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Abstract—In this paper, we introduce an efficient path 

planning algorithm designed for floor cleaning applications, 

utilizing the concept of Spanning Tree Coverage (STC). We 

operate under the assumption that the environment, i.e., the 

floor, is initially unknown to the robot, which also lacks 

knowledge regarding obstacle positions, except for the 

workspace boundaries. The robot executes alternating phases of 

exploration and coverage, leveraging the local map generated 

during exploration to construct a STC tree, which then guides 

the subsequent coverage (cleaning) phase. The extent of 

exploration is determined by the range of the robot's sensors. 

The path generation algorithms for cleaning fall within the 

broader category of coverage path planning (CPP) algorithms. 

A key advantage of this algorithm is that the robot returns to its 

initial position upon completing the operation, minimizing 

battery usage since sensors are only active during the 

exploration phase. We classify the proposed algorithm as an 

offline-online scheme. To validate the effectiveness and non-

repetitive nature of the algorithm, we conducted simulations 

using VRep/MATLAB environments and implemented real-

time experiments using Turtlebot in the ROS-Gazebo 

environment. The results substantiate the completeness of 

coverage and underscore the algorithm's significance in 

applications akin to floor cleaning. 

Keywords—Cleaning Path; Mobile Robots; Spanning Tree 

Coverage; Coverage Path Planning; Exploration; Sensors; 

Algorithm; Completeness; Non-Overlapping Coverage. 

I. INTRODUCTION 

Mobile autonomous robots have found diverse 

applications, including autonomous cleaning [1], lawn 

mowing [2], mine sweeping [3], among others. These 

applications entail fundamental challenges such as coverage 

path planning, exploration, localization, and mapping. 

Exploration refers to the process of autonomously navigating 

and uncovering an unknown or partially known environment. 

In the context of robotics, it involves a robot's ability to move 

through an area while building a map and gathering 

information about its surroundings. Mapping pertains to the 

creation of a representation of the environment in which a 

robot operates. This representation typically includes details 

such as obstacles, landmarks, and the robot's own location, 

allowing the robot to make informed decisions and navigate 

effectively. Coverage path planning is the task of determining 

an efficient and systematic path that a robot should follow to 

ensure it covers an entire area of interest. This is commonly 

used in applications like environmental monitoring and 

cleaning, where full coverage of an area is essential. In this 

paper, we focus on exploration, defined as the process of 

gathering information about obstacles to generate a map used 

for subsequent cleaning operations. The extent of exploration 

is determined by the robot's sensor range, considering cells 

outside this range as unknown or unexplored. Our algorithm 

aims to generate a cleaning path that traverses all points 

within the workspace while ensuring there are no coverage 

gaps or overlaps. Thus, it must be both complete and non-

repetitive, guaranteeing comprehensive coverage during the 

cleaning process. The benefit of this approach is that the robot 

is required to switch on its exploration sensors only during 

the exploration phase and they remain in off position during 

the coverage phase, thus drastically increases the battery 

utilization 

Exploration, as indicated in references, is the fundamental 

process of acquiring information about the environment. The 

terrain acquisition problem is formulated as a continuous 

motion planning without imposing constraints on obstacle 

geometry, presenting two algorithms for acquiring planar 

terrains with obstacles of arbitrary shape, with performance 

estimates based on path length upper bounds is given in [4]. 

In [5] the authors focus on experimental investigations 

involving a mobile robot's map-building and exploration 

capabilities by employing a novel metric to assess map 

quality and tests various exploration strategies in different 

environments. The most promising results are observed in 

hybrid strategies that combine reactive navigation with map-

based approaches. Yamuchi [6], extends frontier-based 

exploration to multiple robots, allowing them to share 

perceptual information while maintaining separate global 

maps and making independent exploration decisions. The 

approach enhances exploration efficiency through 

information sharing and maintains robustness in case of 

individual robot losses, as demonstrated in real-world office 

environments. In [7] the authors explore the use of motion 

planning techniques for acquiring range-images with mobile 

robots equipped with range sensors, with the goal of creating 

3D representations of indoor environments efficiently. It 

presents two randomized algorithms, one based on set-

coverage and the other on an incremental scheme, to 

minimize sensing operations and address image registration 

challenges. The study presented in [8] addresses exploration 

problems aiming to construct complete maps of unknown 

environments with the shortest possible path. Given the 

limited range of sensors available to robots, such as LIDAR 

or vision-based systems, choosing an optimal initial point is 

crucial to maximize the information gathered during 

exploration. Typically, exploration leads to the mapping of a 
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specific region. During this process, robots detect obstacles, 

a necessity in online coverage path planning. To achieve a 

comprehensive map of the region, robots must thoroughly 

cover the workspace, thus integrating the term "coverage" 

into exploration and mapping problem contexts. In CPP, the 

primary aim is to systematically cover the entire area of 

interest, whereas exploration and mapping emphasize the 

generation of an accurate representation of the environment. 

In references [9][10], the authors have presented a variety of 

path generation algorithms tailored for cleaning applications. 

These encompass optimal coverage algorithms and sensor-

based boustrophedon-like Coverage Path Planning (CPP), as 

discussed by authors such as [13][14] among others. Within 

the domain of Morse decomposition-based algorithms, 

critical point detection poses a challenge due to the imperfect 

characteristics of sensors, particularly in unstructured 

workspaces [14]. Morse decomposition is a concept used in 

topological analysis and is particularly relevant to 

understanding the structure of a dynamical system or a space. 

It involves partitioning the space into regions called "Morse 

sets." Each Morse set represents a distinct topological feature 

or behavior of the system. These sets help in characterizing 

and understanding the dynamics, including attractors and 

repellers, within the space. Coverage Path Planning (CPP) 

algorithms are broadly categorized into offline, where prior 

information about the workspace is available, and online, 

where information is gathered during the task. In both cases, 

localization of individual robots is crucial and can be 

facilitated by Simultaneous Localization and Mapping 

(SLAM) algorithms. SLAM refers to the capability of a robot 

or autonomous system to create a map of an unknown 

environment while simultaneously determining its own 

position within that environment. In essence, SLAM allows a 

robot to explore and navigate through an unknown space 

while building a map and maintaining awareness of its own 

location in real-time [82]. This paper emphasizes a CPP 

methodology that optimizes performance by making use of 

whatever partial information about the workspace is available 

(partial map). The map is updated in an online manner by 

utilizing this partial data, contributing to the strategy of 

simultaneous exploration and coverage. The paper makes 

several valuable research contributions: 

• The paper introduces an innovative algorithm that 

seamlessly combines the processes of exploration and 

coverage path planning in the context of robotics. This 

novel approach is a significant contribution to the field as 

it streamlines the robot's operation, making it more 

efficient and versatile in scenarios requiring both 

mapping and complete area coverage. 

