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Abstract—This research investigates the impact of model 

simplification on the dynamic performance of an ABB IRB-140 

six-jointed industrial robotic arm, concentrating on torque 

prediction and energy consumption. The entire mathematical 

model of forward, reverse, differential kinematics, and dynamic 

model proposed based on the technical specifications of the arm, 

and to obtain the center of the mass and inertia matrices, which 

are essential components of the dynamic model, Utilizing 

Solidworks, we developed three CAD/CAM models 

representing the manipulator with varying detail levels, such as 

simplified, semi-detailed, and detailed. Our findings indicate 

minor differences in the model's torque and energy 

consumption graphs. The semi-detailed model consumed the 

most energy, except for joint 1, with the detailed model showing 

a 0.53% reduction and the simplified model a 6.8% reduction in 

energy consumption. Despite these variations, all models proved 

effective in predicting the robot's performance during a 

standard 30-second task, demonstrating their adequacy for 

various industrial applications. This research highlights the 

balance between computational efficiency and accuracy in 

model selection. While the detailed model offers the highest 

precision, it demands more computational resources, which is 

suitable for high-precision tasks. In discrepancy, simplified, less 

precise models offer computational efficiency, making them 

adequate for specific scenarios. Our study provides critical 

insights into selecting dynamic models in industrial robotics. It 

guides the optimization of performance and energy efficiency 

based on the required task precision and available 

computational resources. This comprehensive comparison of 

dynamic models underscores their applicability and 

effectiveness in diverse industrial settings. 

Keywords—Industrial Robot Manipulators; Computer-Aided 

Design (CAD); D-H Representation; Dynamic Model and 

Simplifications; Energy Consumption; Computational Efficiency 

in Robotic; Model Accuracy in Robotics; Precision Engineering 

in Robotics. 

I. INTRODUCTION 

In recent years, considerable attention has been dedicated 

to researching robotic arm control within the broad domain 

of industrial robotics. This focus has notably enhanced the 

performance and applicability of autonomous systems in 

controlling joint movements [1]. Robotic arm control 

methods are various, each owning particular advantages and 

challenges. Primarily, these strategies are anchored in 

dynamic models, where variables are represented as torque or 

forces, depending on the joint's character, articulated or 

prismatic. Unlike robust controllers, which can adjust 

unconsidered errors in the dynamic model [2][3], precise 

controllers are intimately dependent on the accuracy of the 

dynamic model [4][5] and the impact of proper and 

appropriate models on control strategy. 

The challenge of dynamic modeling in robotics is well-

documented, with studies highlighting its complexity [6]-

[12]. Two fundamental methods can provide model robot 

dynamics, the Newton–Euler formulation and the Euler–

Lagrange formulation. The Newton–Euler formulation 

enumerates each term separately, providing a direct way to 

calculate forces and torques in the robot's joints and links. On 

the other hand, the Euler–Lagrange formulation, which is 

based on the energy properties of mechanical systems, 

computes motion equations by balancing the kinetic and 

potential energies of the system. This approach requires 

detailed knowledge of each robot link's inertia and center of 

mass, a complex but crucial aspect for accurate dynamic 

modeling [13]. The latest necessitates detailed knowledge of 

each robot link's inertia and center of mass, a requirement 

often met through model parameter identification [14]-[22] 

or approximation methods [23]-[31]. 

However, these approaches, whether through 

measurement inaccuracies or oversimplifications, introduce 

errors. Understanding these complexities is not just an 

academic exercise but essential in the real world. This study's 

insights are particularly relevant in advanced industrial 

automation, where precision and efficiency in robotic arm 

control are paramount. Our work aims to inform complex 

manufacturing and automation environments more 

effectively and efficiently by exploring the trade-offs 

between model simplicity and accuracy. To clarify the impact 

of these modeling techniques, this study compares three 

dynamic models of an articulated robotic arm developed 

using CAD models in Solidworks. The first model, highly 

detailed, closely emulates the actual robot design. The 

second, an approximate model, utilizes parallelepipeds with 

specific density choices to mirror link masses. The third, a 

simplified model, treats links as rods, a prevalent approach in 

literature for its ease [32]-[39]. These models are evaluated 

as torque and energy consumption predictors to assess the 

implications of model simplifications on these crucial factors. 

The accuracy of a dynamic model depends on the precise 

identification of the mass center and inertia matrices. 

Detailed dimensional specifications and scientific methods 
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such as CAD modeling, Experimental Modal Analysis, and 

Inertia Measurement Units are some methods to obtain this 

required data in the mechanical parts. CAD modeling 

presents detailed dimensional and mass distribution data, 

while Experimental Modal Analysis and Inertia 

Measurement Units directly measure inertia characteristics. 

This research primarily aims to investigate the effects of 

simplifications in integrating mass properties and then the 

impacts of the level of simplification on the performance of 

the dynamic models. Such simplifications, aimed at reducing 

computational demands, can impact the model's accuracy. 

The study seeks a balance between computational efficiency 

and precision, which is required in robotics, where exact 

movements and energy efficiency are critical. 

