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Abstract—This article presents the design, implementation 

and evaluation of an object classification and manipulation 

system in industrial environments by integrating artificial vision 

and a MELFA RV-2SDB robotic manipulator. The central 

problem lies in the need to achieve rapid and accurate 

classification of objects for palletizing, while ensuring the safety 

of operators. To address this challenge, a machine vision system 

based on Logitech C920 HD Pro cameras and force and torque 

sensors was used on the robotic manipulator. The methodology 

focused on the use of object and person detection algorithms, as 

well as direct and inverse kinematics to calculate adaptive 

movements of the manipulator. The experiments covered 

evaluation of the system's accuracy and efficiency under various 

lighting and environmental conditions, as well as testing people 

detection and geometric shape classification. The results 

indicated that the system allowed precise and efficient 

manipulation, adapting in real time to the position and 

characteristics of the detected objects. The conclusions 

highlighted the effectiveness of the system in improving 

productivity and safety in collaborative industrial 

environments, highlighting the importance of integrating 

cutting-edge technologies to address automation challenges in 

the industry. 

Keywords—Artificial Vision; MELFA RV-2SDB Robotic 

Manipulator; Object Classification; Active Safety, Inverse 

Kinematics. 

I. INTRODUCTION 

Manual object sorting in industry faces significant 

challenges in terms of efficiency and accuracy [1], [2]. 

Manual processes are inherently limited by the human ability 

to handle large volumes of products consistently and without 

errors [3], [4]. This limitation results in higher costs, longer 

production times, and variable product quality. The urgent 

need for effective and accurate automation solutions becomes 

evident in this context [5], [6], [7]. 

Numerous studies and success stories support the idea that 

automation has revolutionized entire industries, improving 

efficiency, reducing costs and raising product quality [8]. For 

example, in the automotive industry, the introduction of 

automation systems on the assembly line has enabled faster 

and more consistent production of vehicles [9], [10], [11], 

[12], while, in logistics, automated sorting and storage 

systems have greatly streamlined the management of 

inventory [13], [14], [15], [16]. 

Sorting objects presents specific challenges, such as the 

variability of shapes, sizes and materials, as well as the need 

to handle constantly changing products [17], [18]. Robotics 

offers a more effective solution than manual processes by 

addressing these challenges with precision and speed [19], 

[20], [21], [22]. The ability of robots to perform repetitive 

tasks with high precision makes them ideal for object 

classification in industrial environments [23], [24]. 

Computer vision and sensors play a crucial role in object 

classification by providing accurate information about the 

location, shape and characteristics of products [25], [26], 

[27]. While there are clear advantages to using these 

technologies, such as the ability to work in variable 

environments and speed in identifying objects, there are also 

potential limitations, such as the need for adequate lighting 

and dependence on the quality of the images captured [28], 

[29], [30], [31]. 

The article proposes a comprehensive solution that 

addresses these challenges by designing and implementing a 

sorting line [32], [33], assisted by the MELFA RV-2SDB 

robotic manipulator through mathematical modeling of the 

robotic manipulator to establish placement trajectories and 

proper positioning of objects, based on the references given 

by a computer vision algorithm using OpenCV (open-source 

computer vision) software [34], [35], [36]. Highlighting 

unique features such as reconfigurable trajectories, 

autonomous configuration capability and the integration of an 

active safety system, image capture is performed using a 

Logitech C920 HD Pro webcam. 

The MELFA RV-2SDB robotic manipulator, as indicated 

in Figure 1, is distinguished by its precision and versatility, 

making it the ideal choice for demanding sorting tasks [37], 

[38], [39], [40]. Its ability to dynamically adapt to different 

products and work environments contributes significantly to 

the overall effectiveness of the proposed classification system 

[41], [42], [43]. 

II. MATERIALS AND METHODS 

A. Robot Manipulator 

The MELFA RV-2SDB robotic manipulator was 

specifically selected for implementation on the automated 

sorting line due to its unique features and capabilities that 

made it suitable for this application [43], [44]. This 

manipulator is recognized for its high speed and 

multifunctionality with six degrees of freedom (DOF) as seen 

in Fig. 1, allowing optimal performance in industrial 

environments where fast and precise manipulation of objects 

is required. Additionally, its compact design and ability to 

operate with a maximum load of 3 kg and cycle times of 0.6 
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seconds make it ideal for handling objects of varying size and 

weight on the sorting line [45], [46], [47], [48]. 

