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Abstract—Recent developments in Wireless Sensor 

Networks (WSN) focus on scalability and reliability. This 

research addresses the challenge of improving reliability in 

WSNs through optimal relay placement and multipath topology 

design. A heuristic method with a Multi-Objective Optimization 

(MOO) approach is proposed to solve this problem. The 

proposed method integrates a modified Genetic Algorithm (GA) 

with Particle Swarm Optimization (PSO) characteristics. The 

hybrid approach aims to minimize the number of relays and 

associated communication costs while maintaining network 

reliability. The method encodes relay positions and quantities 

into GA chromosomes that are updated by mutation, crossover, 

and PSO-inspired particle motion. Simulations are performed 

in a simplified square area with twenty randomly placed 

sensors, a hundred and thirty-two arranged relays, and a single 

sink node. As a result, the simulation generated two multipath 

topologies that offer unique advantages. The first emphasizes 

relay efficiency (61 relays, with 2096 costs), while the second 

ensures lower communication costs (64 relays, 1832 costs). 

Comparisons with alternative algorithms, including Dijkstra, A-

star, GA, and PSO, prove the superiority of the proposed 

approach. The optimum results obtained with a composition of 

95% GA and 5% PSO, outperform alternative algorithms in 

terms of relay efficiency and communication cost. This research 

contributes to the field by providing a robust solution for 

designing reliable multipath WSNs with a minimum number of 

relays. 

Keywords—Wireless Sensor Network; Relay Placement; 

Multipath Topology; Minimum Relay Number, Minimum Cost; 

Multi-Objective Optimization; Genetic Algorithms; Particle 

Swarm Optimization. 

I. INTRODUCTION 

A large Wireless Sensor Network (WSN) consists of 

hundreds to thousands of nodes and has a multi-tiered 

structure [1], [2]. This structure includes three main types of 

nodes: sensors, relays, and sinks [3]. Sensors are responsible 

for detecting, collecting, and sending data to the sink through 

relays [4, [5]. The sink serves as the destination for all 

collected data [6], [7]. Planning a multi-tiered wireless sensor 

network (WSN) with heterogeneous nodes is a significant 

challenge [8]. A variety of methods and approaches have 

been explored, as thoroughly reviewed by Wang [9].  

In recent years, the focus of WSN development has 

shifted to scalability and reliability, as detailed in [10-12]. 

Reliability is associated with the formation of topology, 

especially multipath topology. In the context of WSN, 

topology is defined by the connectivity between relays [13-

17]. As a result, the placement of relays is a critical factor in 

WSN topology and reliability [18], [19]. 

This research focuses on planning the multipath topology 

of WSN to improve reliability with the minimum number of 

relays. These goals are achieved through optimal relay 

placement and communication path adjustments. First, each 

sensor is placed to connect to different relays, creating at least 

two different communication paths. This increases the 

probability of successful data transmission [20], [21]. 

Second, the length of the communication path is limited, 

which ensures reasonable transmission delays [22], [23]. 

Success rates and low transmission delays are important 

aspects that figure out the reliability of a WSN. 

In WSN, relay placement has been considered as an 

optimization problem several times [24], [25]. Two common 

optimization methods are often used: deterministic and 

heuristic [26], [27]. Deterministic methods can provide an 

exact solution, but they struggle with complex problems [28] 

and often lead to non-deterministic polynomial time-hard 

(NP-hard) problems [26]. As an alternative, heuristic 

methods are considered more suitable for solving relay 

placement problems [29-31], as shown by the plethora of 

studies using heuristic methods, as discussed in [32-39]. 

Nevertheless, heuristic optimization often yields less 

exact solutions [40] because it cannot guarantee feasibility or 

optimality. Several studies wrote that optimizing one aspect 

may lead to undesirable consequences for other aspects. 

Therefore, some researchers adopt the Multi-Objective 

Optimization (MOO) approach [41-43]. MOO allows the 

simultaneous optimization of different objectives [44-46]. 

This approach opens the possibility of achieving the best 

solutions by mitigating trade-offs between different relay 

placement considerations. 

In this research, the relay placement problem is 

formulated as a Multi-Objective Optimization Problem 

(MOP). This research idea builds on previous studies [47] and 

[48] with improvements in algorithms and simulations. The 

proposed MOO method uses a modified Genetic Algorithm 

(GA). This algorithm is chosen for its success in solving 

various cases [49-56]. Modification of the algorithm 

implemented by a fusion of GA and Particle Swarm 
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Optimization (PSO) algorithm. This fusion is intended to 

improve the search capabilities [57], [58], thereby potentially 

improving solution quality and convergence speed. 

