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Abstract—Effectively pursuing dynamically moving targets 

in the domain of multi-robot systems (MRS) poses a significant 

challenge. This paper proposes an innovative leader-follower 

strategy within the MRS framework, enabling robots to 

dynamically adjust their roles based on target proximity. This 

approach fosters coordination, allowing robots to act cohesively 

when pursuing diverse targets, from other robots to mobile 

objects. The centralized architecture of the MRS facilitates 

wireless communication, enabling robots to share sensor-

derived data providing proximity cues rather than precise 

location information. However, data anomalies arising from 

sensor errors, transmission glitches, or encoding issues pose 

challenges, compromising the reliability of target-related 

information. To mitigate this, the paper introduces an advanced 

methodology integrating the leader-follower strategy with 

Discriminant Analysis (DA)-based anomaly detection. This 

novel approach validates and filters data, enhancing data 

integrity and supporting decision-making processes. The 

integration of DA methods within the leader-follower strategy is 

detailed, emphasizing steps in anomaly detection 

implementation, showcasing robustness in selecting high-quality 

information for decision-making in dynamic environments. The 

research's real-world relevance addresses the problem of the 

impact of sensor anomalies on the performance and reliability 

of MRS in dynamic environments. By integrating machine 

learning-based anomaly detection, this methodology enhances 

MRS adaptability and robustness, particularly in scenarios 

requiring precise target tracking and coordination. Numerical 

experiments and simulations demonstrate the efficacy of the 

DA-based anomaly detection and collaborative hunting strategy 

in MRS. This method contributes to improved target tracking, 

enhanced system coordination, and streamlined pursuit of 

dynamic targets, affirming its practical applicability in 

surveillance, search and rescue operations, and industrial 

automation. 

Keywords—Multi-Robot Systems; Machine Learning; 

Anomaly Detection; Centralized Architecture; Collaborative 

Pursuit; Sensor-Derived Data.  

I. INTRODUCTION 

In a multi-robot system (MRS) [1], a group of robots 

collaboratively pursues a dynamically moving target, which 

may range from another robot to any movable object [2]. This 

collective effort is managed through a strategy known as the 

leader-follower approach [3][4]. Within this strategy, each 

robot assumes a specific role based on its proximity to the 

target [5]. 

The leader-follower strategy operates on a simple 

principle: one robot, often referred to as the leader, takes 

charge of guiding the group towards the target [6]. In contrast, 

the remaining robots, referred to as followers, adjust their 

positions according to their distance from the target. This 

approach streamlines coordination, heightening the prospects 

of a successful target capture. Essentially, the closer a robot 

is to the target, the more actively it participates in the pursuit. 

In this manner, the robots collaborate harmoniously, with 

each robot's role tailored to its relative position in relation to 

the moving target [7]. The architecture of this multi-robot 

system adopts a centralized structure [8]–[13]. This means 

that a central hub or server serves as the primary 

communication hub for the robots. The robots within the 

system communicate with this central server via wireless 

technology, sharing data collected by their onboard sensors 

[14]–[18]. The robots' sensors are specialized for detecting 

signals emanating from the target. However, it is essential to 

emphasize that these signals do not convey precise location 

information about the target. Instead, they serve as indicators 

of the target's presence, without specifying its exact 

coordinates. This configuration enables the robots to discern 

when the target is in close proximity but does not furnish 

them with precise positional data. 

The central server plays a pivotal role by continually 

gathering data from the robots at regular intervals. It 

leverages this data to determine and assign specific roles to 

each robot within the group. Nevertheless, it is important to 

acknowledge that the information provided by the robots 

regarding the target's status is not consistently dependable. 

Periodically, irregularities or anomalies surface within this 

information. These anomalies may originate from various 

sources, including sensor inaccuracies [19], data transmission 

glitches, air quality [20], [21], and encoding or formatting 

issues. In other words, occasional inaccuracies in the data the 

robots provide about the target result from problems in their 
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sensors, the way data is transmitted, or how data is packaged 

and sent to the server. These challenges pose complexities for 

the central server's task of assigning roles to the robots within 

the system. To address and mitigate these challenges, 

machine learning [22]–[27] methods can be employed, 

providing a proactive approach to anomaly detection and 

enhancing the system's ability to adapt to dynamic and 

unpredictable conditions [28]–[33]. 