• The paper addresses the critical aspect of long-term 

robotic operation by emphasizing efficient battery usage. 

The selective activation of sensors during exploration 

phases conserves energy, prolonging the robot's 

operational lifespan. This contribution has implications 

for sustainability and cost-effectiveness in autonomous 

robotic systems. 

The rest of the paper is organized as follows. Section II 

presents the motivation of the proposed algorithm followed 

by recent developments in coverage path planning strategies 

in section III. The problem statement is discussed in section 

IV followed by proposed methodology in section V. 

Properties of the algorithm in terms of non-repetitiveness, 

completeness, battery usage and time taken are discussed in 

sections VI and VII respectively. Section VIII presents the 

results obtained followed by conclusion in section IX.  

II. MOTIVATION 

The motivation behind the development of the proposed 

path planning algorithm for floor cleaning robots in initially 

unknown environments stems from the growing demand for 

efficient, autonomous cleaning solutions. Traditional 

cleaning methods often fall short in terms of coverage, time 

efficiency, and adaptability to diverse and uncharted spaces. 

This limitation has become particularly evident in contexts 

such as commercial cleaning, industrial settings, and even 

domestic environments, where the need for comprehensive 

and autonomous cleaning solutions has never been more 

pressing. There are various shortcomings with the 

methodologies available at present. Most important one is the 

optimal usage of resource such as battery. In addition to it the 

available methods in the literature is either online or offline. 

In online methodology the robot does not have any a prior 

information regarding the workspace and the data such as 

obstacle position etc. are collected on the go. But, in offline 

strategy the robot already has complete information regarding 

the workspace. But this paper presents an online-offline 

methodology in which the online strategy is followed during 

the exploration phase and once it is finished then the 

coverage/cleaning is offline. This cyclic procedure from 

online to offline and back makes the proposed strategy a very 

efficient one. Also, there is a need to include the motion 

constraints of the robots in the algorithm. The robot can move 

easily horizontally and vertically but it will not be the case 

with diagonal motion. The division of workspace as 2D grids 

provides a more efficient robot motion within the workspace. 

The major motivation for this algorithm is twofold. First 

and foremost, it addresses the imperative need for efficient 

path planning in initially unknown environments. Cleaning 

robots are expected to operate in spaces where prior 

knowledge of the layout is often lacking. Therefore, the 

ability to navigate, explore, and clean effectively without 

prior knowledge is essential. Our algorithm provides a 

practical and innovative solution to this challenge. Second, 

the motivation is driven by the urgency to conserve energy 

and optimize the operation of cleaning robots. Energy 

efficiency is a critical consideration, especially in the era of 

sustainability and the increasing demand for eco-friendly 

technologies. By minimizing battery usage through the 

offline-online scheme and intelligent sensor management, 

our algorithm aligns with the broader goal of energy 

conservation in robotics. Moreover, the versatility of our 

algorithm makes it relevant to a wide range of applications, 

not limited to floor cleaning. Its potential use in warehouse 

management, industrial automation, agricultural robotics as 

well as various other civil and defense applications. The need 

for such an algorithm is rooted in the need for innovative and 

energy-efficient solutions in the realm of robotics, with a 

specific focus on floor cleaning and the potential for broader 

applications. 
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III. RECENT DEVELOPMENTS IN COVERAGE PATH 

PLANNING STRATEGIES 

A 'partition and cover' methodology utilizing Voronoi 

partition is adopted to facilitate natural passive cooperation 

among robots, aiming to prevent task duplicity in [18]. 

Virtual nodes, deployed into CVC, are leveraged to facilitate 

efficient Voronoi partitioning, and subsequent robot 

coverage, guided by a gradient-based control law [19]. 

Another significant contribution involves addressing 

topologically disconnected cells due to obstacles [20]. 

Similarly, the problem of multi-robotic coverage is tackled, 

focusing on covering an area of interest using multiple 

sensors mounted on autonomous vehicles such as aerial or 

ground mobile robots [21]. The concern of repetitive 

coverage, along with complete coverage of a given area, 

when utilizing multiple robots, is addressed through a 

Manhattan distance-based Voronoi partitioning scheme [22]. 

A dynamic workspace re-allocation strategy is studied to 

optimize the area covered by each robot, particularly in the 

presence of obstacles, ensuring efficient coverage in [23].  

Another noteworthy contribution involves describing a 

Voronoi-based path generation (VPG) algorithm for energy-

constrained mobile robots, specifically unmanned aerial 

vehicles (UAVs) [24]. Additionally, the researchers delve 

into precision farming and the application of unmanned aerial 

vehicles (UAVs) to solve agriculture and animal husbandry 

issues [25]. In [28], a bipartite cooperative coevolution 

algorithm is proposed to optimize inter-area and intra-area 

path planning components, addressing battery limitations and 

ensuring effective coverage. Furthermore, a novel 

mechanism to generate non-revisiting uniform coverage 

paths on arbitrarily shaped object surfaces is presented in 

[27]. In [30], the limitations of CPP algorithms in handling 

unexpected changes in the coverage area are addressed 

through a novel adaptive CPP approach. In [29] the authors 

proposed Turn-minimizing Multirobot Spanning Tree 

Coverage Star algorithm, building upon the MSTC* 

algorithm. TMSTC* partitions the map into minimum 

branches resembling tree branches, converting the problem 

into finding a maximum independent set in a bipartite graph. 

In [29], the authors address coverage path planning for 

autonomous heterogeneous UAVs over a bounded number of 

regions. A centralized coverage algorithm for UAV 

formation in aerial photography is proposed in [31]. A 

significant contribution is made to equidistant tool path 

planning on curved freeform surfaces, particularly for robotic 

machining tasks [32]. In [33] a non-user-oriented path 

planning scheme using a family of spiral-shaped curves for 

moving aerial base stations (ABSs), aiming to optimize 

mechanical energy and achieve uniform coverage across a 

cell, demonstrating significant power consumption savings 

compared to existing radial paths is presented. In [36], the 

authors propose a non-user-oriented path planning scheme 

based on spiral-shaped curves, aiming to achieve energy 

efficiency and uniform coverage for all users within a cell. 

article addresses path planning for multiple UAVs to achieve 

sweep coverage, especially focusing on forest fire early 

warning and monitoring. A Predator-Prey reward-based Q-

Learning CPP, overcoming local optima challenges is studied 

in [35] and [36] introduces a visibility-based path planning 

(VPP) heuristic for optimizing visibility during UAV flights. 