Recent literature has focused on innovative methods and 

considerations for determining mass properties, such as the 

center of mass and inertia matrices. Woolfrey and Liu 

explored the use of virtual components in robotic arms, 

aiming to optimize control by adjusting virtual mass and 

inertia matrixes [40]. Zhang et al. integrated neural networks 

for PD control of manipulators, emphasizing gravity and 

inertia compensation [41]. Habibi et al. developed a dynamic 

model for soft robotics, considering physical characteristics 

like gravity and inertia [42]. Cen and Singh addressed the 

impact of payloads on system mass and inertia in mobile 

robots [43]. Fu et al. presented a Lie theory-based 

methodology for dynamic parameter identification in serial 

manipulators, enhancing the accuracy of inertia tensor and 

mass property estimations [44]. Le Cleac'h et al. combined 

differentiable physics with neural networks to simulate object 

motion and estimate dynamic properties [45]. Xu et al. 

examined the dynamic coupling in mobile manipulators, 

focusing on the robotic arm's center of mass [46]. Wüest, 

Kumar, and Loianno proposed an online estimation method 

for crucial dynamic properties of aerial vehicles [47]. Fang et 

al. developed a grasp perception method incorporating the 

object's center-of-mass awareness [48]. Daniel and 

Soloniaina's work on robot modeling for reinforcement 

learning control emphasized the computation of inertia 

tensors [49]. Hill's research on bipedal robots highlighted the 

use of arms in disturbance rejection, considering the inertia 

matrix of each link [50]. This study aims to bridge the gap in 

understanding the implications of model complexity on 

robotic arm dynamic models, a subject of growing relevance 

in the context of increasingly refined industrial automation 

demands, and indicate a trend toward merging advanced 

computational methods and control theories in dynamic 

modeling. However, there still needs to be more in applying 

these methodologies to more complex robotic systems and 

varying dynamic environments. 

Our findings inform industrial robotic system designs, 

potentially leading to more efficient and accurate control 

strategies in diverse manufacturing environments. Future 

research could focus on overcoming these gaps, employing 

more efficient intelligent methods for parameter 

identification of the robot arm's dynamic models based on 

proper dynamic models, such as quantum-inspired 

calculations, to enhance the efficiency and accuracy of 

dynamic modeling in robotics. Based on this, the following 

sections detail the comparative analysis methodology used to 

assess these dynamic models. This approach provides a 

comprehensive understanding of the trade-offs involved in 

model simplification and its effects on robotic arm control 

and efficiency. The primary contributions of this research are 

two-fold: proposing various detailed levels of the robot's 

dynamic model and providing a nuanced understanding of 

how the level of simplification in dynamic models impacts 

the performance and accuracy of robotic applications. 

II. ROBOTIC ARM PRESENTATION 

Fig. 1 shows the ABB IRB 140 (M2004) robot considered 

in this study. This robot's six-axis articulated structure is one 

of the most widely used in many industrial fields. 

According to the ABB technical documentation [51], this 

industrial robot can be mounted on the floor or a wall at any 

angle or inverted for various working ranges. It is primarily 

used for arc welding, assembly, cleaning/spraying, machine 

tending, material handling, packing, and deburring. The robot 

weighs about 98 kg with an end effector weighing up to 5 kg, 

including a payload with a reach of about 810 mm that can be 

attached to its mounting flange. Up to 1.5 kg of equipment 

can be mounted on the robot's upper arm. Its joint limits allow 

ample functional workspace duty, as summarized in Table I 

[51]. 

  

Fig. 1. The ABB IRB 140 robot located in the UQTR automation laboratory 

TABLE I.  JOINT LIMITS OF THE ABB IRB 140 ROBOT 

Joints Type Limits (°) 

1 R +180 to -180 

2 R +110 to -90 

3 R +50 to -230 

4 R +200 to -200 

5 R +120 to -120 

6 R +400 to -400 

R stands for rotational or revolute. 

The robotic manipulator includes an IRC5 controller 

[52][53], a multi-robot controller with PC tool support that 

optimises robot performance for short cycle times and precise 

movements, and RobotWare (Robot Studio), which allows 

ABB robot programming on a workstation without shutting 

down production [54][55]. A program can be built on the 

ABB Virtual Controller, which is an exact copy of the 

software that runs robots in production. Robot Studio allows 

highly realistic simulations to be performed using simple 

robot programs and configuration files identical to those used 

in real-world applications [55][56]. 
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In this study, the ABB IRB 140 robot was employed in its 

standard configuration, according to the manufacturer's 

specifications. No modifications or customizations were 

made to the robot's structure or system. This standardization 

ensures that our research results and findings are directly 

applicable to the typical performance characteristics of the 

ABB IRB 140 as it is commonly used in industrial settings. It 

also provides a baseline for comparing the robot's efficiency 

and dynamic behaviours under standard operating conditions. 

III. ROBOTIC ARM MODELS 

The systematic analysis of the ABB IRB-140 robotic arm, 

as conducted at the UQTR Automation Laboratory, began 

with the input of joint space data to generate the arm's 

trajectory, underpinning the subsequent development of 

kinematic models. Using Denavit-Hartenberg parameters, 

forward kinematics were meticulously formulated to identify 

the end-effector's positions and orientations. The motions of 

the robot's joints were then articulated through fifth-order 

polynomial equations and homogeneous transformation 

matrices, offering a complete representation of the robot's 

spatial configurations. 

These kinematic constructs initial input as position, 

velocity, and acceleration to perform the dynamic modelling 

phase, which employed the Euler-Lagrange formalism to 

delve into the robot's dynamics, mainly focusing on joint 

torques and energy consumptions. Such dynamics were 

further refined by integrating inertia data and mass center 

positions derived from Solidworks's detailed CAD/CAM 

modelling process. This foundational work transitioned 

seamlessly into the computer-aided optimization (CAO) 

phase, where three different robotic arm models were 

conceptualized, each varying in complexity from a simplified 

abstraction to a detailed simulation containing a fidelity 

spectrum. 

The completion of kinematic and dynamic modelling 

facilitated an integrated analysis, enabling the precise 

measurement of energy demands based on the torque profiles 

of each joint. The dynamic models' outputs, which included 

torque and energy parameters, were instrumental in 

evaluating the robotic arm's efficiency and the impact of 

varying model detail levels on system performance. 