As related works, the research [34] explores using IOTA 

and distributed ledger technologies to detect anomalies and 

byzantine agents in decentralized multi-robot systems. 

Unlike traditional blockchain methods facing challenges in 

real-world robotic environments, our approach leverages 

recent advancements in collaborative decision-making 

through IOTA smart contracts [35]. By adapting vision-based 

anomaly detection, we identify byzantine agents with 

minimal computational overhead, fostering trust among 

robots. The proposed methodology effectively detects 

anomalies and changes between robots operating in the same 

environment. In [36], they present a groundbreaking 

framework for identity authentication and consensus 

algorithms. The devised scheme features an identity-based 

authentication model employed by all communication nodes 

to establish connections and facilitate data exchange. 

Simultaneously, a hash pool-based joint consensus algorithm 

is introduced. In this algorithm, transmission data undergoes 

rigorous protection through the permutation of hash functions 

drawn from a hash pool, combined with the use of generated 

random numbers. This innovative approach markedly 

bolsters the security of multi-robot systems. Introducing the 

Proactive Anomaly Detection Network (PAAD) for 

enhancing robot navigation in unpredictable environments 

[37]. PAAD stands out by anticipating failure probabilities 

through the analysis of planned motions and current 

observations. This innovative system ensures robust 

detection, even in settings with sensor occlusion in the field. 

The proposed method is tailored for unsophisticated 

robots, utilizing a single cost-effective sensor with occasional 

instability in measurements. Despite this, it remains cost-

efficient and suitable for less sophisticated robotic platforms, 

addressing computational constraints through algorithms 

compatible with low-configuration cards, expanding its 

deployment potential to scenarios like ships and robots with 

lower-end configuration cards. However, the initial reliance 

on a centralized architecture may pose scalability challenges 

in extensive multi-robot systems (MRS). The occasional 

instability in measurements, influenced by the lone sensor, 

affects target tracking accuracy, and the efficacy of the 

machine learning model relies on the quality and diversity of 

training data. Our research addresses limitations in 

specialized sensors in MRS, enhancing the overall 

performance of Ultrasound, Chemical, Smoke, and Infrared 

(IR) sensors. It tackles inaccuracies, occasional false 

readings, and variations due to environmental conditions. 

Furthermore, it deals with data transmission glitches during 

wireless communication and encoding or formatting issues, 

ensuring reliable data interpretation at the central server. This 

comprehensive approach ensures the effectiveness and 

accuracy of the proposed methodology within the challenging 

context of multi-robot systems and anomaly detection. The 

methodology's practical applications extend to critical 

domains, addressing challenges in search and rescue 

missions, environmental monitoring, and surveillance in 

confined spaces. Tailored for scenarios where less 

sophisticated robots excel, it proves adaptable and effective. 

In search and rescue, a swarm efficiently locates survivors 

and assesses damage, while in environmental monitoring, it 

enables cost-effective data collection in remote or hazardous 

areas. Surveillance in confined spaces benefits from a swarm 

of robots with limited sensors, ensuring efficient 

reconnaissance and safety in complex environments. The 

method integrates the principles of a leader-follower strategy 

within a centralized architecture and employs machine 

learning techniques, specifically focusing on Discriminant 

Analysis (DA) methods. The primary goal is to optimize the 

efficiency of the central computing system by filtering out 

erroneous data from the robots, ensuring that only accurate 

information influences decision-making. 

The integration of DA methods in anomaly detection is 

groundbreaking, reshaping the landscape of multi-robot 

systems, promising efficiency and adaptability in dynamic 

environments. Addressing data anomalies in MRS, stemming 

from sensor inaccuracies, transmission glitches, and 

environmental factors, our research focuses on sensor 

dependability, communication robustness, and 

environmental adaptability. Machine learning methods 

enhance anomaly detection, contributing to system reliability 

in real-world applications. Metrics and evaluation results 

confirm DA's robustness, tailored for applications of this 

nature. Data acquired from the robots undergoes thorough 

verification using a trained model, ensuring its reliability for 

subsequent processing and decision-making. The combined 

performance of DA algorithms for anomaly detection and the 

hunting strategy within the Multi-Robot System (MRS) is 

showcased through numerical experiments and simulations.  

