reveal that the cohort
intelligence-optimized PID LFC controller excels in minimizing
computation time (upto 76% and 94% lesser than GA and
TLBO respectively) and exhibits superior robust response char-
acteristics. Moreover, the cohort intelligence algorithm requires
fewer iterations (upto 66% and 90% lesser than GA and TLBO
respectively) and enhances power supply quality within the multi-
power microgrid electrical framework, specifically in terms of
effective load frequency control.

Keywords—Genetic Algorithm; Load Frequency Control;
Teaching Learning based Optimization; Cohort Intelligence; In-
tegral Time Absolute Error.

I. INTRODUCTION

Modern power networks face the challenge of managing
diverse energy sources, including conventional and renewable
sources such as solar, wind, electrical batteries, and diesel
generators. Moreover, micorgrids comprising of unconventional
power sources hold the key to the energy independence of
remote areas of the planet. These networks are characterized
by multiple dynamic power demands and frequent frequency
disturbances caused by sudden interruptions in microgrid ar-
eas and tie lines. To ensure a stable power supply despite
varying loads and power sources, interconnected multi-power
microgrid frameworks require effective load frequency control
(LFC) mechanisms. Minor load variations can be handled by
suitable generators that act as the primary backups in the power

management systems. These generators and other regulators are
required in the microgrid organization to limit the variation of
supply frequency in the interlinked power framework as well
as the tie lines to meet the varying demands on the overall
power architecture. This regulation mechanism is known as
load frequency control that plays a critical role in regulating the
power grid and maintaining the required power supply quality
[1], [2]. Fig. 1 illustrates the dynamic nature of supply and
demand in a multi-microgrid power framework.

While researchers have explored various techniques for LFC
in microgrid power systems, recent efforts have focused on soft
computing methods that have shown promise in enhancing load
frequency control in complex energy systems. These methods
include neural networks [3], fuzzy logic [4], adaptive neuro-
fuzzy logic control [5], fractional order controller [6]–[9],
complex order controller [10]–[13], Grey wolf optimization
[14], differential evolution [15], particle swarm optimization
[16], ant colony optimization [17], artificial bee colony [18],
hybrid optimization [19], imperialist competitive algorithm
[20], genetic algorithm [21], [22], teaching-learning based
optimization [23]–[26], cohort intelligence optimization [27]–
[31]. Researchers have investigated various aspects of complex
and fractional order modeling and control in various systems
[32]–[45]. These applications include micro and nano particle
composite machining, precise control of DC motor, tool/chip
interface friction while machining aluminum alloys, position
control of Quanser servomotor, lean manufacturing, machined
surface roughness, bolted joints, non minimum phase systems
and many more [46]–[61]. The above mentioned literature
review shows that there is a research gap and an ample scope to
explore optimization algorithms for optimal tuning of LFC gain
parameter, specifically in case of hybrid power source microgrid
application.

This paper addresses the problem statement of ’investigation
of selected optimization algorithms to tune PID-based load
frequency controller gain parameters for interconnected diesel-
solar-battery and diesel-wind-battery power systems’. We em-
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Fig. 1. See saw representation of multi microgrid power system.

ployed genetic algorithms (GA), teaching-learning-based opti-
mization (TLBO), and cohort intelligence optimization (CIO)
to tune these parameters. This research aims to:

I Optimize the PID-based load frequency controller gain
parameters for the proposed interconnected diesel-solar-
battery and diesel-wind-battery power system using various
algorithms such as GA, TLBO, and CIO

II Compare the dynamic performances of microgrid PID LFC
controllers optimized by GA, TLBO, and CIO using differ-
ent cost functions such as integral time absolute error(ITAE)
and integral time square error(ITSE). Analyze the effective-
ness of soft computing solutions across various optimization
algorithms by changing the size of the initial solution
vector. Validate the effectiveness of optimised controllers
by applying random step load perturbations

Exploration of the above mentioned objectives is important
from the point of view of facilitating successful microgrid
implementations in remote parts of the world that are not well
connected to the main supply grids. This study makes the
following research contributions:

1) Robust load frequency control in a hybrid multi source
microgrid framework

2) Exploration of different optimization algorithms for optimal
tuning of the load frequency control gain parameter

The following section 2 gives details of the multi-power
interconnected microgrid architecture considered for load fre-
quency control in the present study. Section 3 deals with soft
computing techniques. Further, section 4 shows the detailed
study of simulation results for the dynamic of microgrid power
systems with various scenarios involved in soft computing
techniques then followed by a conclusion in section 5.