This research contributes through several innovative 

aspects. First, the optimization is performed during the 

planning phase. As a result, implementation phase 

computations such as quality of service (QoS), routing 

algorithms, scheduling, fault tolerance, and other features can 

be performed more efficiently.  

Second, the formulation of optimization and constraint 

functions considers numerous factors that may occur in real-

world scenarios. The WSN is designed to cover a large area 

with a minimum number of nodes. The optimization function 

aims to minimize the number of relays and the 

communication cost. Constraints are also applied to the 

degree of connectivity and the number of hops. These 

constraint functions are implemented to manage the workload 

of relays [59] and keep the reliability of the WSN [60]. By 

considering these aspects, the model improves the 

practicality and technical accuracy of WSNs, making them 

more effective for real-world applications.  

Third, another contribution lies in the proposed 

modifications to the optimization algorithm. The population 

generation is performed using both GA and PSO. This 

approach is expected to increase the efficiency of finding the 

best solutions [61], [62], thus contributing significantly to 

improving most WSN topology designs and increasing 

reliability. 

The structure of this research paper is designed into five 

detailed sections, including: (I) Introduction, summarizing 

the background and research problems; (II) Research 

Method, detailing the proposed problem-solving through 

various scenarios and test plans; (III) Experimental Setup, 

covering the search and testing of simulation parameters to 

achieve optimal results; (IV) Results and Discussion, 

comprehensively discussing simulation results and their 

relevance to research problems; and (V) Conclusion, as 

wrapped up of simulation results, complemented with 

development recommendations for further research. 

II. RESEARCH METHOD 

Simulations in this research are conducted within a square 

region. The side length of this region is adjusted to the 

communication radius of the nodes. The communication 

radius for sensors, relays, and sinks is assumed to be uniform 

and is denoted as 𝑟𝑎𝑑𝑐. Sensor deployment is carried out 

randomly around the target. This strategy ensures complete 

coverage of the target [63], [64].  

Next, virtual cells follow a triangular grid pattern across 

the simulation area, with cell dimensions tailored to the 

communication radius. Relays are placed only at the vertices 

of the triangular grid. This placement method ensures that 

each relay can set up connections with at least two adjacent 

relays [47], [48]. For example, the interconnectivity between 

sensors, relays, and the sink within an area of 5 × 𝑟𝑎𝑑𝑐 is 

shown in Fig. 1. The simulation area shown in Fig. 1 includes 

7 sensors, 33 relays, and one sink. In this example, each 

sensor has connections with the three closest relays, except 

for the sensor 𝑆4.  

 

Fig. 1. Example of simulation area 

Given the placement pattern previously explained, an 

estimate of the number of relays needed in each area can be 

calculated. This process involves mapping all potential 

locations for these relays, which serve as nodes in the 

network, according to the triangular pattern formed. To 

illustrate, in Fig. 1, the total number of relays that can be 

considered is thirty-three. This number reflects the maximum 

number of relays that can be placed in the area. It also serves 

as the size of the constructed GA chromosome. The 

relationship between the maximum number of relays and the 

chromosome representation will be discussed in the 

following sections.  

𝑀𝑂𝑃 =

{
 
 

 
 min (∑𝑁(𝑟𝑝) +∑𝑁(𝑟𝑠))

min (∑𝐵(𝑠𝑝) +∑𝐵(𝑠𝑠))

𝑘𝑚𝑎𝑥 ≥ 𝐾(𝑟) ≥ 𝑘𝑚𝑖𝑛
𝐻𝑚𝑎𝑥 = 𝑀

 (1) 

In this research, the function of the MOP is described in 

(1). The number of relay nodes required for the primary path 

is denoted by 𝑁(𝑟𝑝), while the secondary path is denoted by 

𝑁(𝑟𝑠). The communication costs over the primary and 

secondary paths are expressed as 𝐵(𝑠𝑝) and 𝐵(𝑠𝑠), 

respectively. The problem is subject to certain constraints. 

These include the degree of connectivity, denoted by 𝐾(𝑟) 
and the maximum number of hops, denoted by 𝐻𝑚𝑎𝑥. 