The collaborative coverage improved BA* algorithm is 

proposed in [37]. In [38] the authors studied the utilization of 

unmanned aerial vehicles in scanning or surveying multiple 

regions. 

The study in [39] introduces a robotic system for 

automated breast ultrasound scanning that ensures full and 

uniform coverage by employing 3-D point cloud searching 

and addressing tissue deformation through a contact force–

strain regression model and probe–tissue interaction 

adjustments, ultimately demonstrating effective maintenance 

of probe posture and contact force during scanning. In [40] 

the authors present Cowbot, an autonomous weed mowing 

robot designed for maintaining cow pastures, addressing the 

challenge of unknown weed distribution by developing 

online planning algorithms that optimize path length based on 

weed detection, validated through field and simulation 

experiments demonstrating significant path length reduction 

compared to traditional approaches. In [41] the work presents 

an integrated approach for coverage path planning with 

unmanned aerial vehicles (UAVs), optimizing both mobility 

and camera orientation to achieve comprehensive coverage 

based on visibility constraints, addressed as a constrained 

optimal control problem and solved using mixed integer 

programming optimization. In [42] three Mixed Integer 

Linear Programming formulations aimed at optimizing the 

path of a mobile sensor node to cover "coverage holes" in a 

Wireless Sensor Network, demonstrating superior results 

compared to existing approaches through simulations and 

comparisons is presented. Some recent papers address 

artificial intelligence methods such as genetic algorithms 

(GA), ant colony optimization (ACO), Voronoi diagrams, 

and clustering methods. Another research focus pertains to 

optimizing coverage path planning for robotic single-sided 

dimensional inspection of free-form surfaces. By introducing 

a non-random targeted viewpoint sampling strategy, a 

significant reduction in cycle-time for the inspection task is 

achieved, enhancing overall solution quality. Additionally, a 

study is conducted on complete coverage path planning for 

reconfigurable robots using deep reinforcement learning, 

offering an optimal set of shapes for reconfigurable robots to 

maximize area coverage while minimizing energy 

consumption. A hierarchical approach based on maximum 

cumulative detection reward is proposed for path planning in 

the search for static targets by autonomous underwater 

vehicles (AUVs) in ocean environments, showcasing 

superior performance through simulation results. Moreover, 

an innovative approach is presented for UAV coverage path 

planning with real-time data transfer during flight over 5G 

networks, significantly reducing data losses and improving 

flight time. Also, a two-phase method is proposed for 

optimizing the coverage path planning of multiple UAVs in 

maritime search and rescue (SAR) operations, effectively 

minimizing search area extensions and completion time [43-

48]. Various studies propose innovative solutions catering to 

diverse applications. One approach focuses on optimizing 

trajectory length and turns for inspection operations using a 

back-and-forth pattern, employing a tree search model based 

on polygon width and sweep line to navigate complex 

polygons [49]. Another tackles path planning for underwater 

vehicle manipulator systems (UVMS) in aquatic organism 

capture, integrating a novel cost modeling algorithm and 
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predictive network models for efficient path planning [50]. 

Addressing the pressing need for disinfecting public areas 

during the COVID-19 pandemic, a coverage path planner for 

a spraying drone is introduced, revolutionizing existing 

planners by considering a sprinkler system and realistic 

dispersion volumes [51]. Furthermore, agriculture presents 

its unique challenges in CPP due to varying field shapes and 

sizes. A generic CPP method is proposed, accompanied by 

benchmark datasets and quantitative measures to enhance 

agricultural efficiency [52]. In the context of space 

exploration and servicing, a novel kinodynamic inspection 

path planner is presented, addressing proximity operations 

and achieving efficient inspection trajectory planning for 

space structures [53]. Similarly, in the maritime domain, an 

autonomous coverage path planning model based on 

reinforcement learning significantly improves search 

efficiency for maritime search and rescue (SAR) operations 

[54]. When it comes to marine mapping, cooperative 

surveying of offshore seabed regions is vital, and a sequential 

algorithm is proposed to facilitate accurate boundary 

generation and coverage path planning for multiple 

unmanned surface vehicles (USVs) [55]. Moreover, energy-

efficient online coverage path planning is a critical 

consideration for robotic platforms operating in unknown 

spaces with limited energy. A novel solution based on 

contour following shows promising results in optimizing 

energy consumption and ensuring efficient coverage [58]. 

Ant Colony Optimization Algorithm for CPP is proposed 

[59] considering energy consumption and unique 

characteristics, outperforming existing algorithms by at least 

10% in terms of energy efficiency across various scenarios. 

Another research focuses on unmanned surface vehicles, 

presenting a coverage path planning algorithm based on 

improved biological inspired neural network. It enhances 

coverage efficiency while ensuring 100% coverage, 

demonstrating superior path length and repetition rate [60]. 

Additionally, a Complete Coverage Path Planning (CCPP) 