The main contributions of this paper are: (1) Innovative 

Integration of Leader-Follower Strategy and Machine 

Learning, where the method integrates a leader-follower 

strategy within a centralized architecture and employs 

Discriminant Analysis (DA) methods, optimizing the central 

computing system's efficiency by filtering erroneous data. (2) 

Groundbreaking Anomaly Detection with DA Methods by 

the integration of DA methods for anomaly detection 

reshapes the landscape of multi-robot systems, promising 

efficiency and adaptability in dynamic environments. (3) 

Adaptable Methodology for Unsophisticated Robots where it 

is designed for less sophisticated robots, utilizing a cost-

effective single sensor and addressing computational 

constraints, making it suitable for a variety of robotic 

platforms. 

The paper is organized into sections, delving into the 

background, detailing the proposed method, presenting and 

interpreting results, and encapsulating the conclusion with 

outlines for further research. 

II. METHOD 

Within the swarm, numerous robots undertake the roles 

of trackers or hunters with the shared objective of locating 

and capturing a predefined target. Effective communication 

and information exchange among these robots are paramount 
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to establishing a robust formation. This collaborative effort 

aims to expedite the target-finding process and prevent its 

evasion. The target, in this context, is characterized by its 

unpredictable movement patterns and behaviors, adding an 

element of complexity to the pursuit. To illustrate the elusive 

nature of the target, we conceptualize it as akin to another 

robot, emitting signals that deliberately withhold any 

information regarding the target's precise location. This 

deliberate lack of locational cues challenges the tracking 

robots to rely on adaptive strategies and dynamic 

coordination within the swarm to swiftly and efficiently 

apprehend the elusive target, navigating the complexities of 

its random velocity and behavior. In adherence to the hunting 

strategy, robots within the swarm are tasked with measuring 

the signal generated by the target. The value obtained from 

this measurement plays a pivotal role in determining the roles 

assigned to individual robots and, consequently, shaping the 

overall formation of the swarm. It is imperative to underscore 

that the accuracy and reliability of these measured values are 

paramount for the success of the pursuit. The correctness of 

these measurements directly influences the strategic 

assignment of roles among the robots and the subsequent 

coordination within the entire swarm. 

A. Pursuit Strategy in Multi-Robot Systems 

This hunting strategy employs an improvised multi-robot 

cooperation approach to pursue a dynamic target, proving to 

be an effective method for addressing such multi-robot tasks 

[38]. Inspired by the hunting behavior of wolves, this method 

has been adapted with certain modifications to suit the robotic 

context. The robots involved in this strategy assume distinct 

roles, including the leader wolf, antagonist wolves, and 

follower wolves. The 𝑁 robots utilize a hunting strategy 

based on detecting the odor concentration of the prey, 

expressed through the fitness function 𝛳(𝑅𝑟, 𝑇), where 𝑇 

represents the target vector position and 𝑟 =  (1… .𝑁). The 

fitness function 𝛳(𝑅𝑟, 𝑇) increases as the robot gets closer to 

the target. Notably, the function value 𝛳(𝑅𝑟, 𝑇) remains 

independent of the number of dimensions in the search space 

(𝑛). Mathematically, 𝛳: 𝐼𝑅𝑛 →  𝐼𝑅. 

The leader wolf, denoted as 𝑅𝑙 , is expected to possess 

extensive knowledge about the prey's position and be the 

closest to the target. When the leader wolf initiates howling, 

all follower wolves join forces to pursue the target. Roles 

among wolves are dynamically exchanged based on the 

fitness function: if 𝛳(𝑅𝑟, 𝑇) > 𝛳(𝑅1, 𝑇), then Robot Rr 

becomes the new leader, and the former leader assumes the 

role of an antagonist. 

The robots assigned the role of the antagonist wolf follow 

the method outlined below to track the target independently 

of the leader. Within the swarm, the number of antagonists 

varies between [(𝑁 − 1)/(𝜆 + 1), (𝑁 − 1)/𝜆], where 𝜆 = [1, 

𝑁/2], representing the antagonism proportion factor. The 

search location is determined based on the position of the 

leader, who is consistently the closest to the prey. This 

particular wolf focuses its search within a specific angle. 

The measurement of this angle, situated between the x-

axis and the straight line connecting the antagonist and the 

leader, is calculated as follows: 

ϴ = 2arctan 
Ry

l - Rky
a

√(Rx
l - Rkx

a +1)
2
+(Ry

l - Rky
a )

2
 + Rx

l - Rkx
a + 1

 
(1) 

The coordinates of the antagonist wolf 𝑅𝑘 with 1 ≤ 𝑘 ≤ 

A_wolves are denoted as 𝑅𝑘𝑦
𝑎  and 𝑅𝑘𝑥

𝑎 , and the angle 𝜃 is 

measured in radians. The value of this angle is converted 

according to equation (2) to align it with the algorithmic 

method. 