One of the main reasons for choosing the MELFA RV-

2SDB robotic manipulator was its ability to integrate with 

machine vision systems and force and torque sensors, 

allowing for smooth and safe interaction with the work 

environment [49], [50], [51], [52]. This was critical for the 

implementation of the automated sorting line, where accurate 

object detection and the ability to avoid collisions with the 

environment and operators were required. 

  

Fig. 1. Mitsubishi MELFA RV-2SDB 

B. Mathematical Model 

The mathematical model of the MELFA RV-2SDB 

robotic arm is composed of the direct and inverse kinematics 

(IK) [44], [53]. The direct mathematical model is used to 

calculate the axis positions from the end point coordinates, 

and the inverse mathematical model is used to calculate the 

end point coordinates from the axis positions [54]. The robot 

has 6 degrees of freedom (DOF) and 6 links (𝑛), which means 

that it has 6 kinematic pairs of revolution of 𝐽𝑖 one degree of 

freedom as indicated in equation (1). The mathematical 

model of the robotic arm is important to establish placement 

trajectories and proper positioning of objects, based on the 

references given by the artificial vision algorithm [55], [56], 

[57], [58]. 

𝐷𝑂𝐹 = 6(𝑛 − 1) − 5𝐽1 − 4𝐽2 − 3𝐽3 − 2𝐽4 − 𝐽5 (1) 

The direct mathematical model of the robot is based on 

the Denavit-Hartenberg model, which is a model used to 

describe the kinematics of articulated robots [59]. This model 

plays an important role in the kinematics of the robotic arm 

by enabling precise trajectory planning and positioning of 

objects on the automated sorting line. It also provides a 

systematic description of the geometry and kinematics of the 

robot, facilitating the conversion between coordinate systems 

and allowing efficient programming of movements [60].  

In this model, the extent to which the last link of the arm 

will reach is determined from the movement of each joint 

based on the geometry of the robotic arm indicated in Fig. 2. 

Thus, the parameters (𝜃) angle of rotation along the “z” axis, 

(𝑑) distance along the “z” axis, (𝑎) distance along the “x” 

axis and (𝛼) angle of rotation along the “x” axis are defined; 

the magnitudes of the parameters obtained are shown in Table 

I. 

 

 

Fig. 2. Geometry of the MELFA RV-2SDB robotic arm 

TABLE I.  DENAVIT - HARTENBERG PARAMETER MAGNITUDES 

𝑱 𝜽[°] 𝒅[𝒎𝒎] 𝒂[𝒎𝒎] 𝛼[°] 
1 𝜃1 295 0 90 

2 𝜃2 + 90 0 230 0 

3 𝜃3 − 90 0 0 -90 

4 𝜃4 270 0 90 

5 𝜃5 0 0 -90 

6 𝜃6 70 0 0 
 

Then the homogeneous transformation matrices [𝐴𝑖
𝑖−1] 

are calculated for each joint as indicated in equation (2), 

considering that simple 𝜃2 and 𝜃3 are used, and at the end the 

90° values are subtracted. The final homogeneous 

transformation matrix is obtained through equation (3); 

subsequently the origin point [𝑃0] is related to the end point 

[𝑃] through equation (4), and finally equation (5) is obtained. 

[𝐴𝑖
𝑖−1] = [

𝑐𝑜𝑠 𝜃𝑖 −𝑐𝑜𝑠𝛼𝑖 𝑠𝑖𝑛 𝜃𝑖 𝑠𝑖𝑛 𝛼𝑖 𝑠𝑖𝑛 𝜃𝑖 𝑎𝑖 𝑐𝑜𝑠 𝜃𝑖
𝑠𝑖𝑛 𝜃𝑖 𝑐𝑜𝑠 𝛼𝑖 𝑐𝑜𝑠 𝜃𝑖 −𝑠𝑖𝑛 𝛼𝑖 𝑐𝑜𝑠 𝜃𝑖 𝑎𝑖 𝑠𝑖𝑛 𝜃𝑖
0 𝑠𝑖𝑛 𝛼𝑖 𝑐𝑜𝑠 𝛼𝑖 𝑑𝑖
0 0 0 1