The constraint function of communication degree, 

𝑘𝑚𝑎𝑥 ≥ 𝐾(𝑟) ≥ 𝑘𝑚𝑖𝑛  referred to as the minimum and 

maximum number of nodes that can be connected to each 

relay [65], [66]. This constraint ensures that each relay has an 

adequate number of connections, thus preventing congestion 

and excessive energy consumption. Another constraint 
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function is the maximum number of hops, represented as 

𝐻𝑚𝑎𝑥. This constraint places a limit on the maximum distance 

between the sensor and the sink to ensure efficient and 

reliable data transmission. The determination of this largest 

hop value considers simulation results and recommendations 

from previous studies of Wenxing [67] and Sapre [68].  

The calculation of communication costs starts with the 

assignment of cost components for each sensor, relay, and 

hop [69], [70]. Costs are incurred for each data transmission, 

including sensor connection 𝑏(𝑠), relay usage 𝑏(𝑟), and hop 

usage 𝑏(ℎ). Mathematically, the communication cost for a 

single sensor can be expressed as shown in (2). The terms 

∑ 𝑏(𝑟𝑗)
𝐽
𝑗=1  and ∑ 𝑏(ℎ𝑘)

𝐾
𝑘=1  are the total number of relays and 

hops used by the sensor to connect to the sink, respectively. 

As explained in (2), the communication cost is affected by 

the number of relays and hops required by the sensor. This 

highlights the importance of efficient relay and hop usage in 

minimizing the communication cost. 

 𝐵(𝑠𝑖) = 𝑏(𝑠𝑖) + ∑ 𝑏(𝑟𝑗)
𝐽
𝑗=1 + ∑ 𝑏(ℎ𝑘)

𝐾
𝑘=1  (2) 

𝐵(𝑤𝑠𝑛) =∑𝐵(𝑠𝑖)

𝐼

𝑖=1

 (3) 

𝐵(𝑤𝑠𝑛) =∑(𝐵(𝑠𝑖𝑝) + 𝐵(𝑠𝑖𝑠))

𝐼

𝑖=1

 (4) 

The total communication cost of the WSN is calculated as 

in (3). This equation is the total communication cost 𝐵(𝑤𝑠𝑛) 
incurred by all sensors 𝐵(𝑠𝑖) cost in the network. To ensure 

that each sensor has at least two paths, (3) is expanded as 

shown in (4). In this equation, 𝐵(𝑠𝑖𝑝) is the communication 

cost on the primary path, while 𝐵(𝑠𝑖𝑠) is the communication 

cost on the secondary path. The total costs of all sensors 

describe the efficiency of the network. 

Chromosome development is performed by encoding 

each relay as a gene with the position corresponding to the 

order of the relay. The first gene stores information about the 

first relay, the second gene stores information about the 

second relay, and so on. If a relay is active at a particular 

location, the corresponding gene is assigned a value of 1; 

otherwise, it is assigned a value of 0. Consequently, each 

chromosome encapsulates information about the number and 

location of relays used to form the WSN topology. The 

processes of gene coding, mutation, and crossover of the GA 

chromosome can be seen in Fig. 2. Using Fig. 1 as an 

example, each chromosome will have 33 genes, 

corresponding to the number of potential relay positions in 

the implementation area. 

In a later iteration, new chromosomes are formed using 

the features of the GA, specifically crossover and mutation 

[71], [72]. The selection process for each chromosome is 

controlled by generating random values between 0 and 1 and 

comparing them to a threshold value. If the generated random 

value falls below the threshold, the chromosome undergoes 

mutation in certain genes. In this research, the number of 

genes subject to mutation is predetermined, while the 

positions of these genes are randomized. A mutation is 

implemented by changing the gene values from 0 to 1 or vice 

versa. 

 

 

 

Fig. 2. GA chromosome: (a) gene encoding, (b) mutation, and (c) crossover 

If the generated random value exceeds the threshold, the 

crossover process is started. For this process, two parent 

chromosomes are randomly selected from the entire 

population. These selected parent chromosomes are then 

segmented, and these segments are crossed with segments 

from other parent chromosomes to form new chromosomes. 

The size of the gene segments involved in the crossover 

process is also randomly decided. It is important to note that 

most new chromosomes are generated by either the mutation 

or the crossover process. These processes play a critical role 

in the evolution and optimization of the solution. 

In addition to the crossover and mutation processes, 

chromosome evolution also involves the movement of PSO 

particles. In this process, each gene in the GA chromosome 

is treated as a binary PSO particle [73], [74]. The pattern of 

PSO particles closely follows the structure of the GA 

chromosome, as shown in Figure 3. Particle positions are 

updated based on random direction and speed of motion. A 

particle's position is considered to have changed if its last 

position exceeds a certain threshold. This change in particle 

position is the basis for the corresponding change in the gene. 