ϴ'= {
ϴ,  ϴ ∈ [0, π]

ϴ+2π, ϴ ∉ [0, π]
 (2) 

Employing the aforementioned angle measurement, the 

antagonist wolf assesses the prey's odor in specific positions. 

These temporary positions (𝑅𝑘𝑥
�̃� , 𝑅𝑘𝑦

�̃� ) are calculated using 

equation (3). 

(
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The vector 𝛽 represents the seeking vector, where the 

factor 𝜓 determines the extent of global directions that the 

antagonist 𝑅𝑘 a will explore in search of the prey. 

Additionally, 𝜑 is the factor governing the advancing 

direction, where: 

φ  = [
ψ × ϴ'

2π
- l1   ,

ψ × ϴ'

2π
+ l2 ] (4) 

The two integers 𝑙1 and 𝑙2 define the boundaries of the 

seeking area, with their values falling within the interval [1, 

𝜓]. The antagonist 𝑅𝑘 updates its position to the temporary 

position that registers the highest value of the prey's odor 

concentration, on the condition that max(𝛳(𝑅𝑘𝜑 𝑎, 𝑇)) > 

𝛳(𝑅𝑘𝑎, 𝑇). The antagonist secures the leader position if 

𝛳(𝑅𝑘𝑎, 𝑇) > 𝛳(𝑅𝑙, 𝑇). 

In this swarm, there are N-A_wolves-1 followers. This 

hunting strategy defines two types of behavior for each 

follower. The follower wolf switches between the two 

behaviors according to the distance between this wolf and the 

leader 𝐷𝑐𝑜𝑛𝑣. The distance of convergence Dconv is 

described as: 

𝐷𝑐𝑜𝑛𝑣= (
1

max(xs)- min(xs) 
+

1

max(ys)- min(ys) 
)
-1

× σ  (5) 

Where 𝜎 = [0, 1] is the convergence factor. (𝑥𝑠, 𝑦𝑠) are the 

boundaries of the search space. 

When the distance between the leader and the follower 

exceeds Dconv, the follower wolf adopts summoning 

behavior. In this mode, the follower advances towards the 

leader according to equation (6): 

(
Rjx
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)= (
Rjx

f  (i)

Rjy
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)ʘ(
|Rx

l - Rjx
f  (i)|
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 (6) 

The follower wolf exhibits predatory behavior when the 

distance between itself and the leader is less than Dconv. In 

this behavior, the follower gradually encircles and captures 
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the prey. The position update for the follower is expressed by 

the following expression: 

(
Rjx

f  (i+1)

Rjy
f  (i+1)

)= (
Rjx

f  (i)

Rjy
f  (i)

)+(
γ

1

γ
2

)ʘ(
Rx

l - Rjx
f  (i)

Ry
l - Rjy

f  (i)
)ʘ (

τ1

τ2

) (7) 

B. Linear Discriminant Analysis (LDA) and it’s Variants  

The goal of the LDA technique is to project the original 

data matrix onto a lower dimensional space [39]–[42]. To 

achieve this goal, three steps had to be carried out. The first 

step is to calculate the separability between classes (the 

distance between the means of the different classes), which is 

called the between classes variance 𝑆𝐵. The second step is to 

calculate the distance between the mean and the samples of 

each class, which is called the within-class variance 𝑆𝑤 [43]–

[46]. After having calculated the between-class 

variance (𝑆𝐵) and the within-class variance (𝑆𝑊), the 

transformation matrix (Π) of the lower dimensional space 

can be calculated as in the equation (8), called Fisher 

criterion. This formula can be reformulated as in the equation 

(9). 

argmax
𝑊

Π𝑇𝑆𝐵Π

Π𝑇𝑆𝑊Π
 (8) 

𝑆𝐵Π = 𝜆𝑆𝑤    (9) 

The challenge of linear separability in Linear 

Discriminant Analysis (LDA) refers to the method's 

limitation in modeling linear relationships between variables 

and classes [47], [48]. LDA assumes that data is linearly 

separable in the projection space, meaning that classes can be 

optimally discriminated using a linear combination of input 

variables [49]–[53]. However, in many real cases, the 

relationships between variables and classes can be nonlinear. 