II. SYSTEM UNDER INSPECTION

In this work, a two-region diesel-wind-battery and diesel-
solar-battery microgrid power framework have been investi-
gated. This microgrid power framework comprises an actuator,
a diesel generator, and the power organizations integrated with
suitable solar, wind, and battery power sources. This specific
multi-source microgrid constitution includes a combination of
conventional and non-conventional energy sources, which is an
ideal state of transition to green energy. This microgrid power
scheme was designed using the MATLAB-R2014-32 bit tool,
and this proposed model of this framework is displayed in Fig.
2.

The parameters of the microgrid power system shown in Fig.
2 are given in the appendix. In the current study, PID-based
LFC regulators /controllers were utilized in both interconnected
microgrid areas. The mathematical expression of the PID LFC
regulator is displayed in Eq. (1), where Kp, Ki, and Kd are
the controller gains and ACE stands for the area control errors.
The area control error refers to the difference between the
scheduled/proposed and actual power generation of a microgrid
area, considering frequency bias effects.

PID = Kp +Ki

∫
ACE dt+Kd

d(ACE)

dt
(1)

To ensure adequate frequency control as required by several
industries, it is mandatory to use auxiliary controllers in the
framework. Related literature shows that PID regulators are
generally used in industries because of their simplicity in
construction. The primary benefit of the PID regulator is that it
offers controller boundaries in the coordinate axis framework.

To optimize the design of the regulator, it is additionally
important to characterize the cost function to maximize the
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stable performance of the power framework. Cost/fitness func-
tion refers to the objective function to be minimized by an
optimization algorithm. In this regard, there are different cost
functions that may be considered. However, literature shows
that the ITAE and ITSE ensure superior performances [20].
The ITAE integrates absolute values of control errors over
successive timesteps. The ITSE, on the other hand, integrates
the square of control error over successive timesteps. These
cost functions ensure improved transient behaviour that is,
reduced settling time and oscillations. Furthermore, the pro-
posed framework is also examined with comparisons among
the ITAE and ITSE to analyze the best cost function applicable
for the microgrid considered in this work. The mathematical
representations of ITAE and ITSE for the LFC problem are
mentioned in Equations (2) and (3) respectively.

ITAE =

∫ tsim

0

(t · |ACE1| dt) +
∫ tsim

0

(t · |ACE2| dt)+

∫ tsim

0

(t · |∆Ptie 12| dt) (2)

ITSE =

∫ tsim

0

(t · (ACE1)
2 dt) +

∫ tsim

0

(t · (ACE2)
2 dt)+

∫ tsim

0

(t · (∆Ptie 12)
2 dt) (3)

The following section gives details of the different algorithms
employed in this study for microgrid LFC gain parameter
optimisation.

III. SOFT COMPUTING ALGORITHMS

This section introduces the optimization algorithms consid-
ered in the present study. Their specific parameter settings have
been tabulated in appendix part (b). These algorithms include
socio-inspired as well nature-inspired algorithms, which have
been successfully applied across many domains [62], [63].

A. Genetic Algorithm (GA)

The GA is a technique for optimizing constraint-
unconstrained problems and is based on Darwin’s principle of
survival of the fittest. It was developed by John Holland in
1965. Genetic algorithms are generally used to generate better
solutions through optimization for random search problems
by depending on bio-influenced operators like reproduction,
crossover, mutation, and best solution selection. From an initial
population of probable solutions, a set of chromosomes or
solution features are selected which can be mutated and altered
to generate new offspring or solutions. The chromosomes are
represented as binary strings of 0s and 1s, although other
encoding forms are also possible. The success of GM depends
on the proper selection and initialization of the genetic operators

as well as conditions of heuristics and termination. Generally,
GA provides good optimal solutions but a few deficiencies have
also been observed in GA performances such as the higher
consumption of computation time, no guarantee of obtaining
a global optimum, difficult selection of the stopping criterion,
and multiple trials required to arrive at the best optimal solution
of a problem. In a nutshell, GA replicates the process of
natural selection of best survivors/performers of a species to
reproduce and generate newer generations having progressively
better members. GA was selected for the microgrid controller
parameter optimization because it provides optimal or near
optimal solutions in a relatively shorter computation timespans
[64]–[68].

B. Teaching Learning based Optimization (TLBO)

TLBO is a stochastic society-based technique suggested by
Rao et.al in 2011. The knowledge transfer process inspires
the TLBO algorithm in a classroom environment. The main
user-defined parameters for optimization are the teacher/student
size and the number of training cycles. The design of this
algorithm consists of two phases particularly the teacher phase
and the learner phase. In the teacher phase, new results are
produced using the previous best result and the population’s
mean. Secondly, a greedy option is applied i.e. the new results
are accepted if it is superior to the previous result. Thereafter,
in the learner phase, the new result is produced using a partner
result again followed by the greedy option. Partner result is
considered for new result generation only in the learner phase,
not in the teacher phase. Furthermore, all remaining results
undergo the teacher phase followed by the learner phase.