The incorporation of PSO particle motion aims to improve 

the coverage of the search space explored by the GA. This 

strategy ensures a more comprehensive and effective search 

for the best solutions.  

 

 

Fig. 3. PSO particle: (a) gene as particle and (b) random particle movement 
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This modification is expected to improve the optimization 

results obtained. The integration of GA and PSO considers 

the distinct characteristics of both algorithms. The 

exploitative search of GA used in parental selection is 

combined with the exploratory motion of PSO particles [75]. 

However, to preserve the fundamental character of GA as the 

primary algorithm, the implementation of PSO particles is 

restricted to a small subset of GA chromosomes. This 

approach ensures that the strengths of both algorithms are 

leveraged while maintaining the integrity of GA. 

Evaluating solutions from each chromosome involves 

calculating the fitness value of each chromosome. This 

calculation is based on the number of relays and the 

communication cost as defined by the MOP in (1). The 

chromosome that can form a multipath topology with the 

least number of relays or the lowest communication cost is 

considered the best. Next, the two chromosomes with the 

highest fitness values are carried forward to the next iteration. 

The goal of this step is to ensure that the chromosome 

population in the next iteration yields a solution that is either 

better or at least equivalent to the solution from the previous 

iteration. A flowchart of the optimization method used in this 

research is shown in Fig. 4. 

 

Fig. 4. Flowchart of the proposed method 

There are five main steps in this optimization process, 

namely the initial phase, iteration check, population 

decomposition and selection, GA and PSO operations, and 

population update. In the initial phase, the process begins 

with the generation of an initial population, which represents 

potential solutions in the search space. Each chromosome is 

then evaluated using a fitness function that quantifies the 

quality of the solutions. At the iteration check step, a check is 

made to see if the maximum number of iterations has been 

reached. If the number of iterations is less than the maximum, 

the process continues to the next step.  

In the population decomposition phase, the population is 

divided based on the evaluation results. The best 

chromosomes are stored for future use. Other chromosomes 

undergo random crossovers and mutations, creating new 

genetic variations. Some chromosomes are selected and 

processed as PSO particles. Their direction and velocity are 

updated, resulting in new positions in the search space and 

forming new chromosomes. Finally, the chromosomes are 

updated based on the new positions of the particles, resulting 

in a new, improved population. This population then 

undergoes the same process in the next iteration. This 

iterative process continues until the maximum number of 

iterations is reached. 

III. EXPERIMENTAL SETTING 

The optimization outcomes achieved through the MOO 

approach heavily rely on the chosen parameters. First 

simulations were performed within an area of 10𝑟𝑎𝑑𝑐 ×
10𝑟𝑎𝑑𝑐. This simulation area considers the farthest possible 

distance between sensors and the sink so that WSN reliability 

is also maintained. Twenty sensors were placed within this 

area, as shown in Fig. 5. With twenty sensor nodes, it covers 

more than one-third of the area. This coverage is adequate to 

monitor scattered target points within the area. The sink node, 

as the destination for data transmission and storage, was 

placed in the center of the area. This placement strategy is for 

easy replication if simulation or implementation with a larger 

area is desired. For this size of simulation area, a total of 132 

relay nodes were required to cover the entire area. This 

maximum number was then used to construct the 

corresponding GA chromosome and PSO particle structures.  

 

Fig. 5. Simulation area with twenty sensor nodes 

In the first simulation, a population of two hundred 

chromosomes was randomly generated and utilized in a series 

of iterations. The optimization process was carried out with 

one thousand iterations. Population ratios, developed as GA 

chromosomes and PSO particles, were defined in five 

different combinations: 100:0, 80:20, 60:40, 40:60, and 

20:80. A ratio of 100:0 shows that the chromosomes were 
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generated and optimized entirely with GA. This ratio is 

abbreviated as GP100 for ease of notation. Similarly, GP80 

stands for a ratio of 80:20, GP60 for a ratio of 60:40, and so 

on. The choice of five ratios within a rough range aims to 

investigate the basic characteristics of the proposed method.  

Table I presents a comprehensive overview of the 

parameter configurations of GP80 utilized in the first 

simulation. The table outlines the dimensions of the 

simulation area, sensor locations and quantities, relay 

placement mappings, and sink location. Additionally, it 

details communication cost components, penalty values, and 

constraint functions employed in the simulation. It’s 

important to note that similar metrics were derived by varying 

percentages of particle randomization. For instance, GP60 

denotes a scenario where 60% of the population were 

chromosomes and the remaining 40% were particles, while 

other parameters remain the same across configurations. 