This comprehensive approach, graphically synthesized in 

the flowchart Fig. 2, provided a clear flow from the initial 

data input to the final output analysis. This integrative 

methodology highlighted the robotic system's efficacy and 

illuminated the delicate interplay between model detail and 

the robot's operational efficiency. 

A. Kinematics of the Robot 

The forward kinematics model aims to determine the 

position and orientation of the robot’s end-effector as a 

function of joint angle and displacement relative to the base 

frame or other reference [57]-[61]. To achieve this 

mathematically, a global coordinate frame must be assigned 

to the base frame and a local reference frame must be 

assigned to each joint [62]-[66]. Homogeneous 

transformation matrices of size 4×4 is then computed for the 

robot joint axes using a formalism such as D-H (Denavit–

Hartenberg) to define and interpret the robot’s spatial 

geometry and end-effector location within a fixed reference 

system [67]-[70]. 

The kinematic function thus maintains a fixed 

relationship between the two successive joint axes it supports. 

This relationship can be defined using two parameters: the 

link length a and link twist α. The link offset d and joint angle 

θ are used to describe the nature of the connection between 

adjacent links [28]. Fig. 3 shows the D-H parameter and link 

assignments for a rotational joint. 

 

Fig. 2. The flowchart for the methodological steps 

 

Fig. 3. D-H parameters and link assignments for a rotational joint 

The parameters for link i in Figure 3 are defined as follows: 

 

αi - 1 Twist angle between joint axes zi and zi-1 measured 

about xi-1. 

ai - 1 Distance between joint axes zi  and zi - 1 measured along 

the standard normal. 

θi Joint angle between joint axes xi  and zi - 1 measured about 

zi . 

di Link offset between axes xi and xi - 1 measured along zi . 

The four transformations between the two axes can thus be 

defined as follows: 

Ti
i-1 =Rot(xi - 1,αi - 1)Trans(xi - 1,ai - 1)Rot(zi ,θi )Trans(0,0,di) (1) 

Where Ti
i-1  is the homogeneous transformation matrix, Rot 

(xi-1, αi-1) is the rotation around an axis xi-1 by an angle αi-1 , 

Trans (xi-1,ai-1) is the transfer along axis xi-1 to the value ai-1, 
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Rot (zi, θi) is the rotation around axis zi by an angle θi, and 

Trans (0, 0, di) is the transfer along axis 𝑧 to the value 𝑑. 

Therefore, the following homogeneous transformation matrix 

can be obtained: 

Ti
i-1 = (

Cθ
I -S𝐼 0

SI
i Cαi-1 CI -Sαi-1

Sθ
i
Sαi-1

0

Cθ
i Sαi-1

0

Cαi-1

0

     

a
i-1

-diSαi-1

diCαi-1

1

) (2) 

Where C and S denote the cosine and sine of an angle, 

respectively. 

Fig. 4 shows the frame assignments, and Table II lists the 

D-H parameters of the ABB IRB 140 industrial robot, with 

the global coordinate system shown below [71]: 

 

(a) 

 

(b) 

Fig. 4. ABB IRB 140 frame assignments: (a) Frames represented on the real 

robot, (b) Frames symbolised using DH representation 

TABLE II.  DENAVIT–HARTENBERG PARAMETERS FOR THE ABB IRB 140 

ROBOTIC ARM 

Link a(mm) α (°) d (mm) θ (˚) 

1 70 -90 d1= 352 q
1
 

2 -360 0 0 q
2
+90 

3 0 -90 0 q
3
 

4 0 90 d4 = 380 q
4
 

5 0 -90 0 q
5
 

6 0 0 d6 = 65 q
6
 

 

With the D-H parameters, the individual homogeneous 

transformation matrices for each link can be obtained by 

substituting the link parameters into Equation (2). The 

position and orientation are achieved by applying the forward 

kinematic chain in the global frame, and the pose matrix of 

the end-effector relative to its base frame is obtained as 

follows: 

T6
0 = T1

0 .  T2
1 .  T.  T. T.  T6

5

 5

4

4

3

3

2

= (

r11 r12 r13

r21 r22 r23

r31

0

r32

0

r33

0

    

X

Y
Z

1

) (3) 

Such that: 

r11=-S6(S4C1C
2'3

+C4S1)-C6(C5(S1S4-C4C1C
2'3

)+S5C1C
2'3

) 

r12=S6(C5(S1S4-C4C1C
2'3

)+S5C1C
2'3

)-C6(S4C1C
2'3

+C4S1) 

r13=C5C1S
2'3

-S5(S1S4-C4C1C
2'3

) 

r21=C6(C5(C4S1C
2'3

+C1S4)-S5S1S
2'3

)-S6(S4S1C
2'3

-C1C4) 

r22=-S6(C5(C4S1C
2'3

+C1S4)-S5S1S
2'3

)-C6(S4S1C
2'3

-C1C4) 

r23=C5S1S
2'3

+S5(C4S1C
2'3

+C1S4) 

r31=-C6(S5C
2'3

+C4C5S
2'3

)+S4S6S
2'3

 

r32=C6S4S
2'3

+S6(S5C
2'3

+C4C5S
2'3

) 

r33=C5C
2'3

-C4S5S
2'3

 

Ci and Si denote the cosine and sine of the joint angle 𝑞𝑖, Cij 

and Sij denote the cosine and sine of 𝑞𝑖 + 𝑞𝑗 Notation 2' refers 

to q
2
' =q

2
+π/2 

The X, Y, and Z position coordinates of the IRB140 robot 

relative to the base frame are computed as follows: 

X=C1a1+d6(C5C1S
2'3

-S5(S1S4-C4C1C
2'3

))+d4C1S
2'3

-C1C2a2 

Y=S1a1+d6(C5S1S
2'3

-S5(C4S1C
2'3

+C1S4))+d4S1S
2'3

-C2S1a2 

Z=d1+d4C
2'3

+a
2
S2+d6(C5C

2'3
-C4S5S

2'3
) 

B. Differential Kinematics of the Robot 

Differential kinematics define the relationship between 

the joints’ angular velocities and the corresponding end-

effector linear and angular velocities. The study of velocities 

and static forces yields the Jacobian matrix of the 

manipulator, which is an essential tool for analysing and 

controlling robotic motion, identifying singularities and 

redundancy, determining inverse kinematic equations, and 

describing the velocity and force manipulability ellipsoids 

[72]-[74]. 