The teaching phase is defined as follows,

Xnew = X + r · (Xbest − TeXmean) (4)

Learning phase is defined as follows,

Xnew = X + r · (X −Xp) if f < fp (5)

Xnew = X − r · (X −Xp) if f ≥ fp (6)

Where X= current result, Xnew=new result, Xbest= teacher,
Xmean= mean of initial results, Te= teaching element either
1 or 2, r= random number between 0 and 1 for each variable,
Xp= partner result, f= fitness of current result, and fnew =
fitness of partner result. The basic step-wise design procedure
of teaching-learning-based optimization is given as follows:

Step 1: Fix the population size Np, decision variables, upper
and lower limits, and maximum iterations T

Step 2: Generate random solutions within the domain of
decision variables and find the fitness function

Step 3: Select teacher, xbest and determine the mean of the
class xmean

Step 4: Determine the new solution for the teacher phase of
the first student

D. Murugesan, Optimization of Load Frequency Control Gain Parameters for Stochastic Microgrid Power System



Journal of Robotics and Control (JRC) ISSN: 2715-5072 730

Step 5: Apply corner boundary strategies if the new solution
violates the bounds

Step 6: Evaluate the fitness of the bounded solution
Step 7: Perform the greedy option to update the population
Step 8: Select the partner solution
Step 9: Find the new solution through the learner phase

Step 10: Evaluate the fitness values of the bounded solution
Step 11: Perform the greedy selection to update the population

The TLBO algorithm simulates a teacher-learner based class-
room environment for optimising single objective problems
effectively. It was used in the present study because of its
inherent simplicity of requiring minimal prameters for tuning
[69]–[74].

C. Cohort Intelligence Optimization (CIO)

CIO is a socio-influenced self-regulating algorithm that
comprises inherent, self-accomplished, and rational training
iterations, which was developed by Kulkarni in 2013. In this
algorithm, each society is a set of self-involved members
(cohorts), and every member is devoted to developing and
improving himself. Development of knowledge among cohorts
is possible through training from each other. Furthermore,
training is attained through communication and as well through
a championship among the members. It is essential to indi-
cate that this training may lead to an abrupt development in
members’ attitudes. Anyhow, it is also possible for certain
individuals that training and further development are gradual.
In a group of learners, some students will learn quickly whereas
others will be very slow while learning. So there are basically
slow learners and fast learners. This is because training and
associative development depend upon the member being trained
as well as the member whose qualities the trainee is trying
to follow or trying to adapt. As the members are trained, the
opportunities for improving the member solutions increase.

The cohort intelligence optimization algorithm supplies de-
sign procedure is outlined as follows:

Step 1: Initialize the cohort(C), decision variables, upper and
lower limits, and maximum iterations T

Step 2: Controller gain values (cohort characters) are nego-
tiated for all cohorts as cost functions using ITAE /
ITSE

Step 3: The chance of every cohort being followed by an-
other, the cohort is calculated based on the fitness
function. Others follow the cohort with the best
fitness function.

Step 4: The entire cohort group updates its fitness function
parameters by expanding or lowering them within the
prescribed limits.

Step 5: Convergence is decided based on the most permissi-
ble iterations or the minimum changes between suc-
cessive cohort behaviours between training iterations.

CIO optimizes system performance based on the progressive
mutual learning and competitive behaviour of the solution can-
didates, or cohorts. CIO was used in the present work because
it involves relatively lesser functional evaluations per iteration,
consumes reasonable computation time and is generally robust
throughout the optimization process [75]–[80].

IV. RESULT ANALYSIS

In the study, firstly the transfer function design of the inter-
dependent microgrid power framework was created in a Matlab
environment [81] as displayed in Fig. 2. Two distinct PID LFC
regulators were designed for every microgrid unit to regulate
the variation in frequencies and tie-line power. The gain values
of the PID regulator were optimized by using the following
soft computing techniques GA, TLBO, and CIO. Further, the
effectiveness of numerical computations has been addressed by
adjusting the size of the chromosome in GA / Population size
in TLBO and Cohort numbers in CIO by considering various
scenarios namely S1, S2, S3 for ITAE employed cost function
and S4, S5, S6 for ITSE used cost function. These scenarios
included three, ten and 50 chromosomes (GA), population
(TLBO) and cohorts (CIO) respectively. Table I clearly shows
that the CIO-based technique takes very less computation time
than GA and TLBO algorithms for all the scenarios (S1-
S6). Additionally, it may be noticed that CIO consumes lesser
iterations for getting the best solutions for both cost functions,
as well. These findings establish the superiority of CIO over GA
and TLBO in case of single objective optimization problems
such as the microgrid LFC control problem investigated in the
present work.