To overcome this issue, extensions of LDA have been 

proposed [54], [40]–[42], [55]–[65]. One of these extensions 

is Quadratic Discriminant Analysis (QDA), which allows for 

modeling quadratic relationships between variables and 

classes. Additionally, Kernel Discriminant Analysis (KDA) 

is another extension that handles nonlinear relationships by 

using kernel functions to project data into a higher-

dimensional space where linear separation can be achieved, 

as shown in Fig. 1. This enables KDA to capture nonlinear 

relationships between variables and classes. 

 

Fig. 1. Nonlinear transformation 

C. Anomaly Detection in Target Pursuit 

The proposed method is specifically designed for 

unsophisticated robots, lacking an abundance of sensors or 

high-quality sensor capabilities. Additionally, it caters to 

robots operating in unstable conditions. The primary 

challenge stems from the fact that the measured values from 

these robots are not consistently reliable or accurate. This 

sensitivity becomes a critical concern for the hunting 

strategy, as inaccuracies in these values can lead to various 

issues such as disruptions in the formation of the robots and 

potential prolongation or failure of the pursuit. 

In this method, a centralized architecture is employed to 

organize the robots. The computing center, serving as the 

central hub for coordination, can take the form of a computer 

within the same local network (Fig. 2), a server accessible to 

all robots connected to the internet, or even a designated robot 

within the swarm as shown in Fig. 3. The computing center 

plays a crucial role in aggregating information about the 

measured values from all other robots. Subsequently, based 

on this collective data, the computing center undertakes the 

responsibility of assigning specific roles to each robot within 

the swarm. This centralized approach ensures a cohesive and 

synchronized operation, where the computing center acts as 

the brain of the system, orchestrating the collaboration of 

robots by leveraging the information received from each unit.  

In a misguided collective movement away from the target. 

This not only compromises the pursuit objective but may also 

introduce a new layer of complexity and potential conflict 

among the robots. Therefore, the computing center's ability 

to discern and rectify anomalies becomes crucial for the 

successful execution of the collaborative pursuit strategy. By 

accurately identifying and addressing anomalies, the 

computing center ensures that the assigned roles and 

movements within the robot swarm align with the actual 

circumstances, enhancing the overall effectiveness and 

reliability of the multi-robot system in dynamic 

environments. 

 

Fig. 2. A centralized architecture involves the use of a server or a central 

computer center 

 

Fig. 3. Centralized architecture centered around a robot as the computing 

hub 

In its role of orchestrating the team, the computing center 

assumes a dual responsibility by not only coordinating the 

actions of the robots but also diligently detecting and 

managing anomaly information sent by these robots (Fig. 4). 

Anomalies can stem from various sources, including 

inaccuracies in sensor measurements, coding issues, 

transmission errors, and more. The impact of an erroneous 

measure is substantial, capable of disrupting the entire 
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formation of the robots. Consider a scenario where a robot 

within the swarm detects the weakest signal, yet due to an 

error, the value received by the computing center is 

erroneously amplified. Subsequently, other robots might 

align their positions with this misidentified leader, resulting. 

In the context of this problem, an anomaly is defined by a 

significant variation in the values transmitted by the robots. 

This variance is attributed to the inherent instability of the 

signal generated by the target, influencing all robots within 

the system. The essence of this anomaly is manifested in a 

scenario where the value transmitted at time 𝑡 deviates 

considerably from the value transmitted at the preceding 

instant, 𝑡 − 1. Table I illustrates specific instances of these 

anomalies, providing a tangible representation of the 

observed variations. 

 

Fig. 4. Critical components in a computing center 

TABLE I.  IDENTIFICATION OF ANOMALIES 

Case 1 2 3 4 5 6 7 

Robot 1 20 80 87 120 125 70 13 

Robot 2 22 79 88 126 127 64 9 

Robot 3 31 86 85 122 123 62 11 

Robot 4 2 63 61 80 150 59 0 

 

In Case 5, an anomaly is clearly identified. Robot 4, 

which was initially the farthest from the target at time 𝑡 − 1, 

unexpectedly sends the highest value among all robots at time 

𝑡. This abrupt and substantial increase in the transmitted 

value contradicts the anticipated behavior, marking it as an 

anomaly. 