The Jacobian matrix, a basis in the kinematic analysis of 

robotics, is critical for relating joint velocities with the end-

effector, a key factor in determining the robot's performance 

and manoeuvrability. Specifically tailored to the unique joint 

configurations of each robot, the Jacobian matrix 

significantly enhances motion planning and control 

capabilities, which are crucial for executing precision tasks 

with the robotic arm. It addresses singularities and 

redundancies, enabling the robot's operational efficiency and 

safety. Our research employs the Jacobian matrix for smooth 

and singularity-free motion planning, a necessary factor for 

ensuring reliable and practical outcomes in our studies. 

Utilizing MATLAB simulations, we have demonstrated the 
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Jacobian's considerable impact in practical settings, 

highlighting notable improvements in accuracy and speed. 

A Jacobian matrix is a multidimensional form of the 

derivative. It can be of any dimension (including non-square), 

depending on the number of joints. The number of rows in a 

Jacobian matrix is equal to the number of degrees of freedom 

in Cartesian space; for example, three rows would be present 

if the robot’s position only was considered, whereas there 

would be six if both its position and orientation were 

considered. The number of columns in the matrix 

corresponds to the number of joints comprising the 

manipulator. 

Considering the end-effector linear velocity vector 𝑝̇𝑒, the 

angular velocity vector ωe, and the joint velocity vector q̇, Jp 

is the (3×n) matrix that links the linear velocity vector to the 

joint speed vector. Jo is the (3×n) matrix that links the angular 

velocity vector to the joint speed vector as expressed in 

Equations (4) and (5) or in the compact form expressed in 

Equation (6) [24][75]. 

Ṗe=Jp(q)q̇ (4) 

ωe=Jo(q)q̇ (5) 

Ve= (
Ṗe

ωe

) =J(q)q̇ (6) 

where Ve is the end-effector velocity and J= (
Jp

Jo

) is the 

Jacobian matrix. 

If the relationship between the joint space variable and the 

orientation space variable is highly nonlinear, the inverse 

kinematics solution will be redundant and closed form or 

even non-existent. The inverse kinematics problem initially 

involves a linear mapping of the joint velocity space and the 

operational velocity space using differential equations. 

Depending on the desired end effector position and 

orientation, the corresponding joint velocity can be obtained 

via simple inversion of the Jacobian matrix, which therefore 

must be invertible, i.e., J is square and its determinant is non-

zero. The inverse differential kinematics model can then be 

computed using Equation (7). 

q̇=J-1Ve (7) 

Where J-1 is the inverse of the Jacobian matrix. 

 

As noted above, the Jacobian matrix can be of any 

dimension, and is not always square or invertible; in this 

instance, the pseudo-inverse form of the generalized 

inversion can be used [24]. 

C. Dynamic Model 

A dynamic model allows the expression of the robot’s 

function in terms of joint acceleration forces and torque. The 

most widely used method to determine this model is the 

Euler–Lagrange approach. The model of an n-jointed robotic 

arm can be expressed by Equation (8) [24]. 

M.q ̈ + V + G = τ (8) 

Where 𝑞̈ is the joint acceleration vector, M is the inertia 

matrix, V is the Coriolis vector, G is the gravitational vector, 

and τ is the force and torque vector. The inertial data and mass 

centre position were obtained using SolidWorks 3D CAD 

modelling software for the detailed, semi-detailed 

(rectangular), and simplified models in this study. Parameters 

such as the geometry and density of each link (assumed to be 

uniform in all models) are considered, in addition to 

significant values related to mass and other physical 

properties such as the mass centre position and inertia 

matrices, which are represented in their respective reference 

frames for the three proximal links. A dynamic model's 

precision relies on accurately estimating the mass center and 

inertia matrices. Straightforward dimensional specifications 

and scientific techniques such as CAD modeling, 

Experimental Modal Analysis, and Inertia Measurement 

Units are employed to obtain this required data in 

engineering. CAD modelling presents detailed dimensional 

and mass distribution data, while Experimental Modal 

Analysis and Inertia Measurement Units directly measure 

inertia characteristics. This research primarily aims to 

examine the influences of simplifications in obtaining mass 

properties and then the effects of the level of simplification 

on the performance of the dynamic models. Such 

simplifications, desired to reduce computational demands, 

can affect the model's precision. The study seeks a balance 

between computational efficiency and precision, which is 

required in robotics, where exact movements and energy 

efficiency are critical. 

Assuming a constant and homogeneous density, the 

comparative mass of each link can be estimated. In this study, 

the volume of each link was determined using SolidWorks 

software. The relationship of an element's volume to the 

robot's total volume is multiplied by the total mass to give an 

estimated link mass value. 

The following matrices Ii correspond to the inertia tensors 

of the proximal links over their mass centres and are 

expressed relative to the base reference frame [24]. 