The optimal gain values of the two areas PID LFC regulators
are mentioned in Table II. The ITAE and ITSE determined in
Eqs. (4-5) were assessed by simulating the microgrid model for
a 1% step load in area 1. The simulated response of the system
with both regulators is shown in Figs. 3- 29. All figure captions
point out the best performing scenario for each algorithm
along with the specific distinguishing performance criteria such
as overshoots, undershoots and/or settling time. The resultant
response metrics, for example, settling time and oscillations
for ITAE and ITSE are listed in Table IV. Furthermore, the
associated performances are discussed in the following sections.

A. ITAE cost function results

1) Genetic algorithm performance through ITAE cost func-
tion: Figs. 3, 4 and 5 represent the system performance of
the genetic algorithm based on Integral Time Absolute Error
through initial chromosome selections of 3, 10, and 50. It takes
600, 213 and 158 iterations to get the best solutions in 35,
33 and 123 minutes respectively. From these results, the best
of the best solution is noticed in the case of 10 chromosomes
selection for the corresponding 213 iterations in 33 minutes.
These results show that GA consumes lesser iterations as
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TABLE I
OPTIMIZATION PARAMETERS OF VARIOUS ALGORITHMS FOR SOLAR / WIND / BATTERY / DIESEL GENERATOR BASED MICRO GRID

Particulars Cost Function Chromosome/
Population /
Cohort

Iteration

1000 / 100 / 50
Computation Time in
(minutes)

Best Cost Function

GA TLBO CIO GA TLBO CIO GA TLBO CIO
Scenario 1 (S1)

ITAE
3 / 3 / 3 600 1000 203 35 32 9.53 5.055 2.726 2.4609

Scenario 2 (S2) 10 / 10 /10 213 100 100 33 53 15.05 2.420 2.417 2.4952
Scenario 3 (S3) 50 / 50 /50 158 50 50 123 85 20.83 2.418 2.417 3.1262
Scenario 4 (S4)

ITSE
3 / 3 / 3 444 1000 105 21 84 5.1 0.127 0.039 0.0492

Scenario 5 (S5) 10 / 10 /10 146 100 100 32 46 17 0.039 0.039 0.0425
Scenario 6 (S6) 50 / 50 /50 126 50 50 168 98 76 0.039 0.039 0.0422

TABLE II
OPTIMIZED LFC CONTROLLER GAIN VALUES OF THE PROPOSED ALGORITHM /MICROGRID SYSTEM

Cost Function Algorithm Size
Controller Gain Values
Area 1 Area 2
Kp1 Ki1 Kd1 Kp2 Ki2 Kd2

ITAE

GA
3 0.99666 0.50938 0.41267 0.93394 0.99993 0.38212
10 1 1 0.00093753 0.84614 0.99999 0.0017237
50 0.99999 1 0.00008117 0.81247 1 0.0000113

TLBO
3 0.96908 0.9995 0.0014573 0.95049 0.99934 0.054337
10 1 1 0.0000456 0.81208 1 0
50 0.83898 0.87971 0.016234 0.93353 0.88032 0.15672

CIO
3 0.98738 0.99959 0.00042683 0.99478 0.99896 0.013131
10 0.9945 0.99198 0.060044 0.95175 0.99676 0.11902
50 0.94026 0.96887 0.23177 0.97671 0.8755 0.15785

ITSE

GA
3 0.47949 0.93976 0.23247 1 0.34266 0.11291
10 0.99611 0.99999 0.0024644 0.99996 0.99987
50 0.99998 0.99997 0.0000472 0.99998 0.99999 0.0025128

TLBO
3 1 1 0.0000881 1 1 3.7772e-15
10 1 1 7.7479e-07 1 0.99999 0
50 1 1 7.586e-07 1 1 1.9094e-07

CIO
3 0.94578 0.97925 0.014913 0.9981 0.83656 0.41845
10 0.98591 0.97803 0.01059 0.96447 0.93392 0.0088369
50 0.96424 0.99391 0.014287 0.9754 0.97448 0.088334

higher number of chromosomes are selected. However, the
computation times generally rise with increasing chromosomes,
indicating higher functional evaluations per iteration for higher
chromosomal counts. A few trials of varying choromosomal
counts are necessary to arrive at optimal solutions.