In the process of anomaly detection within a multi-robot 

system, the initial step involves comprehensive data 

preparation by collecting pertinent information from sensors 

on each robot. This dataset encompasses features crucial to 

understanding robot behavior, such as sensor readings, 

movement patterns, and communication signals. 

Subsequently, the data is labeled to distinguish between 

normal and anomalous instances, acknowledging potential 

anomalies arising from sensor errors, unexpected 

movements, or communication disruptions. Following 

dataset splitting for training and testing, feature scaling is 

applied to ensure optimal performance. The different 

classifiers, then trained on the feature matrix (X_train) for 

binary classification of normal and anomalous behavior. 

Predictions are made on the testing set, and model 

performance is evaluated using metrics like accuracy, 

precision, recall, and F1-score, with parameter adjustments 

made as necessary. The trained classifier model is integrated 

into the central computing center of the multi-robot system, 

where it continuously monitors incoming data, classifying 

instances as normal or anomalous. In response to detected 

anomalies, a proactive mechanism is devised, potentially 

involving role reassignment, behavior recalibration, or 

system-wide alerts. 

III. RESULTS AND DISCUSSION 

In the experimental phase, the pursuit of a target involves 

four robots that establish communication through a 

centralized unit. This unit plays a pivotal role in data retrieval 

from the robots and responds with assigned tasks. Within this 

central unit, a supervised machine learning model is 

implemented to detect data anomalies. To identify the most 

suitable machine learning algorithm for this task, data has 

been systematically collected from a hunting pursuit 

involving the four robots. This data has been meticulously 

labeled to discern whether each measurement signifies an 

anomaly or not.  

A. Competitors 

This part provides an overview of several competing 

classification methods commonly used for anomaly 

detection, each with its own set of parameters that can be 

tuned to achieve optimal performance as shown in Table II. 

TABLE II.  ALGORITHM DESCRIPTION 

Algorithm Designation Parameters 

RF 
Random Forest 

[40] 

Number of trees= 100 
Tree depth =None 

Minimum samples split 

=5 

SVM  
Support Vector Machine 

[49] 

Kernel type (rbf) 
Kernel width =0.001 

C=1 

k-NN  
k-Nearest 

Neighbors [48] 
Number of neighbors 

(k=3) 

DT 
Decision Tree 

[41] 

Tree depth= None 

Minimum samples 

split=5 

LR  
Logistic 

Regression [42] 
C=0.1 (regularization) 

QDA 
Quadratic Discriminant 

Analysis [47] 

Tol=1e-4 

Priors=None 

KDA 

Kernel Discriminant 

Analysis 

[43] 

Kernel type (rbf) 
Kernel width =0.001 

Nys-KDA 
KDA with Nystrom 
approximation [44] 

Number of landmarks 
points (ratio=0.5) 

Bag-LDA 
Bagging applied 

to LDA [45] 

Number of LDA 

Classifiers =2 

LDA 
Linear Discriminant 

analysis [46] 
Solver type (svd) 

 

Algorithm's default parameters are chosen as reasonable 

starting points, but they may not be suitable for all situations. 

Therefore, an in-depth understanding of each parameter and 

its implications on model behavior is crucial to ensure that 

our models make accurate and reliable predictions. In the 

process of parameter tuning, a cross-validation techniques, 

such as k-fold cross-validation, allow us to assess a model's 

performance. 

B. Evaluation  

The ensuing Table III showcase the outcomes of various 

machine learning algorithms deployed for supervised 

anomaly detection. Performance evaluation is conducted 

using metrics such as F1-Score and Accuracy. Each metric 

offers distinctive insights into the efficacy of the algorithms 

in identifying anomalies within the communication network. 

This rigorous evaluation process ensures the selection of an 

optimal machine learning algorithm, thereby enhancing the 
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system's ability to detect and respond to anomalies effectively 

in the pursuit of the target. 