I1=[ R1
0 ] I1

1 +[ R1
0 ]

T
 (9) 

I2=[ R1
0 R2

1 ] I2
2 +[ R1

0 R2
1 ]

T
 (10) 

I3= [ R1
0 R R3

2

2

1
] I3

3 + [ R1
0 R R3

2

2

1
]

T

 (11) 

I1
1 , I2

2  and I3
3  are the inertia matrices. 

In the dynamic analysis of this manipulator, joint friction 

was not considered. For the tracking of a path, the vector of 

generalized forces was considered as shown below: 

∑ Mijq̈+Vi+Gi=τi
n
j=1 ,   i=1,2,…,   (12) 

Mij represents the inertial forces, Vi represents the centrifugal 

and Coriolis forces, and Gi indicates the gravitational forces. 

This equation can also be used to determine the joints’ 

acceleration values, as follows: 

q̈=M-1(Q-V-G)  (13) 

M= ∑ (Jvi
T miJvi+Jωi

T IiJωi)
n
i=1   (14) 

Vi= ∑ ∑ (
∂Mij

∂qk

-
1

2

∂Mjk

∂qi

)n
i=1

n
j=1 q̇

j
q̇

k
  (15) 
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Gi=- ∑ mj
n
j=1 gTJvj

T   (16) 

The inertia matrix of the manipulator is symmetric and 

positive definite and therefore always invertible [24]. 

D. CAD Design of the Robot 

The decision to create three different ABB IRB 140 arm 

industrial robot models in SolidWorks is based on the need 

for a comprehensive understanding of kinematic and dynamic 

behaviour. The accurate, detailed model in Fig. 5 is essential 

for simulations that require high fidelity and detailed 

analysis. This model duplicates the robot's structure with 

maximum precision, making it ideal for investigating 

complex dynamics and interactions within the actual robot's 

mechanism. In contrast, the less detailed rectangular model, 

such as the parallelepiped model in Fig. 6, balances detail and 

computational efficiency. Its simplified geometric 

representation suits quicker simulations where extreme detail 

is not required. This model serves as a midpoint, validating 

results from the detailed model and offering a more efficient 

alternative for less demanding simulations. Lastly, the 

simplified model in Fig. 7 reduces the robot to its 

fundamental components. This model benefits high-level 

analyses and educational purposes, focusing on 

understanding the robot's basic mechanics rather than its 

detailed construction. Simplification might not accurately 

represent the varying density and weight distribution in 

different parts of the robot, potentially affecting the precision 

of dynamic simulations, such as calculating torque and 

evaluating the energy. 

During the CAD design process, a fundamental 

assumption is the uniform and constant density across all 

parts and links of the robot. While this simplifies the 

computational characteristic, it is a potential source of 

inaccuracy, as it needs to account for the material variations 

in the actual robot. Another assumption involves the mass and 

inertia characteristics provided by SolidWorks, based on the 

model's geometry and assumed material properties. These 

estimations are required for dynamic analysis but may not 

perfectly match the real-world robot due to factors like 

manufacturing tolerances and material inconsistencies. 

The assumptions made during the CAD design process 

are practical but can significantly influence the accuracy of 

the models. While the uniform density assumption simplifies 

the modelling, it might lead to simulation discrepancies, 

particularly in dynamic behaviour. Likewise, although 

functional for initial analysis, the derived inertia 

characteristics require improvement for more precise 

simulations. The details of each model and the results for the 

proximal links obtained from the Solidworks mass properties 

tool after modelling are summarised in Table III. 

E. Robot Performance Assessment 

To evaluate the accuracy of the three models’ predictions, 

we analysed the energy consumption by the three proximal 

joints and the robot’s total energy consumption over the same 

duration and path of movement. In the proposed modelling 

approach, the energy consumption of each joint at a specific 

time can be calculated from the joint torque and angular 

velocity using Equation (17). The robot’s integrated energy 

consumption is assumed to be the sum of the energy 

consumption values of all the joints. 

Ei= ∫ τi

tf

t0
(t).q

i
̇ (t) dt  (17) 

We employ a theoretical approach to evaluate the energy 

consumption of robotic arms. This approach centers on 

dynamic models that simulate each joint's torque τi and 

angular velocity q
i
̇  Detailed explanations of how these 

parameters are simulated are provided in the methodology 

section. The simulated values are then used in Equation (17) 

to calculate the energy consumption of each joint. Theoretical 

method offers a comprehensive analysis of energy 

consumption, avoiding the practical challenges and 

complexities associated with the installation and calibration 

of physical sensors on the robotic arm. 

Focusing on a theoretical and simulation-based approach 

contributes significantly to understanding energy dynamics 

in robotic arms, especially in scenarios where direct 

measurement is impractical or impossible. This approach also 

aligns with current trends in employing computational 

models to analyze complex system contributions to robotics 

fields. 

 

Fig. 5. Detailed SolidWorks model of the ABB IRB 140 robotic arm 

 

Fig. 6. Semi-detailed rectangular SolidWorks model of the ABB IRB 140 

robotic arm 
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Fig. 7. Simplified SolidWorks model of the ABB IRB 140 robotic arm 

TABLE III.  MASS PROPERTY RESULTS OF EACH MODEL CALCULATED 

USING SOLIDWORKS SOFTWARE 

Link 
parameter(u

nit) 