2) Teaching Learning-Based Optimization performance
through ITAE cost function: Figs. 6, 7 and 8 present the
performance of Teaching Learning Based Optimization using
the Integral Time Absolute Error through initial populations of
3, 10, and 50 for 1000, 100 and 50 iterations respectively to
attain the best solutions in 32, 53 and 85 minutes respectively.
From these results, the best of the best solution is observed at
population size 3 for the corresponding 1000 iterations in 32
minutes. These ITAE results show that TLBO consumes lesser
iterations as higher initial population is selected. However, the
computation times generally rise with increasing population,
indicating higher functional evaluations per iteration for greater
populations. A few trials of varying initial populations are
necessary to arrive at optimal solutions.

Fig. 3. GA (ITAE) based multi micro grid power system responses in area 1:
best responses (lower undershoots) by S2 and S3 (10 and 50 choromosomes
respectively).
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Fig. 4. GA (ITAE) based multi micro grid power system responses in area 2:
best responses (lower undershoots and overshoots) by S2 and S3 (10 and 50
choromosomes respectively).

Fig. 5. GA (ITAE) based multi micro grid power system responses in tie line:
best responses (lower undershoots and overshoots) by S2 and S3 (10 and 50
choromosomes respectively).

3) Cohort Intelligence performance through ITAE cost func-
tion: Figs. 9, 10 and 11 produce the superior performance
of cohort intelligence based on Integral Time Absolute Error
through initial cohort selections of 3, 10 and 50. It takes 203,
100 and 50 iterations, to obtain the best solutions in 9.53,
15.05 and 20.83 minutes respectively. From these results, the
best of the best solution is noticed at cohort selection 3 for
the corresponding 203 iterations in 9.53 minutes. These results
show that CIO consumes lesser iterations as higher cohorts are
selected. However, the computation times generally rise with
increasing cohorts, indicating higher functional evaluations per
iteration for more cohorts. A few trials of varying cohorts are
necessary to arrive at optimal solutions.

Fig. 6. TLBO (ITAE) based multi micro grid power system responses in area
1: best responses (lower undershoots and overshoots) by S1 and S2 (3 and 10
population size respectively).

Fig. 7. TLBO (ITAE) based multi micro grid power system responses in area
2: best response (lower undershoot and overshoot) by S1 (3 population size).

B. ITSE cost function results

1) Genetic algorithm performance through ITSE as cost
function: Figs. 15, 16 and 17 show the performances of the
genetic algorithm optimized PID LFC multigrid controllers
based on Integral Time Squared Error through the initial chro-
mosome selections of 3, 10, and 50. It takes 444, 146 and 126
iterations respectively similarly obtaining the best solutions in
21, 32 and 168 minutes respectively. From these results, the
best of the best solution is noticed at 50 chromosomes for the
corresponding 126 iterations in 168 minutes. These ITSE results
also show that GA consumes lesser iterations as higher number
of chromosomes are selected. The computation times generally
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Fig. 8. TLBO (ITAE) based multi micro grid power system responses in tie
line: best responses (lower overshoots) by S1 and S2 (3 and 10 population size
respectively).

Fig. 9. CIO (ITAE) based multi micro grid power system responses in area
1: best responses (lower undershoots and overshoots) by S1 and S2 (3 and 10
cohorts respectively).

Fig. 10. CIO (ITAE) based multi micro grid power system responses in area
2: best responses (lower undershoots and overshoots) by S1 and S2 (3 and 10
cohorts respectively).

Fig. 11. CIO (ITAE) based multi micro grid power system responses in tie line:
best response (lower undershoot and overshoot) by S1 (3 cohorts respectively).

Fig. 12. GA, TLBO and CIO based ITAE optimised multi micro grid power
system responses in area 1: best response (lower undershoot and overshoot) by
CIO

Fig. 13. GA, TLBO and CIO based ITAE optimised multi micro grid power
system responses in area 2: best response (lower undershoot and overshoot) by
CIO

D. Murugesan, Optimization of Load Frequency Control Gain Parameters for Stochastic Microgrid Power System



Journal of Robotics and Control (JRC) ISSN: 2715-5072 734

Fig. 14. GA, TLBO and CIO based ITAE optimised multi micro grid power
system responses in tie line: best response (lower undershoot and overshoot)
by CIO

Fig. 15. GA (ITSE) optimised multi micro grid power system responses in area
1: best response (lower undershoot and overshoot) by S6 (50 choromosomes).

rise with increasing chromosomes, indicating higher functional
evaluations per iteration for higher chromosomal counts. A few
trials of varying choromosomal counts are necessary to arrive
at optimal solutions.