scheme is introduced for robot operating system-based 

robots, combining sub-area division, "S" shape path planning, 

and dynamic tracking to improve coverage ratio significantly 

[61]. A multi-agent coverage path planning algorithm 

inspired by social behaviors in the biological world is also 

proposed, effectively addressing uncertain and random 

decision-making, showing advantages in make span and 

coverage repetition rate [62]. Another work introduces a 

novel Clustering Obstacles (CO)-based path planning 

algorithm for mobile robots using quintic trigonometric 

Bézier curves, achieving better collision-free paths compared 

to existing algorithms [63]. Moreover, a hybrid navigation 

system for mobile robots is presented, combining 

autonomous positioning and path planning, showcasing 

effectiveness in unstructured scenarios [64]. In [65], a 

complete hybrid navigation system for a class of mobile 

robots with load tasks and docking tasks is presented. The 

challenges and potential solutions for path planning in 

Multiple Robotic Systems (MRS) are surveyed, emphasizing 

the need for more research and practical applications in 

dynamic environments is presented in [66]. An algorithm 

based on neural dynamics is proposed to achieve complete 

coverage of a grid-based environment while considering 

collision avoidance and dead-end situations for mobile 

robots, demonstrating improvements in collision-free 

effective path planning in [67]. Another research addresses 

connectivity and area coverage in Wireless Sensor Networks 

using mobile robots to optimize sensor positions, improving 

data transfer to the base station [68]. In [69] the authors 

comprehensively introduce intelligent path planning 

technologies in the context of underwater vehicle path 

planning, emphasizing collaborative and coverage path 

planning. Another research paper [70] presents a scalable 

technique that couples and manipulates chaotic systems to 

improve scanning coverage efficiency in unknown 

environments, demonstrating a significant performance boost 

compared to existing planners. Another innovative approach, 

D-RRT*, addresses the slow convergence issue of RRT* 

algorithm by focusing on the direction of the goal, resulting 

in improved performance metrics in cluttered 2D 

environments [71]. A bio-inspired topological navigation 

model for aerial mobile robots is proposed, mimicking 

animal-like navigation behaviors based on topological spatial 

representation, achieving efficient navigation and higher 

localization accuracy in challenging real-world visual 

environments in [72]. A comprehensive study on MRS 

coordination, categorizing various coordination approaches 

based on different dimensions and analyzing the factors 

affecting MRS coordination and efficiency is presented in  

[73]. For four-wheel independently driven steered mobile 

robots, a multiple mode-based navigation system is proposed, 

incorporating kinodynamic interior-exterior cell exploration 

planning and fuzzy adaptive receding horizon control for 

efficient motion planning and trajectory following in [74]. In 

agricultural robotics, a novel full coverage path planning 

method for harvesting robots is introduced, significantly 

improving adaptability to the working environment and 

performance of harvesting robots in [75]. An improved 

Dynamic Window Approach (DWA) based on Q-learning is 

proposed in [76] for mobile robot path planning in unknown 

environments, showcasing higher navigation efficiency and 

successful rate in complex unknown environments. In border 

surveillance operations, an adaptive border patrol process is 

introduced based on a partially observable Markov decision 

process, leveraging partial information on trespassing agents 

to dynamically determine patrol paths, resulting in improved 

trespasser detection rates in [77]. In [78], an efficient 

coverage path planning algorithm based on Boustrophedon 

motions and rapid Voronoi diagram is presented, 

demonstrating superior time efficiency and coverage 

compared to conventional heuristic methods. In manipulator 

robot applications, [79] provides an in-depth review of fuzzy 

logic approaches for collision-free path planning, 

highlighting their efficiency and applicability in complex and 

cluttered workspace. For unmanned aerial vehicle surveying 

missions, an optimal edge-vertex back-and-forth path planner 

is proposed in [80,81], considering starting and ending points, 

thus providing an efficient solution for coverage path 

planning. 

The non-ideal behavior of sensors, especially in 

unstructured workspaces, necessitates further investigation to 

improve critical point detection. It is imperative to mitigate 

the impact of imperfect sensor data to extract more accurate 

critical points. In the context of online CPP algorithms, short-

range sensors suffice as obstacle detection is primarily 
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required in close proximity to the robot. On the other hand, in 

an offline scenario where the complete coverage path is 

preplanned, the robot can seamlessly follow it without 

unnecessary halts. While the coverage problem can 

conceptually utilize various robot coverage algorithms such 

as Spanning Tree Coverage (STC) [12], Boustrophedon [11], 

etc., the specific algorithm employed to solve the problem is 

contingent on the underlying Coverage Path Planning (CPP) 

algorithm. In this paper, we adopt the offline STC [11,18] as 

the underlying CPP algorithm to illustrate the proposed 

coverage problem. Subsequently, we present an algorithm 

that effectively addresses and solves this particular coverage 

problem. 

IV. PROBLEM SETTING 

The Spanning Tree Coverage (STC) algorithm holds 

significant promise for implementation in cleaning robots, 

particularly when the robot's initial and final locations are 

identical. In this algorithm, the entire region slated for 

coverage or cleaning is divided into square cells, referred to 

as major cells, each measuring 4 times the size of the cleaning 

tool (2D x 2D). These major cells are composed of smaller 

cleaning tool-sized cells known as minor cells (D x D). 

During the exploration phase, a local tree is constructed using 

the 2D x 2D cells as nodes, and the robot's cleaning path is 

planned through the D x D cells. However, a notable 

drawback of the STC algorithm is its tendency to entirely 

avoid even slightly incomplete major cells, thus neglecting 

them in the cleaning task. This omission can lead to coverage 

gaps within the workspace. Consequently, the STC algorithm 

falls under the category of approximate cellular 

decomposition-based Coverage Path Planning (CPP) 

algorithms, aligning with the classification proposed by 

Choset in his 2001 paper [9]. To achieve complete cleaning, 

it is essential for the robot to clean all the D x D cells 

thoroughly. Redundant cleaning of cells should also be 

minimized to optimize the utilization of available resources 

effectively. 

The problem setup is depicted in Fig. 1, where the 

workspace is divided into square cells, each being four times 

the size of the cleaning tool. Each of these larger cells 

comprises four cleaning tool-sized cells. During the 

exploration phase, the entire area is categorized into explored 

(occupied or free) and unexplored regions, with frontier cells 

serving as the boundary between the explored and unexplored 

areas. In the figure, the workspace is partitioned into square 

cells of size 4 times the cleaning tool size (shown with thick 

long dashed boundary) and each of these consists of four 

cleaning tool sized cells (shown with thin dashed line 

boundary). Obstacle is shown in black.  During exploration, 

the entire area can be classified into explored (occupied or 

free) and unexplored. Explored free cells are shown in grey 

and unexplored in white. Frontier cells separates explored 

from unexplored. In the diagram F is for frontier cell, E for 

explored, U for unexplored.  This paper does not delve into 

the specific type or characteristics of the sensors utilized for 

exploration. The proposed algorithm is designed to be sensor-

agnostic, capable of functioning effectively with various 

sensor types. The algorithm primarily operates on the data 

acquired through exploration sensors. During the cleaning 

path generation, sensors are not required, and they remain in 

an OFF state throughout the cleaning process. Additionally, 

the paper assumes that the robots are localized, allowing for 

the potential use of Simultaneous Localization and Mapping 

(SLAM) or similar localization algorithms.  

 

Fig. 1. The workspace is partitioned into square cells of size 4 times the 

cleaning tool size (shown with thick long dashed boundary) and each of these 
consists of four cleaning tool sized cells (shown with thin dashed line 

boundary). Obstacle is shown in black.  During exploration, the entire area 

can be classified into explored (occupied or free) and unexplored. Explored 
free cells are shown in grey and unexplored in white. Frontier cells separates 

explored from unexplored. In the diagram F is for frontier cell, E for 

explored, U for unexplored. 

V. PROPOSED ALGORITHM 

In the proposed cleaning algorithm, both exploration and 

mapping procedures are integrated. In this approach, robots 

explore and obtain a partial map of the workspace, using this 

information to cover the area. This cycle is repeated until the 

entire region is covered, resulting in a complete map and a 

fully covered (cleaned) workspace. During the exploration 

and mapping process, robots must perform both path 

planning and mapping tasks using onboard sensors. Path 

planning involves deciding the future points for exploration 

to maximize the mapped (explored) area. The robot executes 

the coverage process based on the path deduced by the 

coverage strategy but needs to determine where, along this 

path, exploration needs to be conducted. Following the 

exploration phase, a local map of the region is generated, 

utilized to design and execute a coverage (cleaning) path 

based on the selected coverage algorithm, in this case, STC. 