TABLE I.  SIMULATION PARAMETERS 

Parameters Description/Value 

Simulation area Square 10𝑟𝑎𝑑𝑐  ×  10𝑟𝑎𝑑𝑐 
Position and 
number of nodes 

Sink: 1 node in the center of the simulation 
area 

Sensors: 20, random position 

Algorithm Settings GA chromosome length: 132 genes (= max. 

number of relays in the area) 

Population size: 200 chromosomes 

The best 1% of chromosomes are reused 

80% of chromosomes are randomized and 

reshaped through mutations or crossovers 

The other 20% of chromosomes are treated as 
particles with random patterns of movement 

and speed. 

Number of iterations: 1,000 

Communication 
Costs 

3-point sensor; 5-point relay; hop 2 points 

Limitations (or 

Penalties) 
Degree of connectivity: 𝑐𝑚𝑎𝑥=6, 𝑐𝑚𝑖𝑛=2  

Largest number of hops: 12  

Isolated sensor: 10,000 points  

Single path connection: 5,000 points 

Communication costs are associated with diverse types of 

connections: a three-point sensor connection, a five-point 

relay connection, and a two-point cost per hop. Penalties are 

also imposed for certain connectivity issues. The degree of 

connectivity is bounded by upper and lower limits (6 ≥
𝐾(𝑟) ≥ 2). The maximum number of allowed hops is twelve 

(𝐻𝑚𝑎𝑥 = 12). An isolated sensor incurs a hefty penalty of ten 

thousand points, while a single path connection results in a 

penalty of five thousand points. These penalty values are 

determined based on the communication cost of utilizing all 

relays in the area to form a multipath topology. This 

parameters setup is designed to optimize relay deployment 

and connectivity within the given area, taking into account 

both communication costs and constraints. If this setup is 

expressed as a MOP function, it can be represented as 

follows: 

𝑀𝑂𝑃 =

{
 
 

 
 min (∑𝑁(𝑟𝑝) +∑𝑁(𝑟𝑠))

min (∑𝐵(𝑠𝑝) +∑𝐵(𝑠𝑠))

6 ≥ 𝐾(𝑟) ≥ 2
𝐻𝑚𝑎𝑥 = 12

 (7) 

IV. RESULT AND DISCUSSION 

The proposed optimization method has demonstrated 

impressive results in the preliminary simulation. It effectively 

tackles the predefined MOP model, ensuring that every 

sensor within the simulation area establishes robust and 

reliable communication with the sink via two unique paths. 

Moreover, the method strictly adheres to the existing 

constraint functions, including connectivity degree and hop 

count, without any violations. This strict adherence 

guarantees that the network operates within its specified 

parameters, thereby boosting its efficiency and reliability.  

A detailed examination of the connectivity degree reveals 

that each relay consistently maintains a specific value. This 

uniformity indicates a balanced load distribution among the 

relays, a critical factor in enhancing the network’s reliability 

and performance. The unique attributes of the optimization 

method, as demonstrated by the preliminary simulation 

results, are depicted in Fig. 6, Fig. 7, and Fig. 8. These figures 

provide a visual demonstration of the method’s efficacy and 

underscore its potential. 

 

Fig. 6. Simulation result: optimization convergency characteristics 

Fig. 6 illustrates the performance of five distinct ratios: 

GP20, GP40, GP60, GP80, and GP100, evaluated over thirty 

independent simulations. Upon examination of the provided 

graph, it is observed that there exists a significant degree of 

variation in the convergence points across all scenarios 

throughout the simulations. It is noteworthy that no single 

scenario consistently yields either the lowest or the highest 

convergence points. This finding implies that there is no 

universally optimal ratio of Genetic Algorithm (GA) 

chromosomes to Particle Swarm Optimization (PSO) 

particles. However, certain general trends can be discerned 

from the data. For instance, GP80’s significant fluctuations 

suggest a broad exploration of the solution space, which is 

beneficial when dealing with complex problems that require 

extensive exploration to find optimal or near-optimal 

solutions. Conversely, GP100 begins with a high-

performance level and maintains relative stability, indicating 

strong exploitation capabilities.  

This balance between the exploration of GP80 and the 

exploitation of GP100 can be a strategic choice in many 

optimization problems. Furthermore, GP100 demonstrates 

high reliability, making it a rational choice if reliability is a 

critical factor. Lastly, using both GP80 and GP100 could 

introduce diversity into the next iteration. The wide 

exploration of GP80 could bring in novel solutions, while 

GP100’s refinement approach could optimize existing good 
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solutions. This diversity could prevent premature 

convergence and assist in escaping local optima.  