2) Teaching Learning-Based Optimization performance
through ITSE cost function: Figs. 18, 19 and 20 depict the
performances of Teaching Learning Based Optimization opti-
mized PID LFC multigrid controllers using the Integral Time
Squared Error through initial population selections of 3, 10,
and 50 consuming 1000, 100 and 50 iterations, respectively to
attain the best solutions in 84, 46 and 98 minutes respectively.
From these results, the best of the best solution is observed
at population 3 for the corresponding 1000 iterations in 84
minutes. These ITSE results show that TLBO consumes lesser
iterations as higher initial population is selected. However, the
computation times generally rise with increasing population,
indicating higher functional evaluations per iteration for greater
populations. A few trials of varying initial populations are
necessary to arrive at optimal solutions.

3) Cohort Intelligence performance through ITSE cost func-
tion: Figs. 21, 22 and 23 display the performances of cohort
intelligence optimized PIDLFC architectures on Integral Time

Fig. 16. GA (ITSE) optimised multi micro grid power system responses in area
2: best response (lower undershoot and overshoot) by S6 (50 choromosomes).

Fig. 17. GA (ITSE) optimised multi micro grid power system responses in tie
line: best response (lower undershoot and overshoot) by S6 (50 choromosomes).

Squared Error through initial cohorts selections of 3, 10, and
50. This algorithm consumes 105, 100 and 50 iterations, to
accomplish the best solutions in 5.1, 17, 76 minutes respec-
tively. From these results, the best of the best solution is seen
at 50 cohorts for the corresponding 203 iterations in 76 minutes.
These ITSE results show that CIO consumes lesser iterations
as higher cohorts are selected. However, the computation times
generally rise with increasing cohorts, indicating higher func-
tional evaluations per iteration for more cohorts. A few trials
of varying cohorts are necessary to arrive at optimal solutions.

C. Main findings

From Figs. 12, 13, 14 and 24, 25 and 26 and Table III,
it is evident that the Cohort intelligence-based PID regulator
gives better results compared to GA and TLBO in terms of
lower undershoots and overshoots of the system responses.
These findings reiterate the superiority of CIO over GA and
TLBO in case of single objective optimization problems such as
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Fig. 18. TLBO (ITSE) optimised multi micro grid power system responses in
area 1: best responses (same under and overshoots) by S4, S5 and S6 (3, 10
and 50 population sizes).

Fig. 19. TLBO (ITSE) optimised multi micro grid power system responses in
area 2: best responses (same under and overshoots) by S4, S5 and S6 (3, 10
and 50 population sizes).

the microgrid LFC control problem investigated in the present
work. Figs. 27, 28 and 29 examine the improvement of ITAE-
based cohort intelligence optimized results as compared to the
ITSE-based cohort intelligence regulator. In other words, CIO
algorithm employed with ITAE cost function provides better
LFC control results as compared to CIO-ITSE. This result indi-
cates that consideration of absolute errors as cost function leads
to more optimal solutions in LFC control as opposed to squared
errors, which prove slightly less effective in optimal solution
approximations. In a similar study [69], the authors used GA,
TLBO, CIO and Differential Evolution (DE) to optimize PID

Fig. 20. TLBO (ITSE) optimised multi micro grid power system responses in
tie line: best responses (same under and overshoots) by S4, S5 and S6 (3, 10
and 50 population sizes).

Fig. 21. Cohort Intelligence based ITSE optimised multi micro grid power
system responses in area 1: best response (lower overshoots) by S6 (50 cohorts).

regulator of a multisource single area power framework. This
study also found that the CIO based minimization of the ITAE
cost function yielded the lowest response settling time and
oscillations in case of multi-controller multi-source single area
framework. The CIO-ISE (integral squared error) provided the
best dynamic response in case of single-controller multi-source
single area framework. Further, the potential of the proposed
CIO-optimised regulator is shown in the present study by giving
it random step load perturbations in Figs. 30 (step load inputs)
and 31 (microgrid system response for area 1, area 2 and tie
line). These results show that the LFC microgrid controller
tuned with CIO optimized parameters is quite robust and stable
in the presence of step load perturbation inputs, making it
suitable for microgrid applications.