TABLE III.  F1-SCORE RESULTS 

Algorithm F1 Score 

Random Forest 0.835443 

SVM 0.9235802 

k-NN 0.860465 

Decision Tree 0.820000 

Logistic Regression 0.870588 

QDA 0.9866666 

KDA 0.9219999 

Nystrom-KDA 0.9487179 

Bagging-LDA 0.8841509 

LDA 0.8769574 

 

Anomaly detection is a pivotal task in various 

applications, and the F1-Score proves to be a valuable metric 

that balances precision and recall (see Fig. 5), providing a 

comprehensive evaluation of how well an algorithm performs 

in identifying anomalies. Let's delve into the F1-Scores of 

these algorithms to gain insights into their anomaly detection 

capabilities. QDA, Nystrom-KDA, KDA and SVM stand out 

as the top performers in anomaly detection, with F1-Scores 

of 0.987, 0.949, 0.924, and 0.923, respectively. They 

effectively strike a balance between precision and recall, 

making them well-suited for applications where accurate 

anomaly detection is essential. Bagging LDA, Linear 

Discriminant Analysis, k-NN, and Logistic Regression also 

deliver solid performances, with F1-Scores of 0.885, 0.877, 

0.860, and 0.871, respectively. While Random Forest and 

Decision Tree perform well with F1-Scores of 0.835 and 

0.820, they slightly lag behind the top performers. 

Accuracy measures the proportion of correctly classified 

instances, both normal and anomalous (Table IV and Fig. 6). 

In this context, QDA excels with the highest accuracy of 

0.960, signifying its proficiency in correctly classifying 

anomalies. Nys-KDA follows closely with an accuracy of 

0.922, demonstrating robust performance. SVM and KDA 

also deliver impressive accuracy rates of 0.8823 and 0.8827, 

respectively, showing their effectiveness in distinguishing 

between normal and anomalous cases. Decision Tree 

achieves a respectable accuracy of 0.843, outperforming 

Logistic Regression (0.784), Random Forest (0.800) and 

Bagging-LDA (0.781). Linear Discriminant Analysis and K-

NN while delivering accuracies of 0.772 and 0.765, 

respectively, slightly lag behind the top performers. k-NN, 

with an accuracy of 0.765, demonstrates the lowest accuracy 

among the algorithms, indicating room for improvement in 

correctly classifying instances. 

TABLE IV.  ACCURACY RESULTS 

Algorithm Accuracy 

Random Forest  0.8000000 

SVM  0.8823450 

k-NN  0.7647058 

Decision Tree  0.8431372 

Logistic Regression  0.7843137 

QDA 0.9603921 

KDA 0.8827529 

Nys-KDA 0.9215686 

Bagging-LDA 0.7807973 

LDA 0.7716525 

 

Fig. 5. F1 score of ML Algorithms 

 

Fig. 6. Accuracy of ML Algorithms 

C. Oversampling Data  

Expanding the dataset using techniques such as data 

duplication or oversampling can significantly enhance model 

performance, especially in cases of imbalanced or small 

original datasets. This approach often results in a more 

balanced representation of different classes, aiding the model 

in effectively learning underlying patterns. The advantages 

include improved classification accuracy, a better trade-off 

between precision and recall, and a reduction in overfitting. 

This is why I noticed a remarkable performance boost when 

I increased the number of samples in my dataset. 

However, this method can lead to an increase in dataset 

size, posing challenges in terms of memory, computational 

resources, and scalability. It emphasizes the importance of 

considering techniques suitable for handling large and real-

time datasets. 

D. LDA and its Variants  

Linear Discriminant Analysis (LDA) provides a strong 

baseline for anomaly detection. Bagging-LDA builds upon 

this foundation, demonstrating that an ensemble approach 

can enhance performance. By aggregating multiple LDA 

models trained on different subsets of the data, Bagging-LDA 

mitigates the risk of overfitting and can capture more nuanced 

patterns within the dataset. This transition from LDA to 

Bagging-LDA reflects the value of leveraging ensemble 

techniques to boost anomaly detection capabilities. Kernel 

Discriminant Analysis (KDA) marks a significant shift. KDA 

introduces non-linearity through the kernel trick. This change 

enables KDA to capture complex, non-linear relationships in 

the data, making it more adept at handling intricate 

anomalies. The improvement signifies the importance of 

considering non-linear relationships in anomaly detection 

tasks, especially when dealing with complex, multi-

dimensional data. KDA is further enhanced with Nystrom 

sampling. The Nystrom method provides a computationally 

efficient way to approximate kernel matrices, enabling the 
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processing of large datasets. The boost in performance from 

KDA to Nystrom-KDA showcases the significance of 

scalability and efficiency in anomaly detection. This 

transition reflects the need to handle real-world, extensive 

datasets, making anomaly detection more applicable in 

practical scenarios. 