] (2) 

[𝐴6
0] = [𝐴1

0][𝐴2
1][𝐴3

2][𝐴4
3][𝐴5

4][𝐴6
5] (3) 

[𝑃] = [𝐴6
0][𝑃0] → [

𝑋
𝑌
𝑍
1

] = [𝐴6
0] [

𝑋0
𝑌0
𝑍0
1

] → [

𝑋
𝑌
𝑍
1

] = [𝐴6
0] [

0
0
0
1

] (4) 

[𝐴6
0] = [

1 0 0 0
0 1 0 0
0 0 1 0.99
0 0 0 1

] (5) 

Within the inverse kinematics model, the iterative 

Newton-Raphson method plays a fundamental role in 

determining the joint movements necessary for precise 

positioning of the robotic manipulator [61], [62]. This 

approach allows the robot's joints to be calculated efficiently, 

ensuring effective and accurate operation of the automated 

classification system. 

The Newton-Raphson iterative method is used to find the 

solution of a system of nonlinear equations. This model 

determines the value that the joints must move to reach a 

point required by the application or user [63], [64]. The 

solutions to the IK problem consist of finding the values that 

the joint coordinates of the robot must adopt [𝑞] according to 

equation (6), so that its end is oriented and positioned 

according to a certain configuration. Solving this problem 

may lead to multiple solutions, there may be no solution, or 

it may lead to singularities. 
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[𝑞] = [𝑞1, 𝑞2, . . . , 𝑞𝑛] (6) 

The methods used to solve IK were the Geometric 

Method, which is suitable for few DOFs and is based on 

finding sufficient geometric relationships in which the final 

coordinates of the robot and its joint coordinates will 

intervene. In addition, Kinematic Decoupling was used, 

which is used in robots with 6 DOF [65], [66], and consists 

of the separation of orientation and position, given a desired 

final position and orientation, the position of the robot's wrist 

is established by calculating the values (𝑞1, 𝑞2, 𝑞3) and 

considered (𝑞4, 𝑞5, 𝑞6) independently. 

C. Implementation of Automated Sorting Line Subsystems 

In the operational stages, first the acquisition and 

processing of images was considered to obtain their 

characteristics, then the communication between the image 

processing software and the IK calculation software was 

established, and finally the positioning coordinates for the 

control of the robotic arm, resulting in autonomous control of 

the robotic arm by sending coordinates. The first subsystem 

is the hardware, where it was verified that all physical 

elements can be controlled. As identified in Fig. 3, there are 

the cameras, robotic arm controller, conveyor belt and 

computer. The second subsystem is the software, in Fig. 4 

you can see the flow of information from the acquisition of 

the image, then passing through the communication interface 

through the controller, until reaching the execution of the 

movement. The following paragraphs detail what is indicated 

in more depth. 

 

Fig. 3. Connection of physical components 

 

Fig. 4. Stages and flow of system information 

1) Artificial Vision Algorithm: In the classification and 

selection system of parts on the classification line, two 

Logitech C920 HD Pro cameras were used to acquire images 

of the moving parts [67], [68]. The first camera was used to 

identify the pieces by their geometric shape, while the second 

was used to detect people within the robot's work area. 

Images were processed in real time to send control commands 

to the robotic arm and were acquired at a resolution of 

1920×1080 pixels. The size of the image allowed us to 

determine the position of the moving parts in the “x” and “y” 

axes within a predefined workspace, as seen in Fig. 5, where 

the different geometric figures are identified. 

 

Fig. 5. Position of the pieces within the workspace 

The center point of the pieces in Fig. 5 were determined 

based on the acquired image and served as a reference for the 

robotic arm, which moved towards the center point of the 

piece to pick it up. The part sorting and selection system used 

a methodology called visual servo, which controls the joint 

movements of the robotic arm to position and pick up parts 

on a conveyor belt. 

The importance of the artificial vision algorithm lies in its 

ability to improve the overall functioning of the system by 

allowing automated manipulation of parts with high precision 

and speed. By identifying parts and their position quickly and 

accurately, the algorithm optimizes the performance of the 

robotic manipulator by ensuring it can perform sorting tasks 

efficiently and without errors. This results in greater 

productivity and quality in industrial sorting operations, as 

the system can process a greater volume of parts in less time 

and with greater precision, leading to a significant 

improvement in the efficiency of the sorting process. 