The rate of improvement of the cohort intelligence optimized
PID LFC performance is compared with the genetic algorithm
(Sl-66%, S2-53%, S3-68%, S4-76%, S5-32%, S6-60%) and
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TABLE III
REPORT OF FIGURES FOR TRANSIENT PERFORMANCE ANALYSIS

Figure number Best transient behaviour Best response Best of Best response

Fig. 3 Undershoot S2,S3

S2Fig. 4 Both undershoot and overshoot S2,S3

Fig. 5 Both undershoot and overshoot S2,S3

Figure 6 Both undershoot and overshoot S1,S2

S1Figure 7 Both undershoot and overshoot S1

Fig. 8 Overshoot S1,S2

Fig. 9 Both undershoot and overshoot S1,S2

S1Fig. 10 Both undershoot and overshoot S1,S2

Fig. 11 Both undershoot and overshoot S1

Fig. 12 Both undershoot and overshoot CIO

CIO - (S1)Fig. 13 Both undershoot and overshoot CIO

Fig. 14 Both undershoot and overshoot CIO

Fig. 15 Both undershoot and overshoot S6

S6Fig. 16 Both undershoot and overshoot S6

Fig. 17 Both undershoot and overshoot S6

Fig. 18 Same for all S4,S5,S6

S4Fig. 19 Same for all S4,S5,S6

Fig. 20 Same for all S4,S5,S6

Fig. 21 Overshoot S6

S6Fig. 22 Both undershoot and overshoot S5,S6

Fig. 23 Undershoot S5,S6

Fig. 24 Overshoot CIO

CIO-(S6)Fig. 25 Overshoot CIO

Fig. 26 Same for all CIO

Fig. 27 Both undershoot and overshoot ITAE

ITAEFig. 28 Undershoot,overshoot and settling time ITAE

Fig. 29 Overshoot ITAE

TABLE IV
TRANSIENT PERFORMANCE ANALYSIS UNDER SCENARIOS 1 & 6

Particulars Cost Function Areas
Settling Time in (Sec)

Peak Overshoot in

(Hz / p.u.MW)

Peak undershoot

(Hz / p.u.MW)

GA TLBO CIO GA TLBO CIO GA TLBO CIO

Scenario 1 (S1) ITAE

Del F1 36 24 24 0.086 0.088 0.085 0.025 0.015 0.015

Del F2 37 28 27 0.06 0.05 0.05 0.02 0.01 0.01

Tie line 34 30 30 0.08 0.06 0.055 0.01 0.01 0.007

Scenario 6 (S6) ITSE

Del F1 28 24 24 0.085 0.085 0.085 0.015 0.015 0.015

Del F2 33 31 33 0.05 0.05 0.05 0.01 0.01 0.01

Tie line 40 30 30 0.056 0.055 0.055 0.007 0.007 0.007

D. Murugesan, Optimization of Load Frequency Control Gain Parameters for Stochastic Microgrid Power System



Journal of Robotics and Control (JRC) ISSN: 2715-5072 737

Fig. 22. Cohort Intelligence based ITSE optimised multi micro grid power
system responses in area 2: best responses (lower undershoots and overshoots)
by S5 and S6 (10 and 50 cohorts).

Fig. 23. Cohort Intelligence based ITSE optimised multi micro grid power
system responses in tie line: best responses (lower undershoots) by S5 and S6
(10 and 50 cohorts).

teaching learning-based optimization algorithm (Sl-80%, S4-
90%) in terms of iterations in Fig. 32. The rate improvement
of the cohort intelligence process is compared with the genetic
algorithm (Sl-73%, S2-54%, S3-83%, S4-76%, S5-47%, S6-
55%) and teaching learning-based optimization algorithm (Sl-
70%, S2-72%, S3-76%, S4-94%, S5-63%, S6-23%) in terms of
computation time in Fig. 33. From these results, it is evident
that the cohort intelligence optimized regulator shows improved
results in all the scenarios in terms of the best results with lesser
computation, time, and iterations. The evident deficiencies in
GA and Teaching Learning Based optimization performances
are failures to obtain a good solution and consuming a lot
of convergence time and iteration as well. This result could
be due to the limitations of GA which include premature
convergence, difficult in tuning and difficulty in effectively

Fig. 24. GA, TLBO and CIO ITSE optimised multi micro grid power system
responses in area 1: best response (lower overshoot) by CIO

Fig. 25. GA, TLBO and CIO ITSE optimised multi micro grid power system
responses in area 2: best response (lower overshoot) by CIO

Fig. 26. GA, TLBO and CIO ITSE optimised multi micro grid power system
responses in tie line: best response (under and overshoots) by all
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Fig. 27. Best of Best comparative transient response in area 1 of microgrid
system: best response (lower undershoot and overshoot) by CIO-ITAE.

Fig. 28. Best of Best comparative transient response in area 2 of microgrid
system: best response (lower undershoot, overshoot and settling time) by CIO-
ITAE.