 

Fig. 7. Simulation result: minimum relay usage 

Fig. 7 and Fig. 8 present the simulation results for the 

number of relays and communication cost, respectively. In 

addition to the number of relays, communication cost is a 

crucial parameter, as it significantly affects the overall 

network topology. Based on Fig. 7, the number of relays 

varies from a minimum of 59 nodes to a maximum of 72 

nodes. The multipath topology with the fewest relays, 

specifically 59 nodes, is achieved with the GP80 ratio. On 

average, over thirty tests, GP80 utilizes 65 relay nodes. The 

GP60 ratio achieves the second-lowest number of relays, 60 

nodes, and has an average value of 65 nodes, the same as 

GP80. For the GP100 ratio, the number of relays ranges from 

a low of 63 nodes to a high of 71 nodes, with an average value 

of 66 nodes. Based on these statistics, it can be inferred that 

three ratios, GP80, GP60, and GP100, outperform others in 

minimizing relay usage. This performance evaluation gives 

valuable insights for optimizing the network configuration. 

 

Fig. 8. Simulation result: minimum communication cost 

Evaluation of the simulation results based on 

communication cost yields intriguing insights. As depicted in 

Fig. 8, the highest communication cost is at 3077 points with 

the GP20 ratio. In contrast, the lowest cost is achieved with 

the GP80 ratio, registering at 2078 points. Notably, GP80 

records a value approximately 200 points lower than GP60 

and 300 points lower than GP100. This value shows the 

efficiency of the GP80 ratio in minimizing communication 

costs. When considering the average values, the three most 

efficient ratios are GP80, GP100, and GP60. These ratios 

have average values of 2503, 2,510, and 2553 points, 

respectively. These statistics underscore the effectiveness of 

these ratios in optimizing communication costs. 

The GP20 consistently registers higher communication 

costs, suggesting potential inefficiency. Both GP40 and GP60 

models exhibit considerable variability in communication 

cost across simulations, indicating inconsistent efficiency. 

This variability could arise from the inherent randomness in 

this method or the complexity of the problem space. GP80 

generally records lower communication costs than GP20, 

GP40, and GP60, suggesting potential efficiency. Despite 

fluctuations, the GP100 model often registers the lowest 

communication cost, suggesting potential efficiency. 

Thus, it can be said that GP80 and GP100 ratios have the 

best results in terms of communication cost optimization. 

Overall, based on the results of the preliminary simulation, 

the best solution for minimizing the number of relays and cost 

is obtained by modifying the development of GA 

chromosomes and PSO particles with the GP80 ratio. This 

parameter is then used in the second simulation with 

incremental increases of 5% until reaching 100%. Empirical 

data from the first simulations suggest that ratios with a 

higher proportion of Genetic Algorithm (GA) chromosomes 

tend to be more efficient, as evidenced by their lower relay 

usage. The inclusion of GP100, GP95, GP90, GP85, and 

GP80 aims to investigate whether a slight reduction in the GA 

chromosome proportion could lead to a better performance 

without significantly increasing relay usage. 

The results of the second simulation, as depicted in Fig. 9 

and Fig. 10, prove enhanced optimization outcomes 

compared to the earlier simulation. Specifically, the average 

relay usage in this simulation shows lower values. While the 

range of relay usage in the earlier simulation was between 65 

to 70 nodes, this simulation presents a range between 60 to 

65 nodes. The second simulation achieved optimization with 

the lowest relay usage at 57 nodes and the highest at 67 nodes. 

These values are smaller compared to the first simulation. 

 

Fig. 9. Minimum relay number of the proposed method 

Based on Fig. 9, the best solution is reached with the 

GP90 ratio, which features the lowest relay usage of 57 

nodes. Upon average analysis, the smallest relay usage is 

reached at two distinct ratios, namely GP90 and GP95, both 

with 63 relay nodes. The GP80 ratio, which showed the best 

outcomes in the first simulation, has a range of relay usage 

from 58 nodes at the lowest to 69 nodes at the highest, with 

an average relay usage of 64 nodes. The other two ratios, 

GP85 and GP100, share identical values with GP80. Both 

have an average value of 64, with the lowest value at 58. 