Detailed 

model 

Semi-

detailed 

model 

Simplified 

model 

1 

Weight (kg) 35 35 35 

Xc (mm) 277.87 17.87 0 

Yc 373.12 103.12 181.37 

Zc -199.03 -79.03 0 

Ixx (kg.m2) 6.5 1.5 1.1 

Ixy 1.1 0.1 0 

Ixz 3.05 0.05 0 

Iyy 2.02 0.002 0 

Iyz 5.07 0.07 0.1e-5 

Izz 1.4 0.04 1.1 

Weight (kg) 35 35 35 

2 

Weight (kg) 25 25 25 

Xc (mm) 218.29 178.29 0 

Yc 229.73 9.73 255.24 

Zc 112.43 72.43 0 

Ixx (kg.m2) 0.9 0.1 1.6 

Ixy -0.03 -0.03 0.1e-5 

Ixz 0.1 0.01 0 

Iyy 1.3 0.03 0 

Iyz -0.01 -0.01 0 

Izz 0.95 0.05 1.6 

Weight (kg) 25 25 25 

3 

Weight (kg) 18 18 18 

Xc (mm) -24.56 14.56 0 

Yc -219.9 -199.96 195.69 

Zc -25.86 -15.86 0 

Ixx(kg.m2) 2.5 1.5 0.6 

Ixy -0.001 -0.001 0.3e-5 

Ixz 0.09 0.09 0 

Iyy 2.7 0.7 0 

Iyz -0.8 -0.02 0 

Izz 0.5 0.2 0.6 

Weight (kg) 18 18 18 

IV. RESULTS AND DISCUSSION 

The dynamic performance of an ABB IRB-140 six-

jointed industrial robotic arm was considered in the present 

research, with a principle on the effect of model 

simplification on torque prediction and energy consumption. 

Our study extends and analyses three varying models of the 

robotic arm, simplified, semi-detailed, and detailed, using 

precise kinematics models, differential kinematics, and an 

advanced dynamic model based on the arm's technical 

specifications. The design of three levels of CAO design, 

facilitated by Solidworks, aimed to obtain the center of mass 

and inertia matrices, which are crucial for understanding the 

dynamic behaviour of the manipulator. Through this analysis, 

we aim to unravel the interplay between model complexity 

and its importance on computational efficiency and accuracy, 

eventually providing a comprehensive understanding of 

model selection in industrial robotics. This research, 

therefore, not only investigates the performance of these 

models in a standard functional context but also seeks to 

inform the optimization of robotic systems, balancing 

precision, energy consumption, and computational demands. 

Based on the mass and inertia characteristics of the robot 

and the calculated end-effector position, orientation, velocity, 

and acceleration and the torque of each joint in the three 

proximal links (i.e., the principal determinants of the end-

effector position), the dynamic kinematic model of the robot 

developed in SolidWorks was examined in MATLAB in full 

detail over a 30-second interval without a payload at the 

effector end of the robotic arm. The forward and robot 

kinematic models were derived from the D-H parameters, and 

a procedure was developed to solve the inverse kinematics. 

Trajectory planning was based on a fifth-order polynomial. 

The values in Table I were used to cover all possible angles 

of each of the robot’s rotating joints. Fig. 8 displays the 

changes in angle over time for the three proximal links of the 

ABB IRB-140 robotic arm, highlighting the dynamic 

positioning of these joints during the task operation. The 

corresponding velocity and acceleration diagrams are shown 

in Fig. 9 and Fig. 10. Fig. 9 shows the velocity variations of 

the robotic arm's proximal joints, highlighting the speed 

dynamics during the arm's movements. Fig. 10 depicts the 

acceleration patterns of the proximal joints, capturing the 

robotic arm's dynamic response during its operating path. 

 

Fig. 8. IRB 140 robot proximal joint angle variations 

 

Fig. 9. IRB 140 robot proximal joint angle variations 
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Fig. 10. IRB 140 robot proximal joint angle variations 

The torque variations for the position and path 

corresponding to a single, uninterrupted time interval are 

shown in Fig. 11 to Fig. 13. These figures show the torque 

variations for the robotic arm's first three proximal joints, 

presenting insights into the mechanical loads experienced 

during its operation. 

As shown, the results obtained for all three joints are 

consistent and appear relatively close for the semi-detailed 

and simplified models. The detailed model tends to exhibit 

higher torque at most time points in joint 1, for a short period 

in joint 2, and throughout almost all of the modelled period 

in joint 3. Notably, the semi-detailed and simplified models 

both track the detailed model quite closely for at least some 

of the time; however, this behaviour varies between different 

joints. The results also confirm that joint 2 experienced much 

more torque than the other joints, which likely occurs because 

this joint provides most of the reaching capability of the 

robotic arm. 

In addition to its weight and gravitational force, the link 

also bears a share of the weight and gravitational force of the 

third link. As the robot reaches further from its centre of 

gravity, the mass of the remaining links creates additional 

torque. The observed bends in the torque curves result from 

changes in the direction of the arm movement based on the 

defined task path. In addition, these changes in direction in 

the defined path cause the torque values of all three joints be 

equal at various points during the simulation. 

Due to the choice of a fifth-order polynomial trajectory, 

the joint torque curves for all three models exhibit little or no 

noise. The torque starts at zero for joint 1, rises quickly, and 

then drops smoothly to zero. For joints 2 and 3, the torque 

starts at non-zero values, drops, rises to new values, and then 

ends at different values at the end of the path. These profiles 

arise due to the positions and movements against gravity 

encountered by the arm over its defined trajectory. 

In the case of joints 1 and 2, the semi-detailed and 

simplified models show higher torque than the detailed model 

during some periods, whereas the opposite is generally 

observed for joint 3. In addition, the simplified model 

exhibits slightly less torque than the semi-detailed model at 

the beginning and end of the simulation and lags the semi-

detailed dynamics throughout the path. Since the link weight 

and density are identical in all the models, these differences 

in torque must therefore reflect differences in the centre of 

mass and inertia tensors. Differences in the torque at joints 1 

and 2 likely arise due to the weight and torque imposed by 

other links. The gravitational force of the other links affects 

the first and second joints, and only the third joint carries its 

gravitational force without much additional torque. 