2) ID Qt (OpenCV) – Matlab Interaction: This 

interaction was used in the part sorting and selection system 

to send the coordinates necessary for the correct positioning 

of the robotic arm. ID Qt is a software development oriented 

framework that contains a compilation of libraries with pre-

built functions for different processes [67], [69], [70], [71]. 

In this case, the libraries “QTcpSocket” were used for local 

communication through sockets, “QTcpServer” to establish 

the TCP/IP communication protocol, “QHostAddress” to 

open the communication ports and “QString” to transform all 

data into a character string that could be sent correctly. This 

allowed fluid and efficient communication between the 

different components of the system, facilitating the 

coordination and control of the robotic arm for classification 

tasks. OpenCV provided the necessary tools for image 

processing and object detection, while Matlab was 

responsible for the configuration and manipulation of the 

CR1DA-700 driver [72], [73], [74], [75]. 

3) Matlab - CR1DA 700 Controller Interaction: This 

interaction was used to configure and manipulate the robot in 

the part sorting and selection system. The controller of the 

robotic arm has an Ethernet communication port that was 
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used to send positioning coordinates to the robot so that it 

could follow the controller's commands [76], [77]. In order 

for the robot to recognize the commands sent from the 

computer, a sequence called the Point-to-Point Interface 

(PPI) protocol was followed [75]. To establish 

communication between the Matlab software and the 

controller, certain parameters were defined, such as the IP 

address of the robotic arm, port, and computer address [78]. 

The IP address of the computer only changes the last digit, 

which can be a value between 0 and 255. Communication 

between the robot controller and the mathematical calculation 

software was carried out through the TCP/IP protocol using 

the "tcpip" command. specific to Matlab, which allows 

sending commands to the robotic arm controller. Once the IP 

address and port were configured, the communication was 

opened with the "fopen(variable)" command and the port and 

communication were closed with the "fclose(variable)" 

command. 

III. TEST AND RESULTS 

A. Determination of the Useful Area of the Cameras 

Accurately determining the usable area of the cameras is 

essential to ensure efficient operation and accurate detection 

in the sorting process. By delimiting the useful area of the 

cameras, image capture capacity is optimized, ensuring that 

only regions relevant to the classification task are processed. 

To process the information received from a two-dimensional 

space (2D image), Logitech C920 HD Pro video cameras 

were used, which require a high use of computational 

resources, causing a minimum delay in the video, which does 

not affect most of the processing. 

1) Useful Area - Parts Sorting Camera: To determine 

the useful detection area of the camera, the distance (H) from 

the central axis to one of the ends of the conveyor belt was 

measured, which was 0.425 m. Once the data was obtained, 

the focal length was calculated to define the height at which 

the camera should be placed. This was located in the center 

of the conveyor belt, at a height of 0.81 m, in order to obtain 

a wide field of view of the belt's trajectory and, above all, 

correct detection of the geometric figures. Considering the 

reach of the robotic arm and adequate manipulation of the 

pieces, a lateral distance of 0.275 m was established, this 

being the “x” axis. For the “y” axis, the distance of the width 

of the conveyor belt was determined, which was 0.11 m; 

Thus, a useful rectangular detection area of 0.0605 m2 was 

established as seen in Fig. 6. It is crucial to highlight the 

importance of evaluating the geometric figure classifier 

algorithm, especially in terms of its accuracy to correctly 

identify different shapes in the conveyer belt. This precision 

contributes significantly to the effective functioning of the 

robotic arm in the precise manipulation of objects, thus 

ensuring an optimal and efficient sorting process [79], [80]. 

 

Fig. 6. Useful area - parts sorting camera 

2) Useful Area - Active Safety Camera: To detect 

people entering the work area of the robotic arm, a static 

camera located at a considerable distance was used so that the 

image obtained covered the safety zone of the people. The 

measurements shown in Fig. 7 were obtained, where people 

are detected from 3 m measured from the center of the 

camera, and from that distance there is 1 m for detection. As 

with the previous camera, a viewing area is obtained, where 

a useful detection area of 2.77 m2 is determined. It is crucial 

to highlight the importance of evaluating the active security 

camera, especially in terms of its accuracy in identifying 

people, highlighting how this accuracy contributes to the 

effective functioning of the robotic arm in manipulating 

objects. 