During the robot's traversal to specific locations, explained in 

subsequent sections, the exploration phase is reinitiated. This 

iterative process continues until the entire workspace is 

thoroughly cleaned. It's reiterated that precise localization 

information is assumed to be available, given that this paper 

primarily focuses on integrating exploration and coverage to 

generate a comprehensive, non-overlapping coverage 

(cleaning) path. For real-time applications, localization 

techniques such as Simultaneous Localization and Mapping 

(SLAM) can be integrated. Fig. 2 depicts the cleaning 

problem, where the exploration process generates a map, 

subsequently used by the CPP algorithm to establish the 

cleaning path. As the robot follows this path, it combines 

cleaning and exploration tasks by conducting exploration at 

specific points along the cleaning route. Flow Chart 1 (Fig. 

3) outlines the proposed algorithm employing the offline STC 

CPP algorithm. The entire process is represented as a 

pseudocode in Algorithm1. 
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Fig. 2. The proposed methodology integrates both exploration and coverage 

path planning, where exploration is utilized to generate a map of the 
environment, and the coverage path is determined for the robot's motion. As 

the robot traverses the coverage path, it conducts exploration at specific 

locations to enhance its understanding of the surroundings. 

The data acquired from sensors during each exploration 

phase is utilized to construct a Minimal Spanning Tree (MST) 

[12] employing the well-established Kruskal algorithm. This 

MST is formed over the graph created by the larger cells, each 

being four times the size of the cleaning tool. The actual 

cleaning path followed by the robot traverses through the 

smaller cleaning tool-sized cells, navigating along the edges 

of the MST. The robot undergoes two primary operative 

phases: the exploration phase and the cleaning phase. The 

transition between these phases occurs when the robot 

reaches a F(E) cell with a neighboring F(U) cell. At the 

conclusion of the exploration phase, newly explored cells are 

incorporated into the existing known workspace, and the 

explored cell list is updated. Simultaneously, the MST is 

updated to accommodate these newly explored cells. The 

cleaning process then recommences from the cell where the 

exploration phase commenced, which is the present current 

cell. An important feature of this algorithm is that the robot 

only needs to activate the exploration sensors during a limited 

number of exploration phases, effectively conserving battery 

power. During the cleaning operation, the sensors remain in 

the OFF state. 

To enhance comprehension of the proposed algorithm, an 

illustrative scenario is depicted in Fig. 5. The entire 

workspace slated for cleaning is divided into major cells, each 

four times the size of the cleaning tool. In this scenario, there 

are a total of 36 such cells. Among these, cells 6, 8, 11, 12, 

13, 14, 16, and 17 are marked as obstacle-occupied, shown as 

darkened cells in the figure. The robot's initial position is 

assumed to be within cell number 18, represented by a dot in 

the figure. As elucidated earlier, the initial action of the robot 

is to activate its exploration sensors and conduct exploration 

starting from its current cell. Once the exploration phase is 

completed, the sensors are turned OFF. The results of this 

exploration phase are presented in Fig. 6(a). In this figure, the 

white region represents the explored free area (unoccupied by 

obstacles), and the cells that were occupied by obstacles and 

became known after this exploration phase are indicated in 

blue (cells 12, 13, 14, 16, and 17). At the initial phase of the 

process, all cells are assumed to be unknown and unexplored. 

Also, all the frontier cell lists are empty. Each exploration 

involves some steps. Steps in an exploration instance is 

shown as Fig. 4. 

After the exploration phase concludes, the robot 

transitions to the coverage phase. Within the known region, a 

local spanning tree is constructed (depicted by red lines in the 

figure). This tree traverses the large cells, represented by red 

dots. The blue line in Fig. 6(b) illustrates the resulting 

coverage path generated as the robot moves along this tree. 

The first frontier known cell (F(E) cell) is major cell 21 since 

its adjacent cell, 15, is a F(U) cell. Upon reaching cell 21, the 

coverage action halts, and the next exploration phase 

commences. During this second exploration phase, additional 

cells become known (explored) and are depicted in white in 

the figure. A new spanning tree is constructed through these 

newly discovered cells and is appended to the initial tree (Fig. 

6(c)). This iterative process continues, with subsequent F(E) 

cells initiating new exploration phases. For instance, the next 

F(E) cell is cell number 3, adjacent to F(U) cell 2, and the 

next exploration phase begins upon the robot's arrival at cell 

3 (Fig. 6(c)). The algorithm consistently generates new 

spanning trees based on the cells that become known after 

each exploration phase, ensuring a thorough cleaning path. 
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During the coverage phase, as the robot moves from cell 0 to 

cell 1, it triggers another exploration phase, revealing cell 7. 

A spanning tree edge is then added to cell 7 since it is 

unoccupied. The robot eventually returns to the initial cell, 

cell 18, marking the conclusion of the coverage. The cleaning 

process terminates when the robot reaches a minor cell, and 

the next available coverable/cleanable minor cell is the initial 

cell itself. 

Given that this condition is satisfied at cell 18, the 

cleaning process concludes, ensuring complete exploration 

and cleaning of the entire region without any gaps or overlaps 

(Fig. 6(d)). 

 

Fig. 3. Flowchart 1: Flowchart of the proposed algorithm using off-line 

strategy. 

 

Fig. 4. Flowchart 2:  Flowchart depicting the exploration algorithm used in 

the proposed coverage algorithm shown in flowchart 1. 

 

Fig. 5. Illustrative scenario. The entire workspace to be cleaned is divided 

into cells, 4 times the size of the cleaning tool. There is a total of 36 such 
cells.  The darkened cells with numbers 6; 8; 11; 12; 13; 14; 16, and 17 are 

obstacle occupied. The initial position of the robot is assumed to be inside 

cell number 18(represented by a dot in the figure). [17]. 

The advantages of this methodology can be summarized 

as follows: 

a) Power Efficiency: One of the primary advantages is its 

efficient power consumption strategy. By deactivating 

exploration sensors during the cleaning phase, it 

significantly reduces power usage, which is crucial for 

prolonged robotic operations. 

b) No Prior Knowledge Required: Unlike some existing 

approaches that rely on prior knowledge of the 

workspace, this algorithm can function effectively 

without any prior information about the environment. 