These results say that the slightly increasing ratios have 

effectively enhanced the efficiency of the network 

configuration. In this second simulation, the GP90 and GP95 

ratios yield superior outcomes compared to other ratios, 

including GP80. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 477 

 

Kasyful Amron, Reliable Wireless Sensor Network Planning with Multipath Topology through Relay Placement 

Optimization 

 

Fig. 10. Minimum communication cost of the proposed method 

The second simulation also yielded improved 

optimization in communication costs, as depicted in Fig. 10. 

In the first simulation, communication costs fluctuated 

between 2300 to 2900 points, while the second simulation 

showed a reduced range of 2100 to 2500 points. The GP95 

ratio in the second simulation achieved the minimum 

communication cost of 2071, which is seven points lower 

than the first simulation, achieved with the GP80 ratio. Figure 

10 reveals that GP90 and GP95 ratios have the lowest average 

values, 2284 and 2311 respectively, showing their efficiency. 

Conversely, the GP85 ratio, with the highest average of 2358, 

appears less efficient. The maximum communication cost in 

the second simulation was 2589, a significant reduction from 

the first simulation’s maximum of 3077. This data 

corroborates that an increased iteration limit can yield 

superior optimization results for communication costs.  

Fig. 11 summarizes the third simulation for relay usage 

and communication costs with different sensor numbers. Fig. 

11(a) presents the relay usage with a varying number of 

sensors, from 10 to 50 nodes. In the simulation involving ten 

sensors distributed randomly, the GP90 ratio appeared as the 

most efficient, generating a network topology with 48 relay 

nodes. GP80 and GP85 ratios used 49 relays, while GP95 and 

GP100 employed 50 relays. In the scenario with 20 sensor 

nodes, the optimization results mirrored the earlier 

simulation, with the GP90 ratio continuing to deliver the best 

results, necessitating 61 relays to establish a multipath 

topology connecting 20 sensors. 

Upon examining the average values, GP90 and GP95 

stand out as the most efficient ratios, both require an average 

of 63 relay nodes. However, the simulations involving 30, 40, 

and 50 sensor nodes yielded different outcomes. In these 

scenarios, GP095 was the most efficient ratio. 

Fig. 11(b) focuses on the optimization of communication 

costs. The simulation results show that the GP80 yielded the 

most optimal communication cost in the scenario with 10 

sensors, while the GP100 was the most efficient in the 20-

sensor scenario. However, in the remaining three scenarios, 

the GP95 proved to be the best. In the 30-sensor scenario, the 

GP95 achieved a minimum communication cost of 2955, 

which is 142 points lower than the next best ratio, GP85, 

which had a cost of 3097. In the 40-sensor scenario, the GP95 

resulted in a communication cost of 3307, outperforming the 

GP100, which had a minimum communication cost of 3368.  

In the 50-sensor scenario, the two most efficient ratios were 

GP95 and GP80, with minimum communication costs of 

3972 and 4129, respectively.  

 
(a) minimum relay number 

 
(b) minimum communication cost 

Fig. 11. Optimization results for different numbers of sensors 

In a more general overview, this method is compared with 

several other commonly used planning methods in the 

topology planning process. This comparison includes other 

algorithms applied to WSNs, such as Dijkstra [76-78], and A-

star [79], [80]. Fig. 12 depicts the comparison of relay usage 

in a scenario with 20 sensor nodes. Both Dijkstra and A-star 

algorithms use a minimum of 83 relays, with Dijkstra using 

up to 104 nodes and A-star using up to 117 nodes. In contrast, 

PSO and GA generate multipath topologies with lower 

minimum relay counts of 70 and 62 nodes, respectively. On 

average, PSO needs 74 relay nodes, while GA requires 66 

nodes. The average and minimum values both outperform 

those of Dijkstra or A Star. 

 

Fig. 12. Comparison of the proposed method and alternative methods 

Furthermore, the developed method surpasses PSO or 

GA. The GP90 has a minimum value of 57 relays and a 

maximum of 66 relays, with an average of 63 nodes. The 

GP95 is slightly higher, with a minimum of 60 nodes and a 

maximum of 68 nodes, but it matches the GP90 with an 

average of 63 relays. These findings suggest that the GP90 

and GP95 ratios have superior optimization results in terms 

of relay usage. 
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Lastly, the main output of the proposed method is shown 

in Fig. 13 and Fig. 14. It serves as an example of the 

successful formation of multipath WSN topologies. Those 

figures show how 20 sensor nodes that are randomly placed 

connect to the sink via two distinct paths. Each of these 

topologies presents unique advantages. The first topology, 

depicted in Fig. 13, is advantageous due to its fewer relay 

usage. On the other hand, the second topology, shown in Fig. 