 

Fig. 7. Useful area - active safety camera. 

3) Evaluation of the People Detection Algorithm: To 

demonstrate person detection for active safety using a 

camera, different distances were taken from the camera to the 

person. The data showed that at a distance of less than 3 m, 

the detection of people is 25%. In the range of 3 to 4 m, the 

percentage of correct detections of people was 90%. Finally, 

in the range of 4 to 5 m, detection was 50%. In the 3 to 4 m 

range, most detections were correct. In the remaining two 

ranges, the detection was erroneous at the highest percentage. 

In the case of the range less than 3 m, the shape of the people 

could not be defined because they were too close. In the range 

of 4 to 5 m, the work area was very close and the silhouette 

was often distorted by the equipment. Overall, the person 

detection algorithm works well. However, it is important to 

note that performance may vary depending on the distance 

between the camera and the person, as well as the location of 

the person in the work area. 

Evaluating the positioning of the robotic arm on the 

pieces is essential to guarantee efficient palletizing. Accurate 

robotic arm placement not only improves productivity, but 

also reduces the risk of part damage and increases safety in 

the work environment. Furthermore, a 90% effectiveness rate 

for the active safety system indicates strong performance in 

detecting people, suggesting high reliability in preventing 

accidents and injuries in the work area. Compared with 

previous work [81], [82], [83], this study provides a 

significant improvement in person detection accuracy, 

demonstrating advances in the security and performance of 

the automated selection and classification system. 

4) Evaluation of the Geometric Figures Classifier 

Algorithm: For the classification of geometric figures, three 

types were considered: squares, triangles and pentagons 

indicated in Fig. 8. To evaluate the triangle classifier, figures 

of different shapes and positions were placed on the conveyor 

belt. The algorithm had to draw only the shape of the 

triangular figure. To verify the proper detection of triangles 
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within the detection area, a series of tests were performed. 

Table II shows a sample of 10 tests, in which between 5 and 

7 pieces of different shapes were placed. The tests were 

performed to verify that the algorithm is able to discriminate 

only triangular pieces and each with its respective coordinate 

(X, Y) for the positioning of the robotic arm. From a set of 62 

pieces of different shapes containing 17 triangular shapes, the 

same could be detected properly since the classification of 

100% of the pieces with their respective coordinates was 

achieved. 

 

Fig. 8. Types of geometric figures 

TABLE II.  TRIANGLE DETECTION 

No. 
Total pieces 

conveyor belt 

Triangles 

conveyor belt 

Triangles 

detected 

Coordinates 

(X, Y) 

1 7 2 2 (-2.65, -315) 

2 7 2 2 (-40, -297) 

3 5 1 1 (80, -311) 

4 7 2 2 (0, -324) 

5 5 2 2 (-105, -315) 

6 7 1 1 (197, -306) 

7 5 2 2 (-167, -315) 

8 7 2 2 (-40, -297) 

9 7 2 2 (106, -309) 

10 7 1 1 (-105, -315) 

Total 62 17 17  

 

The evaluation of the square sorter was carried out by 

placing figures of different shapes and positions on the 

conveyor belt. The algorithm had to draw only the shape of 

the square figure. The adequate detection of squares within 

the area of the conveyor belt was verified by performing tests 

similar to Table II. Given 51 pieces of different shapes 

(squares, triangles and pentagons) of which 17 figures were 

square, these could be detected consistently. correctly, since 

the total of square figures were detected without problem, 

resulting in 100%. Finally, in the pentagon classifier it was 

verified that, out of a total of 60 pieces of different shapes, 

which contained 23 pentagons, the total number of pentagons 

could be defined with the classifier algorithm, resulting in a 

100% detection rate. In general, the geometric figures 

classifier algorithm had a good performance. It was possible 

to detect 100% of the triangular, square and pentagonal 

figures, with their respective coordinates as seen in Table III. 