In essence, LDA provides a solid starting point for 

anomaly detection, more advanced techniques such as 

ensemble learning, non-linear transformations, and efficient 

computations can significantly enhance anomaly detection 

capabilities. This observation aligns with the evolving needs 

of data analysis, where complex, high-dimensional data is 

increasingly prevalent. To tackle such challenges effectively, 

leveraging variant LDA methods becomes essential. 

E. Hunting Process Simulation 

In a simulated hunting scenario conducted on MATLAB 

(Fig. 7 and Fig. 8), the same set of robots and computing unit 

from previous experiments are employed. The objective of 

this simulation involves four robots tasked with capturing a 

target within a confined environment. The robots transmit 

information to the central computing unit, where the received 

data undergoes preprocessing. Subsequently, the data is fitted 

into the trained model for anomaly detection, a process that 

determines the legitimacy of the information for use in the 

hunting endeavor. This integrated system ensures that only 

validated and accurate data contributes to the decision-

making process during the simulated hunting operation, 

emphasizing the significance of effective anomaly detection 

in optimizing the overall performance and success of the 

hunting simulation. 

 

Fig. 7. The initial position for the robots and target 

 

Fig. 8. The robots hunt the target successfully 

IV. CONCLUSION 

This research marks a new contribution for multi-robot 

systems (MRS) by introducing the leader-follower approach, 

redefining how robots collaborate during pursuit scenarios. 

This strategy optimizes pursuit efficiency by assigning roles 

based on proximity to the target, streamlining collaboration 

within MRS. The benefits derived from role assignment 

based on proximity are profound, as it ensures that robots 

closer to the target assume more active roles in the pursuit, 

leading to a more streamlined and optimized collaborative 

effort. This optimization, in turn, contributes to an overall 

improvement in the performance of multi-robot systems, 

making them more effective and adaptable in dynamically 

evolving pursuit scenarios. The leader-follower strategy, 

therefore, stands as a cornerstone in facilitating effective 

collaboration, heralding a new era in the capabilities of robot 

teams engaged in pursuit missions. This advancement propels 

robot teams into a new era of capabilities during pursuit 

missions. In the centralized MRS architecture, challenges 

with data reliability and anomaly detection take the spotlight. 

Sensor inaccuracies and data transmission issues threaten 

information integrity. To overcome these challenges, our 

research introduces an innovative solution—merging the 

leader-follower strategy with machine learning techniques, 

specifically Linear Discriminant Analysis (LDA) variants, 

for anomaly detection. This integration effectively addresses 

sensor-related complexities, ensuring shared data integrity 

among robots. This approach marks more than incremental 

progress, signaling a paradigm shift in the conception and 

implementation of Multi-Robot Systems (MRS). It extends 

beyond anomaly detection, fundamentally reshaping 

adaptability and efficiency in dynamic environments. With 

applications spanning search and rescue, environmental 

monitoring, and confined space surveillance, its impact 

reverberates across industries, prioritizing operational 

efficiency and decisive decision-making. In shaping the 

future of robotics, our method elevates MRS beyond mere 

tools, transforming them into dynamic collaborators capable 

of seamless adaptation and evolution. This paper presents 

novel contributions by integrating a leader-follower strategy 

and machine learning within a centralized architecture to 

enhance computing efficiency. It pioneers anomaly detection 

using DA methods, reshaping multi-robot systems for 

improved efficiency in dynamic environments. Additionally, 

the paper introduces an adaptable methodology designed for 

less sophisticated robots, utilizing a cost-effective single 

sensor and addressing computational constraints across 

diverse robotic platforms. 

In the research's forward-looking perspective, it paves the 

way for exploring the Collaborative Kernel Discriminant 

Analysis (CKDA) approach, emphasizing its potential to 

address large-scale problems and real-time data streams in 

multi-robot systems (MRS). By incorporating ensemble 

learning and compression techniques, CKDA emerges as a 

transformative tool capable of handling vast datasets in 

dynamic environments. The significance of probing its 

scalability and adaptability is paramount, as CKDA holds the 

potential to revolutionize anomaly detection not only in 

pursuit scenarios but also in broader applications like 

cybersecurity and industrial automation. This exploration 

signifies a strategic step toward more robust, efficient, and 

real-time anomaly detection methodologies, establishing the 

groundwork for heightened performance and adaptability 

across diverse domains. 
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