This makes it versatile and adaptable to various scenarios 

and changing environments. 

c) Comprehensive and Non-Repetitive Coverage: It 

ensures thorough and non-repetitive coverage of the 

workspace, even in the presence of obstacles. This 

addresses the challenge of ensuring that every area is 

covered and avoids unnecessary revisiting of already 

explored regions. 

d) Optimal Resource Utilization: The algorithm optimizes 

the usage of resources, particularly battery power. It 

activates exploration sensors only during the exploration 

phase, conserving power during cleaning operations. 

e) Valuable Map Generation: At the end of the cleaning 

process, it generates a detailed map of the workspace as a 

by-product. This map can be used for various purposes, 

such as environment analysis, monitoring, or planning 

future tasks, providing an additional valuable 

contribution. 

In summary, this algorithm offers a comprehensive 

solution to the challenges of coverage path planning. It 

efficiently manages power resources, adapts to dynamic 

environments without prior knowledge, and ensures complete 

and non-repetitive coverage. Additionally, it contributes to 

the creation of a valuable workspace map, further enhancing 

its utility and providing a versatile and efficient approach to 

coverage path planning in robotics. 
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Fig. 6. Various stages of operation of proposed algorithm. a) Exploration 

phase 1. b) Exploration phase 2 after covering all the coverable explored 

cells. c) Exploration phase 3 and d) Exploration phase 4 and 100 pec 

coverage/cleaning.  The free known(explored) cells are shown in white and 
unknown cells in grey. Known obstacle occupied cells are in blue. The large 

cell nodes are represented using red dots whereas the spanning tree edges are 

shown using red lines. The actual coverage path of the robot is shown as blue 

lines. 

VI. COMPLETENESS AND NON-REPETITIVENESS OF THE 

PROPOSED ALGORITHM 

As demonstrated in the preceding sections, the proposed 

algorithm ensures thorough cleaning of the workspace, 

leaving no gaps or overlaps in the cleaning path. The 

algorithm comprises two sub-algorithms: one for exploration 

and the other for coverage path planning (offline mode). The 

overall performance of the algorithm hinges on the specific 

methodologies chosen for exploration and cleaning. In this 

context, we have opted for a frontier-based exploration 

strategy coupled with offline Spanning Tree-based coverage 

path planning algorithms. 

A. Property 1: For Exploration 

a) The workspace to be cleaned (C) contains a sub-area C\O, 

which is obstacle-free and topologically connected. 

b) Achieving complete exploration of C is possible if the 

entire C\O region is covered. 

c) Frontier cells act as connectors between known 

(explored) and unknown (unexplored) cells. 

d) There always exists a pair of adjacent obstacle-free F(U)-

F(E) cells, forming an exploration window, as long as the 

present unexplored region contains a subset of C\O. 

e) The coverage path with the offline spanning tree coverage 

algorithm encounters an exploration window within the 

present unknown (unexplored) cell. 

f) In the absence of exploration windows in the frontier 

cells, the exploration is considered completed. 

B. Property 2: For Coverage 

a) An initial Spanning Tree (ST) is generated within the 

initially explored workspace. 

b) Upon new regions becoming known after the exploration 

phase, a local ST is generated using this newly explored 

region. Combining this tree with the old one results in a 

graph that remains a tree, spanning the new region, which 

is the new total explored region. 

c) When the entire workspace, C, is explored, the large tree 

generated by combining all the small trees forms an ST 

within the C\O region. 

d) According to [12], the ST coverage path will always be 

complete and non-repetitive. 

 Based on the aforementioned properties, it is evident that 

the proposed methodology ensures a comprehensive and non-

repetitive cleaning of the workspace, C\O, within C. Several 

individual claims within these two properties may seem 

evident, but they would benefit from a formal proof. 

However, it's important to note that this paper does not delve 

into a detailed formal analysis or rigorous mathematical 

proofs for these claims. The focus here is on presenting the 

methodology and explaining its workings, assumptions, and 

properties to establish a conceptual understanding and the 

potential effectiveness of the proposed algorithm. 

VII. BATTERY EXPENDITURE AND TIME TAKEN  

Efficiency in mobile robot operations, particularly in 

terms of time to task completion, number of turns, and sensor 

usage, is paramount due to the dependency on battery power. 

The proposed algorithm addresses these critical factors to 

maximize the robot's efficiency. The total path length taken 

by the robot, non-repetitiveness in the coverage/cleaning 

path, and the number of turns required align with high-

performance algorithms. Additionally, the proposed 

algorithm offers an advantage in obstacle detection. In 

standard online Spanning Tree Coverage algorithms, obstacle 

detection entails continuous sensor activation at each cell, 

demanding constant power usage for turning (270°) and 

sensor operation. This results in substantial power 

consumption per cell. However, the proposed algorithm 

optimizes battery usage by activating sensors only during 

exploration phases. Once a local spanning tree is generated in 

the explored region, the robot can deactivate its sensors, 

allowing uninterrupted cleaning motion until the next 

exploration window is reached. This significantly reduces 

battery usage and speeds up the cleaning process. As 

mentioned earlier, the proposed algorithm can seamlessly 

integrate with any coverage algorithm by replacing the 

specific spanning tree coverage algorithm used in this paper. 

The outlined properties hold true regardless of the chosen 

coverage algorithm, emphasizing the adaptability and 

effectiveness of the approach. 

VIII. RESULTS 

This section provides an overview of the simulation 

experiments conducted to showcase the effectiveness of the 

proposed algorithm. The simulations were conducted in three 

phases, utilizing the V-rep/MATLAB environment and 

involving the use of Turtlebot in the ROS/Gazebo simulator. 

The simulation environment for this research leverages two 

key platforms: V-rep/MATLAB and ROS/Gazebo. V-rep 

(Virtual Robot Experimentation Platform) is a versatile 3D 

simulation tool used for modeling, simulating, and 
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controlling robots. It is preferred for its user-friendly 

interface, comprehensive library of robot models and sensors, 

and its support for real-time physics simulation. ROS (Robot 

Operating System) is an open-source framework that 

provides a robust middleware for building and controlling 

robot systems. It's chosen for its extensive library of 

packages, communication tools, and its compatibility with 

various hardware platforms. Gazebo is a 3D simulation 

environment integrated with ROS, offering realistic physics-

based modeling for accurate robot simulation. This 

combination of ROS and Gazebo allows for seamless 

development, testing, and validation of robotic systems 

before actual deployment. The selection of these platforms 

was based on their established reputations within the robotics 

community, their support for a wide range of robot hardware, 

and their capacity to facilitate comprehensive and realistic 

simulations. The simulation experiments aimed to provide 

valuable insights into the algorithm's performance, 

efficiency, and suitability for practical implementation in a 

real robotic cleaning application. These phases helped in 

validating the algorithm's functionality and ensuring its 

effectiveness in different simulation environments. 