5) Positioning of the Robotic Arm on the Pieces: Once 

the geometric pieces (square, triangle and pentagon) and their 

respective coordinates (X, Y) were identified, they were sent 

to the robot controller so that it could position itself on each 

piece to pick it up. The positioning of the robotic arm on the 

pieces was carried out taking into account that priority is 

given to the geometric figures most likely to go out of the 

detection range with respect to the “x” axis of the conveyor 

belt, where (+) is the indicator for correct compensation and 

(-) for incorrect compensation in Table IV. 

TABLE III.  X COORDINATE COMPENSATION - TRIANGLES 

No. 
Triangles 

60 [mm] 70 [mm] 80 [mm] 

1 + + - 

2 - + - 

3 + + - 

4 - + - 

5 - + - 

6 - + - 

7 - + - 

8 - + - 

9 - + - 

10 - + - 

Total 10 10 10 

% 20 100 0 

TABLE IV.  X COORDINATE COMPENSATION - TRIANGLES 

No. 
Triangles 

60 [mm] 70 [mm] 80 [mm] 

1 + + - 

2 - + - 

3 + + - 

4 - + - 

5 - + - 

6 - + - 

7 - + - 

8 - + - 

9 - + - 

10 - + - 

Total 10 10 10 

% 20 100 0 

 

6) X Coordinate Compensation: When determining the 

correct positioning of the robotic arm, it is crucial to calculate 

the displacement in the “x” axis. This is because the conveyor 

belt is in motion during the process, which causes a change 

in the X coordinate. By analyzing data such as those 

presented in Table V, where the indicator (+) denotes a 

correct offset and (-) an incorrect offset, it is observed that the 

appropriate offset value for the X-axis of the triangles is 70 

mm, and for the other figures the same value is obtained. This 

allows the robotic arm to be positioned correctly on the part 

while the conveyor belt is moving. X-coordinate 

compensation is essential to ensure accurate positioning of 

the robotic arm, regardless of the speed or direction of the 

conveyor belt. This compensation contributes significantly to 

the overall accuracy of the sorting system, ensuring that the 

robotic arm can perform sorting operations with maximum 

accuracy and efficiency, even under dynamic conditions. 

TABLE V.  COMPENSATION OF X COORDINATE 

No. of test 
Triangle (mm) Square (mm) 

60 70 80 60 70 80 

1 + + - - + - 

2 - + - - + - 

3 + + - - + - 

4 - + - - + - 

5 - + - - + - 

6 - + - - + - 

7 - + - - + - 

8 - + - - + - 

9 - + - - + - 

10 - + - - + - 

Total 10 10 10 10 10 10 

Adequate 2 10 0 0 10 0 

Non-adequate 8 0 10 10 0 10 

% 20 100 0 0 100 0 
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7) Distance Between Pieces: Regardless of the size and 

shape that the geometric pieces may have, an adequate 

distance was established between them to avoid possible 

collisions with the gripper of the robotic arm during the 

positioning, picking and palletizing process. In Table VI, 

different values of distances are indicated, marking with a (+) 

those magnitudes that are considered appropriate and with a 

(-) those that are not. The data indicates that, from 3 cm 

onwards, the distance is sufficient to avoid collisions between 

the pieces or with the gripper. It is crucial to highlight that the 

distance between pieces plays a fundamental role in the 

efficiency and safety of the sorting process. A detailed 

analysis of these distances ensures smooth and incident-free 

operation of the robotic arm, minimizing the risk of damage 

to parts or the system itself. The proper configuration of these 

distances contributes significantly to the precise and effective 

operation of the sorting system, ensuring that the robotic arm 

can manipulate the parts safely and efficiently, without 

compromising the quality of the process. 

TABLE VI.  ADEQUATE DISTANCE BETWEEN PIECES 

No. 
Distance 

2 [cm] 3 [cm] 4 [cm] 

1 - + + 

2 + + + 

3 + + + 

4 - + + 

5 - + + 

6 - + + 

7 - + + 

8 + - + 

9 - + + 

10 - + + 

Total 10 10 10 

% 30 90 100 

 

8) Fully System Test: Before implementing the 

complete system, the efficiency of the algorithms for 

classifying geometric pieces and detecting people was 

evaluated, obtaining very favorable results for both 

algorithms. Once the complete system was developed, 

through the execution of several classification iterations, it 

was determined that environmental conditions, such as 

lighting, can affect the complete percentage of efficiency of 

the system. However, when the classification system was 

implemented in well-controlled facilities, the accuracy and 

performance of the human recognition algorithm only 

decreased by 7%, since these effects can be reduced in these 

spaces. Therefore, once an operator is detected within the 

safety zone of the robotic arm, the running process stops 

completely to ensure the safety of the operator, until the 

safety zone is clear again. 