Fig. 29. Best of Best comparative transient response in tie line of microgrid
system: best response (lower overshoot) by CIO-ITAE.

Fig. 30. Random step load perturbation input for microgrid system

Fig. 31. Microgrid system response for random step load perturbation

handling complex objective functions. TLBO is also prone to
premature convergence and lack of effective balance between
local and global optima/search regions. In summary, this section
presents the results and associated discussions of the attainment
of the stated objectives of this study: LFC gain parameter
optimization, comparative performance analysis of optimization
algorithms and validating the effectiveness of the best perform-
ing algorithm under a perturbation step input scenario.

Fig. 32. % improvements in CIO iterations over GA and TLBO in respective
scenarios.
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Fig. 33. % improvements in CIO computation time over GA and TLBO in
respective scenarios.

V. CONCLUSIONS

In this paper, we have systematically assessed the effec-
tiveness of numerical optimization algorithms, including GA,
TLBO, and CIO techniques, in the context of a two-area multi-
power microgrid framework. By varying the sizes of initial
optimization solution vectors, we optimized the performance of
our proposed microgrid power scheme using ITAE and ITSE
objective functions across all optimization algorithms. Our
comparative optimization results analysis clearly demonstrates
the superior performance of the Cohort Intelligence Optimiza-
tion (CIO) algorithm when coupled with a PID controller, es-
pecially in the presence of a one-percent step load disturbance,
surpassing the performance of GA and TLBO algorithms.
Furthermore, we subjected the CIO-optimized PID LFC to
a rigorous test by applying random step load perturbations,
confirming the robustness and effectiveness of our proposed
PID regulator in real-world scenarios of hybrid (conventional
and non-conventional) energy source microgrids. These results
consistently indicate that the CIO-ITAE optimized PID LFC not
only excels in dynamic performance with step load disturbances
but also exhibits remarkable robustness, ease of implemen-
tation, and cost-effectiveness. Robustness is very important
considering the dynamic conditions of supply and demand in a
multi source microgrid. The cohort intelligence-optimized PID
LFC controller excels in minimizing computation time (up to
76% and 94% lesser than GA and TLBO respectively) and
exhibits superior robust response characteristics. Moreover, the
cohort intelligence algorithm requires fewer iterations (upto
66% and 90% lesser than GA and TLBO respectively) and
enhances power supply quality within the multi-power micro-
grid electrical framework, specifically in terms of effective load
frequency control.

This research makes a significant contribution to the field
of microgrid control by showcasing the practical advantages
of the CIO-optimized PID LFC. This research paves way
for faster integration of natural energy sources into the con-

ventional/connected power grids, including those of remote
locations. The precision achieved by our solution is balanced
with traceability, robustness, and affordability.

The algorithmic parameter tuning was limited in the present
study to only three scenarios. Further exploration of tuning
parameters, especially in case of the genetic algorithm may
yield improved optimal solutions. As we move forward, future
research in this area may explore further enhancements and
applications of the CIO algorithm and PID control in even more
complex microgrid systems. These findings hold promise for
improving the stability and efficiency of microgrids in diverse
real-world settings.

APPENDIX

a) Micro grid systems parameter [14]

Solar photovoltaic system gain value (Kpv) = 0.0075
Time constant of solar photovoltaic system (Tpv) = 0.03 sec
Wind turbine system gain value (Kwtg) = 1
Time constant of wind turbine system (Twtg) = 1.5 sec
Diesel Engine system gain value (Ke) = 1
Time constant of diesel engine system (Te) = 3 sec
Battery energy storage system gain value (Kbess = 1)
Time constant of battery energy storage system (Tbess = 0.1
sec)
Time constant of mechanical valve actuators = (T2 = 2 sec &
T3 = 3 sec)
Speed regulation coefficients = R1 = R2 = 5 Hz/pu MW
Rotor gain values= Kp1 = Kp2 = 60
Time constant of rotor swing = Tp1 = Tp2 = 18 sec
Tieline coefficient (T12) = 0.225

b) Soft computing parameters

The soft computing parameters for the algorithms explored
in this study are displayed in Table V.

TABLE V
SOFT COMPUTING PARAMETERS

Algorithms Initial
population
size (Psize)

Cycle
/Iteration
(approx)

Others

GA 3 / 10 / 50 600 Design variables = 6

TLBO 3 / 10 / 50 1000 Teaching factor (Te
=1 to 2) Unknown
variables =6

CIO 3 / 10 / 50 200 Decision variables=6,
Saturation = 0.001,
reduction factor =0.92
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