14, stands out for its lower communication costs. These 

examples underscore the effectiveness of the simulation 

method in optimizing both relay usage and communication 

costs, depending on the specific requirements of the network 

topology. 

 

Fig. 13. Multipath topology with minimum relay number 

The first topology in Fig. 13 comprises 61 relay nodes 

with a communication cost of 2096. In this topology, the 

connectivity degrees of relays range from 2 to 5. Among the 

61 relays, 21 have a connectivity degree of 2, 17 relays have 

a degree of 3, and 17 relays have a degree of 4. The highest 

connectivity degree of 5 is found in 5 other relay nodes. The 

average connectivity degree of relays in this topology is 3.10. 

Meanwhile, the second topology consists of 64 relay nodes. 

This number is higher than in the first topology but has a 

lower communication cost of 1832. The second topology in 

Fig. 14 has an average connectivity degree of 3.30, with the 

highest connectivity degree being 6, which is higher than in 

the first topology. This connectivity degree is the maximum 

allowed during the optimization process. Among the 64 relay 

nodes, 15 have a connectivity degree of 2, 23 nodes have a 

degree of 3, 1 node has a maximum degree of 6, and the rest 

have connectivity degrees of 4 or 5. 

In terms of hop count, the first topology does not provide 

a direct communication path. The shortest path allows sensor 

nodes to connect to the sink via a single relay node. However, 

this topology also includes the longest path, spanning 12 

hops, which is the maximum distance limit. On average, 

sensor nodes in the first topology are located 6.9 hops away 

from the sink. In contrast, the second topology exhibits a 

range of hop counts, from a minimum of two to a maximum 

of 10. The average distance between the sensors and the sink 

in this topology is 6.1 hops, which is shorter than the first 

topology. 

 

Fig. 14. Multipath topology with minimum communication cost 

These observations highlight the importance of 

considering the range of hop counts, from the shortest to the 

longest paths, as well as the average distance. It is evident 

that different topologies offer various advantages, and the 

selection of topology may depend on whether the priority is 

to minimize the number of relays, reduce communication 

costs, or optimize the number of hops. 

Assuming the degree of connectivity as a measure of 

energy consumption, and the number of hops as an indicator 

for transmission delay, one can deduce the following: The 

first topology optimizes energy consumption but results in a 

longer transmission delay. Conversely, the second topology, 

while being more energy-intensive due to a higher degree of 

connectivity, ensures a reduced transmission delay due to a 

lesser number of hops.  

In summary, both topologies present distinct advantages 

and challenges that can be significantly related to the 

implementation requirement. A topology with fewer relays 

offers cost efficiency, a crucial factor for large-scale WSNs. 

However, this efficiency is accompanied by the potential for 

forming circular paths, thereby increasing the number of hops 

and data transmission delay. On the other hand, a topology 

with a larger number of relays, meaning costly, facilitates the 

formation of paths with fewer hops and reduces data 

transmission delay. However, this advantage is offset by a 

higher degree of connectivity, leading to increased energy 

consumption and potentially, a shorter operational lifespan of 

the WSNs. 

Therefore, the selection of the optimal topology is not a 

universal decision but rather a strategic choice that depends 

on the specific requirements. Whether the priority is cost 

efficiency, transmission speed, energy conservation, or 
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operational longevity, the decision rests with the user or 

expert, who must balance these factors against the demands 

of the network. 

V. CONCLUSION 

This research presents a multi-objective optimization 

method for Wireless Sensor Networks using a modified GA 

that imitates the PSO particle movement. The method aims to 

optimize the WSN multipath topology by minimizing the 

relay number and the communication cost. Simulations were 

run in various scenarios, with parameters including the ratio 

of GA chromosomes to PSO particles, and sensor number and 

position. The best results were achieved with a GP90 ratio, 

where 90% of the 200 chromosomes were developed using 

GA features, and the remaining 10% were threatened as PSO 

particles. This method outperformed other algorithms like 

Dijkstra, A-Star, GA, and PSO in terms of relay usage and 

communication cost. As the output, the method produced two 

topology designs based on the multi-objective approach. One 

design prioritizes cost efficiency with fewer relays, while the 

other ensures lower communication costs despite having 

more relays. The choice between these designs depends on 

whether the user prioritizes cost efficiency or data 

transmission delay reduction. Further research is needed for 

a deeper understanding of this method, including but not 

limited to computational mathematics analysis of fitness 

functions and constraints, heuristic optimization to determine 

global or local optimality, and evaluation of optimization 

results using WSN design software. 
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