The initial phase of simulation involved a graph-level 

analysis where the robot's actual motion was not taken into 

account. The simulation focused on generating a spanning 

tree using the explored free large (major) cells, and the robot's 

path was established over the graph created using the 

explored free small (minor) cells. The workspace for this 

simulation is illustrated in Fig. 7, divided into 16 large cells. 

The presence of obstacles (depicted in black) in the 

workspace leads to topological disconnectivity, resulting in 

permanently unreachable areas for the robot. For instance, 

starting from a specific cell as shown in the figure, the robot 

may encounter unreachable cells. Such situations are a 

consequence of the obstacle layout and cannot be resolved by 

any algorithm. The cleaning algorithm's objective is to clean 

all accessible reachable areas without coverage gaps or 

overlaps and terminate upon completing the cleaning process. 

In this simulation, the robot initially lacks information 

regarding the nature of obstacles within the workspace, only 

being aware of the boundary. The cleaning procedure 

executed by the robot after each exploration phase is depicted 

in Fig. 8 and Fig. 9. In Fig. 8(a), after the first exploration 

phase initiated from the initial cell, a local/partial map of the 

environment is generated. In Fig. 8(b), the robot enters the 

second exploration phase when encountering an exploration 

window (a F(E) cell adjacent to a F(U) cell). In Fig. 8(c), the 

robot initiates the second exploration phase before 

completing the cleaning of cells from the first exploration 

phase. Fig. 8(d) shows the spanning tree and cleaning path 

generated at the end of the fourth exploration phase. Blue 

shaded cells represent occupied F(E) cells, and spanning tree 

is depicted using thin lines.  A new spanning tree is generated, 

merged with the initial tree, and the cleaning phase continues. 

This process of spanning tree generation and cleaning 

continues until coverage is complete, as shown in Fig. 9(b). 

The algorithm terminates when the next cleaning path leads 

to the starting small cell. As depicted in Fig. 9(b), the 

proposed algorithm consistently provides a complete and 

non-overlapping cleaning path, along with a basic map of the 

region as a by-product. 

 

Fig. 7. The entire workspace divided into 16 large cells. The presence of 

obstacles (depicted in black) in the workspace leads to topological 

disconnectivity, resulting in permanently unreachable areas for the robot. 

  
(a) (b) 

  
(c) (d) 

Fig. 8. The cleaning procedure executed by the robot after each exploration 

phase: a) Spanning tree generated at the end of the initial exploration phase. 
b) Second exploration initiated at the first exploration window. c) Spanning 

tree generated at the end of the third exploration phase. d) Spanning tree and 

cleaning path generated at the end of the fourth exploration phase. Blue 
shaded cells represent occupied F(E) cells, and spanning tree is depicted 

using thin lines. 

  
(a) (b) 

Fig. 9. Continuation of the cleaning procedure executed by the robot after 

each exploration phase from: a) Snapshot at the end of the fifth exploration 

phase. b) Final scenario showcasing the spanning tree using thin lines. 

The implementation of the proposed algorithm in the V-

Rep simulation environment was successfully carried out. 

The progression of this implementation is depicted in Fig. 10, 

Fig. 11, and Fig. 12. Fig. 10 presents the initial scenario for 

implementation, including the exploration sensor range. As 
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previously mentioned, the cleaning process is executed with 

intermittent exploration phases. Fig. 12 showcases the final 

result of the cleaned workspace, demonstrating the successful 

completion of the cleaning process. 

 

Fig. 10. The initial scenario generated in V-Rep simulator along with 

exploration sensor range. 

 

Fig. 11. Various stages of the cleaning operation in the V-Rep simulator, 

highlighting the intermittent exploration phases: (a) Spanning tree generated 

at the end of the initial exploration phase. (b) Spanning tree at the end of the 
second exploration phase (yellow), appended to the initial tree. (c) Spanning 

tree at the end of the third exploration (shown in light pink colour). (d) Final 

tree at the conclusion of the exploration phases (green). 

 

Fig. 12. The final cleaned arena. The blue thick lines show the cleaning path 

followed by the robot. To improve the clarity, the spanning tree is omitted.  

To achieve a more realistic performance, the proposed 

algorithm was implemented in the ROS-Gazebo environment 

using the standard Turtlebot robot with LIDAR sensors for 

exploration. Fig. 13 illustrates the scenario considered. In the 

initial exploration process depicted in Fig. 13, the blue 

sections represent the explored area, and the white sections 

indicate inaccessible regions due to the presence of obstacles 

from the robot's current position. Using this knowledge, an 

occupancy map of the large cells in the known region is 

generated. Fig. 14 illustrates the cleaning path at various 

instances during the exploration phases. Three exploration 

phases were needed to completely explore the given 

workspace. It's important to note that due to the inherent 

property of the underlying spanning tree-based coverage used 

in this paper, partially occupied cells may be left uncovered. 

However, this can be addressed by selecting an appropriate 

coverage algorithm, as demonstrated in related literature [11], 

[15], [16], [17]. The ROS-Gazebo environment provides a 

realistic simulation platform, and the same program can be 

implemented on a real Turtlebot robot, yielding comparable 

results. During real-time implementation, considerations 

such as using LIDAR or other vision-based sensors and 

modifying the exploration section of the program to 

accommodate real-time data from onboard sensors are 

essential. 

 

Fig. 13. ROS-Gazebo simulation scenario. The robot is positioned at the top 

left corner. Explored areas are highlighted in blue, while inaccessible regions 

due to obstacles from the robot's current position are depicted in white. 

 

Fig. 14. Various instances of cleaning process. The entire workspace is 

covered in three exploration phases. The major cells are shown in red and 

minor ones in white. 
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In conclusion, the simulation experiments presented in 

this section served as a crucial step in assessing the 

effectiveness of the proposed algorithm for robotic cleaning 

applications. The multi-phased simulations, conducted in V-

rep/MATLAB and ROS/Gazebo environments, provided 

valuable insights into the algorithm's performance, 

efficiency, and adaptability to real-world scenarios. The 

algorithm's strengths are notable. It successfully generates 

complete and non-overlapping cleaning paths, as 

demonstrated in the simulation results. Furthermore, it 

consistently produces a basic map of the environment as a by-

product, enhancing its utility for various applications. The 

selective activation of sensors during exploration phases 

contributes to efficient battery usage, a critical aspect of long-

term robotic operation. However, it's essential to 

acknowledge certain limitations. The inherent property of the 

underlying spanning tree-based coverage algorithm may 

result in partially occupied cells being left uncovered. While 

the paper suggests using alternative coverage algorithms to 

address this issue, future research might explore further 

refinements to ensure comprehensive coverage in all 

scenarios. The simulations conducted in this study provide a 

strong foundation for the proposed algorithm's practical 

implementation. The successful progression from 

simulations to the real-world application, using a Turtlebot in 

the ROS-Gazebo environment, suggests real-world 

feasibility. As the algorithm transitions to real-time 

implementation, considerations such as sensor selection and 

integration are crucial for seamless operation. 