Based on the frame assignments defined for the robotic 

arm, link 1 does not exert a gravitational force and undergoes 

joint acceleration only; thus, the torque is at its lowest value 

in this link. The second and third links exert gravitational 

force and are subject to angular acceleration in the joints. The 

combination of these two acceleration vectors defines the 

overall acceleration of these two links. 

When the joint acceleration falls to zero, most of the 

torque is expected to be gravitational, i.e., an opposing force 

resisting the movement of the robotic arm. 

 

Fig. 11. Torque variations for the first proximal joint of the IRB 140 robotic arm 
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Fig. 12. Torque variations for the second proximal joint of the IRB 140 robotic arm 

 

Fig. 13. Torque variations for the third proximal joint of the IRB 140 robotic arm

One of the main aims of this study is to examine how well 

the different dynamic models predict the energy consumption 

of each rotational joint and the robot overall, as determined 

by Equation (17). These results are shown in Fig. 14 (joints) 

and Fig. 15 (robot). Fig. 14 compares the energy consumption 

of each joint in the robotic arm across the three model 

variations, highlighting the differences in energy efficiency. 

Fig. 15 illustrates the total energy consumption of the robotic 

arm over a standard 30-second task, emphasizing each 

model's energy efficiency. 

The energy consumption patterns are broadly similar in 

form in all three joints and models. Joint 2, which has the 

highest torque, consumes the most energy. During the 30-

second simulation in this study, the energy consumption of 

the joints and the whole robotic arm increased, with the most 

rapid energy consumption increase recorded in the middle of 

the simulation. The energy consumption increases reflect 

changes in gravitational forces on the links as they move 

away from their initial centres of mass. Joint 2 and the arm 

show strikingly similar energy consumption patterns in all 

three models, and the semi-detailed and simplified models for 

joint 2 track each other closely. For the whole arm, the 

detailed and semi-detailed models are very similar and thus 

may reflect the influence of each model's mass properties and 

shape characteristics. The semi-detailed model yields the 

highest energy consumption in both cases, whereas the 

simplified model gives the lowest values, except for joint 1. 

Relative to the semi-detailed model, the overall energy 

consumption difference is 0.53% less in the detailed model 

and 6.8% less in the simplified model. Based on these results, 

the three dynamic models tested in this study are all worthy 

of confidence for predicting energy consumption by 

articulated robotic arms. 

It is necessary to verify the underlying physical and 

theoretical reasons for response to the observed torque and 

energy consumption variations across the detailed, semi-

detailed, and simplified. The intricacy of each model plays a 

key role in its predictive accuracy. The detailed model, 

capturing more complex dynamics, including acceptable joint 

interactions and precise physical properties, delivers more 
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accurate torque predictions and energy consumption profiles. 

In contrast, the semi-detailed and simplified models, with 

inevitable oversimplifications in dynamics and geometry, 

may need to capture these intricate details more effectively, 

leading to noticeable discrepancies. Specifically, the 

variation in the center of mass and inertia tensors across 

models significantly impacts torque requirements. The 

detailed model's precise calculations offer a closer 

representation of real-world dynamics, whereas the 

simplified models, with their approximations, might either 

underestimate or overestimate these forces. 

 
(a) 

 
(b) 

 
(c) 

Fig. 14. Energy variations for the third proximal joint of the IRB 140 robotic 

arm 

 

Fig. 15. Energy variations for the third proximal joint of the IRB 140 robotic 

arm 

Moreover, the detailed model more accurately shows the 

influence of link weight and gravitational forces. This factor 

becomes especially essential in joints primarily responsible 

for the arm's movement, as their torque requirements vary 

substantially with the arm's position relative to its center of 

gravity. Finally, a comparative analysis of energy 

consumption highlights how each model's complexity 

influences its energy efficiency. The detailed model provides 

a fine sense of energy dynamics, particularly in joints with 

higher energy demands. These insights are invaluable for 

optimizing robotic systems, where accuracy, computational 

efficiency, and energy conservation are paramount. 

Therefore, understanding these differences in model 

complexity and their impact on torque and energy 

consumption is crucial for informed decision-making in the 

design and optimization of industrial robotic systems. 

In comparing our findings with related literature, we note 

several parallels and distinctions in the dynamics of robotic 

arm manipulators. Earlier studies, such as those by Boiadjiev 

et al. [76] and Ding et al. [77], have highlighted the 

importance of model complexity in predicting torque and 

energy consumption in robotic arms. Our research develops 

these findings by providing an analysis of how different 

model simplification levels simplified, semi-detailed, and 

detailed impact these predictions. Our research aligns with 

Mahdavian et al. [78], meaning that more complex models 

predict higher torque requirements, particularly in joints with 

more intricate movement patterns. However, our study 

uniquely contributes by quantifying the energy consumption 

across these models, a factor that needs to be explored in 

previous research. The work by Fang et al. [79] on energy-

efficient hydraulic joints for mobile robotic manipulators and 

the operational dynamics of the OceanWATERS lander arm 

by Catanoso et al. [80] provide complementary perspectives 

to our findings on energy efficiency. This comparative 

analysis reaffirms the general directions documented in 

previous studies. It adds new dimensions to performance 

model complexity in industrial robotic arms, particularly in 

energy efficiency and dynamic performance. As our study 

highlights, balancing computational efficiency and accuracy 

in model selection is critical for optimizing performance 

based on the required task precision and available 

computational resources. Our findings provide a practical 
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attachment to previous work, confirming comprehended 

trends and offering new insights into the industrial robotic 

arm dynamics in the present prospect, where energy 

efficiency is increasingly prioritized. 