On the other hand, the geometric part classification and 

palletizing system assisted by a robotic arm is a safe and 

efficient solution that can help companies improve their 

productivity. With the integration of software tools such as 

Matlab and hardware resources such as the control unit of the 

robotic manipulator and the manipulator itself, the reliability 

and efficiency of the positioning and coordinate 

compensation of the object to be manipulated were evaluated. 

Furthermore, by executing the algorithms, the variables 

immersed in the process can be manipulated, such as the 

speed of the conveyor belt to compensate for the inverse 

kinematics of the manipulator. 

However, the adaptation and reconfiguration of 

trajectories of classification systems are usually in real time, 

although they will be restricted by the transmission speed of 

the camera interface and the processing speed of the 

computer. After system testing, it was determined that the 

efficiency of the active safety system has good reliability; if 

the environmental factors do not change severely during the 

process, an efficiency of 90% can be achieved depending on 

the iterations carried out, as shown in the figure. Table VII. 

TABLE VII.  SYSTEM TESTING ITERATIONS 

No. of iteration 
Test with 
operator 

Test without 
operator 

1 + - 

2 + - 

3 + - 

4 + - 

5 - - 

6 + - 

7 + + 

8 - - 

9 + - 

10 + + 

11 + - 

12 + - 

13 + - 

14 + - 

15 + - 

16 + - 

17 + - 

18 + + 

19 + - 

20 + - 

Detected 18 3 

Non-Detected 2 17 

% 90 15 

 

During the tests, it was possible to implement an active 

security system that detects operators while the classification 

process is developing. This system, together with the process 

of detecting geometric figures and transmitting the position 

and orientation during the movement of the conveyor belt for 

the positioning of the robotic manipulator, reached a level of 

efficiency and reliability of 90%. 

IV. CONCLUSIONS 

The present study demonstrates the feasibility and 

effectiveness of an automated object classification and 

selection system assisted by a robotic manipulator and 

artificial vision. Challenges inherent to manual sorting 

processes were addressed, such as limitations in accuracy and 

speed, as well as variability in product quality and associated 

high costs. 

The integration of a MELFA RV-2SDB robotic 

manipulator with an OpenCV-based machine vision 

algorithm enabled an efficient and accurate classification 

system. The mathematical model of the manipulator enabled 

the precise calculation of trajectories and the correct 

arrangement of objects, while the computer vision algorithm 

allowed the rapid and accurate identification of moving 

objects on the conveyor belt. 
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The evaluation of the effectiveness of the system revealed 

a high detection and classification rate of geometric objects, 

with 100% results in the detection of triangular, square and 

pentagonal figures. Likewise, an efficiency of 90% was 

achieved in detecting people in the manipulator's work area, 

demonstrating solid performance in accident prevention. 

Coordinate compensation and proper setting of distances 

between objects contributed significantly to the accuracy and 

safety of the classification process. The successful 

implementation of an active safety system ensured the 

immediate stopping of the process if the presence of operators 

in the work area was detected, guaranteeing their safety. 

Altogether, the proposed system offers an efficient and 

safe solution to improve productivity in industrial sorting 

operations. The integration of software tools such as Matlab 

and hardware resources such as the robotic manipulator and 

its control unit proved to be crucial for the reliability and 

efficiency of the system. Although potential limitations in 

real-time adaptation and reconfiguration of sorting 

trajectories were identified, the overall efficiency and 

reliability of the system is at a high level, with a potential 

efficiency of 90% under controlled conditions. 

In addition to the achievements made, advanced image 

processing and machine learning techniques can be explored 

to further improve the accuracy and efficiency of the machine 

vision system. Additional research could focus on detecting 

and classifying more complex objects and adapting the 

system to more challenging industrial environments. 
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