A brief comparison with other existing methodologies can 

be summarized as follows. When comparing the proposed 

cleaning algorithm with other similar algorithms, several 

notable performance characteristics come to the forefront. 

The most significant distinction is the integration of both 

exploration and coverage phases within the proposed 

algorithm. It seamlessly combines these two essential 

components, where exploration generates a map used by the 

coverage path planning algorithm. In contrast, several other 

approaches primarily focus on either exploration or coverage 

separately, and their explicit integration may not be as robust 

or evident in those cases [5], [6], [30], [33], [35]. Another 

standout feature of the proposed algorithm is its commitment 

to power efficiency. It prioritizes the conservation of battery 

power by deactivating exploration sensors during the 

cleaning phase, a strategy not explicitly addressed in many 

other algorithms, which may lead to higher power 

consumption [13], [69]. Adaptability to dynamic and 

unknown environments is a significant advantage of the 

proposed algorithm. It can function effectively without prior 

knowledge of the workspace, making it versatile and 

adaptable to various scenarios and changing environments. In 

contrast, several other approaches often rely on prior 

knowledge of the workspace, limiting their adaptability to 

dynamic settings [40], [13], [58], [66], [71], [77]. Complete 

and non-repetitive coverage is a key focus of the proposed 

algorithm, ensuring that all areas are covered without 

unnecessary revisits to already explored regions. While some 

other approaches aim for complete coverage, not all explicitly 

address the issue of non-repetitive coverage, potentially 

leading to inefficiencies in the cleaning path [16], [17], [45], 

[61], [64], [67]. Additionally, the proposed algorithm 

generates a detailed map of the workspace as a valuable by-

product, providing additional value for tasks such as 

environment analysis, monitoring, or future planning. In 

contrast, many other approaches do not emphasize map 

generation as a significant outcome [71], [72], [73], [77]. 

Frontier cells play a crucial role in the proposed algorithm, 

acting as connectors between known and unknown cells, 

efficiently guiding the exploration process. While the use of 

frontier cells may vary across different approaches, not all 

explicitly leverage this concept as effectively [4], [9], [24], 

[50], [53], [55]. One more distinguishing feature of the 

proposed algorithm is its obstacle detection strategy. Unlike 

earlier mentioned approaches, it optimizes obstacle detection 

by activating sensors only during exploration phases, 

effectively reducing power consumption for obstacle 

detection. In contrast, most other approaches require 

continuous sensor activation for obstacle detection, leading 

to higher power usage per cell [5], [7], [22], [23], [24]. In 

summary, the proposed cleaning algorithm demonstrates a 

well-rounded set of performance characteristics, including 

integration of exploration and coverage, power efficiency, 

adaptability to dynamic environments, complete and non-

repetitive coverage, map generation, efficient use of frontier 

cells, and an optimized obstacle detection strategy. These 

characteristics collectively position the proposed algorithm 

as a robust and versatile solution for coverage path planning 

in robotics. 

IX. CONCLUSION 

In this paper, we provided an in-depth exploration of a 

coverage algorithm designed for a mobile robot engaged in 

cleaning-like tasks. The algorithm seamlessly integrates 

exploration, mapping, and coverage, addressing critical 

aspects of efficient robotic cleaning. We introduced a 

frontier-based exploration strategy and proposed an offline 

Spanning Tree Coverage (STC) algorithm to tackle the 

coverage problem. As already mentioned, offline algorithms 

have prior information about the workspace. Graph-level 

simulations were instrumental in demonstrating the 

efficiency of our proposed algorithm in generating coverage 

paths free from gaps or redundant coverage. We further 

validated its effectiveness through simulations conducted in 

the VRep/MATLAB environment and on a Turtlebot within 

the ROS-Gazebo environment. The ROS-Gazebo 

implementation is versatile and can be seamlessly transferred 

to a physical Turtlebot equipped with appropriate sensors, 

mirroring the simulation conditions with minimal 

modifications. The simulation experiments presented in this 

section served as a crucial step in assessing the effectiveness 

of the proposed algorithm for robotic cleaning applications. 

The multi-phased simulations, conducted in V-rep/MATLAB 

and ROS/Gazebo environments, provided valuable insights 

into the algorithm's performance, efficiency, and adaptability 

to real-world scenarios. The algorithm's strengths are notable. 

It successfully generates complete and non-overlapping 

cleaning paths, as demonstrated in the simulation results. 

Furthermore, it consistently produces a basic map of the 

environment as a by-product, enhancing its utility for various 

applications. The selective activation of sensors during 

exploration phases contributes to efficient battery usage, a 

critical aspect of long-term robotic operation. However, it's 
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essential to acknowledge certain limitations. The inherent 

property of the underlying spanning tree-based coverage 

algorithm may result in partially occupied cells being left 

uncovered. While the paper suggests using alternative 

coverage algorithms to address this issue, future research 

might explore further refinements to ensure comprehensive 

coverage in all scenarios. As the algorithm transitions to real-

time implementation, considerations such as sensor selection 

and integration are crucial for seamless operation. The 

adaptability of the algorithm to real-world robot platforms 

underscores its practical applicability for efficient coverage 

and cleaning tasks. While our paper does not extensively 

delve into detailed formal analysis or rigorous mathematical 

proofs, it's crucial to recognize that there are several potential 

avenues for future research that could enhance the depth and 

validation of our approach. One promising direction could 

involve conducting a formal analysis of the algorithm's 

coverage capabilities, potentially using mathematical proofs 

or formal methods to demonstrate its complete coverage 

guarantees under specific conditions. Additionally, future 

research could focus on establishing the optimality of the 

algorithm's path planning through mathematical analysis and 

comparisons with existing algorithms. Mathematical models 

could be developed to better understand the algorithm's 

resource allocation strategies, and formal methods could be 

employed to validate its adaptability in more complex and 

dynamic environments. Lastly, addressing sensor noise and 

uncertainty through mathematical modeling could further 

enhance the algorithm's robustness in real-world scenarios. 

These potential areas for formal analysis and mathematical 

research offer opportunities to bolster the algorithm's 

theoretical foundations, validating our claims and providing 

a more comprehensive understanding of its performance and 

limitations. 
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