An existing knowledge gap is a balance between model 

accuracy and computational efficiency in industrial robotics 

by comparing various model complexities, enhancing the 

performance of robotic simulations. This research has 

significant practical applications, especially in optimizing 

energy use and robust design in industrial settings, potentially 

reducing costs and enhancing sustainability. We assumed 

uniform density across each link and ignored joint friction. 

While these assumptions simplify modeling, they overlook 

material distribution influences and friction's impact on 

energy and torque. Therefore, our findings might only 

partially reflect real-world complexities. Addressing these 

aspects in future research could enhance the model's accuracy 

and applicability in practical scenarios. Future research 

directions include exploring more precise or proving 

outcomes of the accurately designed models with advanced 

optimization algorithms like quantum-inspired particle 

swarms. Our findings highlight the significance of proper 

modelling in robotics, providing valuable guidance for 

professionals in optimizing performance and efficiency in 

industrial robotic systems. 

V. CONCLUSION 

In most industrial robotics studies, only one dynamic 

model is typically used, with comparisons between models 

being rare. In this study, we developed three models for the 

ABB IRB 140 industrial robotic manipulator arm, which has 

six degrees of freedom. These models, developed in 

SolidWorks, are detailed, semi-detailed, and simplified. We 

characterized the end-effector position and orientation by 

presenting kinematic models linked to a proposed elaborate 

dynamic model using mass and inertial data obtained from 

Solidworks's mass properties tool to calculate joint torque for 

the three proximal links. These links are crucial for the 

accuracy of the robotic arm's movements. We used the Spong 

formulation for forward and inverse differential kinematics 

[24]. The mathematical models of the robot were analyzed in 

detail in MATLAB. We derived the robot's forward 

kinematics from D-H parameters and executed a trajectory 

planning based on a fifth-order polynomial. 

Our key finding is that the links' dimensions and geometry 

significantly influence the mass center position and inertial 

matrix characteristics of the robot links, which impacts 

straightforward torque equations. Selecting the correct 

position for the center of mass and inertia tensor elements in 

dynamic models is essential. Interestingly, the simplified 

model, often used in classical computational methods, yields 

acceptable results. The accuracy of these results in reflecting 

the actual robot's behavior needs further validation. It is 

important to note that any model-derived data for mass 

properties will have an error percentage that must be 

considered in dynamic equations. 

MATLAB helps implement algorithms, estimate and 

validate models, and simulate system responses. MATLAB 

is required for its robust algorithmic capabilities, efficient 

data processing, and simulation tools in computational 

robotics. It excels in implementing complicated mathematical 

models, analyzing kinematic and dynamic data, and 

visualizing robotic behaviors, making it a valuable tool for 

research and development in this field. Computational time 

and efficiency for solving algebraic equations matter in 

robotics. A comparative study for three different models of 

the case study in the same operation system (OS) and 

hardware configuration indicates that the time for analyzing 

the dynamic model to calculate torque equation in the same 

trajectory for a detailed model was 83.2 percent, and semi-

detailed was 47.63 percent more than the simplified model. 

Another important finding is that all three robot models show 

similar total energy consumption over a movement path in a 

given time, which indicates that each model could be 

effective in various scenarios. In robotics, some calculations 

are complex, involving multiple points. Therefore, a 

simplified model version can enhance and optimize the 

calculation process and make significant contributions to 

execution time and efficiency, addressing key industrial 

robotics challenges like improving energy efficiency and 

sustainability in continuous operations, optimizing 

production processes for higher throughput in manufacturing 

while offering flexibility in robot deployment across various 

applications. These insights promise considerable 

improvements in diverse manufacturing environments. 

Industries can choose models based on specific needs: 

precision for aerospace, speed for manufacturing, and 

customization for unique applications, balancing robustness 

and computational resources. 

The developed model facilitates by assuming 

homogeneous density across each link and disregarding joint 

friction. This approach might only partially capture the real 

world, such as the effects of varied material distribution and 

friction on energy and torque. Future research addressing 

these factors could improve model precision and real-world 

relevance. Admitting these limitations, such as assuming 

uniform density across each robotic link and neglecting joint 

friction, can also lead to advanced control strategies, 

enhancing the accuracy and effectiveness of robotic arms in 

practical, complex environments. Introducing a control 

module and a robustness controller could further enhance the 

precision of the models, minimizing the impact of input 

errors. 

Future research could focus on refining these aspects, 

utilizing advanced optimization algorithms like quantum-

inspired particle swarms to identify more accurate and 

practical parameters for each model. Additionally, there is 

scope for assessing the torque requirements for various robot 

positions and operations and comparing energy consumption 

during different tasks. Quantum computing carries notable 

potential for enhancing the modeling of complicated systems 

like the dynamic models of robotic arms [71][81]-[83]. Its 

ability to process extensive data at exceptional speeds makes 

it ideal for tackling the intricate calculations involved in 

robotics [84]. By utilizing quantum-inspired algorithms, such 

as particle swarm optimization, researchers can have more 

accurate and efficient modeling, overcoming the limitations 

of classical computing methods. This approach could lead to 

breakthroughs in comprehending the behaviors of robotic 

systems, enabling more precise control and optimization. The 
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application of quantum computing in this domain promises to 

revolutionize how dynamic models are developed and 

applied, potentially leading to more sophisticated and capable 

robotic systems in various industrial applications [85]. 

A key takeaway from our study is the importance of detail 

in modeling so that detailed models offer higher accuracy, 

and simplified models significantly reduce computational 

time and enhance efficiency, which is critical for 

professionals in the field as it guides the selection of 

appropriate models based on the specific requirements of 

precision and efficiency in industrial robotic systems. 
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